

Central Dogma of Molecular Biology

DNA = Master Copy of Genetic Information

RNA = Temporary (Disposable) Copy of DNA

Protein = Ultimate Product of Gene Expression

Replication = Duplication of DNA prior to Cell Division

Transcription = Synthesis of RNA from DNA Template

Translation = Synthesis of Protein from RNA Template

There Are Three RNA Polymerases in Eukaryotes

RNA Polymerase I: Synthesis of Ribosomal RNA (rRNA)

RNA Polymerase II: Synthesis of Messenger RNA (mRNA)

RNA Polymerase III: Synthesis of Transfer RNA (tRNA) and 5S RNA

Eukaryotes = organisms in which cells have nuclei (e.g., fungi, insects, plants, mammals)

Prokaryotes = organisms in which cells do NOT have nuclei (*e.g.*, bacteria)

What Is a Gene?

Gene = Segment of DNA that encodes a specific function (typically, a protein)

Gene Expression = gene activation

How is the Activity of Each of the Tens of Thousands of Genes Regulated?

- Events prior to transcription (e.g., signalling pathways, changes in chromatin structure)
- Transcriptional regulation
- Post-transcriptional regulation (e.g., splicing, translation)

Many Factors Affect the Regulation of Transcription by RNA Polymerase II

Three Different Perspectives of Transcriptional Regulation

- Cis-acting DNA Elements vs. Trans-acting Protein Factors
- Basic (Basal) Transcription vs. Regulatory Processes
- Genetic (involving DNA sequence) vs. Epigenetic (not involving primary DNA sequence) Phenomena

DNA Regulatory Elements (cis elements) for Transcription of Protein-coding Genes by RNA Polymerase II

Trans-acting Protein Factors Involved in Transcriptional Regulation

Three Different Perspectives of Transcriptional Regulation

- Cis-acting DNA Elements vs. Trans-acting Protein Factors
- Basic (Basal) Transcription vs. Regulatory Processes
- Genetic (involving DNA sequence) vs. Epigenetic (not involving primary DNA sequence) Phenomena

Basal Transcription Machinery – Synthesis of mRNA

Sequence-specific DNA-binding Regulatory Factors

Three Different Perspectives of Transcriptional Regulation

- Cis-acting DNA Elements vs. Trans-acting Protein Factors
- Basic (Basal) Transcription vs. Regulatory Processes
- Genetic (involving DNA sequence) vs. Epigenetic (not involving primary DNA sequence) Phenomena

Epigenetic Components of Transcriptional Regulation

Many Factors Affect the Regulation of Transcription by RNA Polymerase II

Specific Topics

- Basal transcription by RNA polymerase II
- Sequence-specific DNA-binding factors
- How might enhancers work?
- Chromatin structure Introduction
- Covalent modification of histones
- Chromatin remodeling factors
- Chromatin assembly

Core Promoter Elements

Basal ('General') Transcription Factors for RNA Polymerase II

- TFIID consists of TBP (TATA-box binding protein) + TAFs (TBP-associated factors).
 Binds to core promoter motifs. TAFs interact with activator proteins. The first step in basal transcription is probably binding of TFIID to the core promoter.
- TFIIA three (or two) small subunits. Increases affinity of TBP for DNA in vitro.
 Not needed for transcription in vitro. Could be an anti-inhibitor.
- TFIIB one subunit of 35 kDa. Binds to TBP and the BRE.
- RNA Polymerase II consists of two large subunits (IIa and IIb) as well as about eight smaller subunits. Unique feature of largest (IIa) subunit is the C-terminal domain (CTD), which is an imperfectly-repeated heptapeptide motif, YSPTSPS.
- TFIIF also known as RAP30/74. Binds to RNA polymerase II. Two subunits of 30 and 74 kDa. Functions in transcription initiation and elongation.
- TFIIE two polypeptides of 34 and 56 kDa. Required for assembly of TFIIH into the transcription preinitiation complex (PIC).
- TFIIH nine polypeptides. Core TFIIH has six subunits, which include 5'–>3' and 3'–>5' DNA helicases, and is also involved in nucleotide excision repair. Also has a three subunit Cdk7/MO15 + Cyclin H + MAT1 kinase complex that phosphorylates Ser5 of the CTD during transcription initiation.

Core Promoter Elements

TATA- versus DPE-dependent Core Promoters

A Role for Core Promoters in Enhancer Specificity

"Runoff" Transcription Assay (In Vitro)

Analyze Radiolabelled RNA by Agarose Gel Electrophoresis and Autoradiography

"G-less Cassette" Variation of Runoff Transcription Assay

Analyze Radiolabelled RNA by Agarose Gel Electrophoresis and Autoradiography

Primer Extension Analysis of RNA

Analyze on Polyacrylamide-Urea Gel (= same as DNA Sequencing Gel)

Mapping of In Vivo and In Vitro Start Sites of MTE-containing Promoters

Core Promoter Elements

Specific Topics

- Basal transcription by RNA polymerase II
- Sequence-specific DNA-binding factors
- How might enhancers work?
- Chromatin structure Introduction
- Covalent modification of histones
- Chromatin remodeling factors
- Chromatin assembly

Sequence-specific DNA-binding Transcription Factors Are the Apex at the Interface of Genetic Regulatory Information and the Inverted Cone of Other Transcription Factors

Sequence-specific Transcription Factors Are Modular

Chromatin Is an Integral Component of Transcription

Sequence-specific Factors Typically Bind in Clusters

Nuclear Receptors Are an Interesting Family of Sequence-specific DNA-binding Transcription Factors

- Sequence-specific DNA-binding proteins
- Upon binding of their cognate ligands (agonists), they activate transcription.
- Thus, nuclear receptors function as both the receptor for the signals (agonists) as well as sequence-specific DNA-binding transcriptional activators.
- Inactivated by antagonists, which are ligands that resemble the agonists, but block activation functions.
- Examples include estrogen receptor, androgen receptor, glucocorticoid receptor, vitamin D receptor, thyroid hormone receptor.

DNase I Footprinting Analysis of Sequence-specific DNA-binding Proteins

Mutation of the DPE Reduces Binding of TFIID

Gel Mobility Shift Analysis of Sequence-specific DNA-binding Proteins

Autoradiography of Labelled DNA Fragments

Sequence-specific DNA Affinity Chromatography

Chromatin Immunoprecipitation (ChIP) Analysis

Adapted from: Orlando, V. (2000) Trends Biochem. Sci. 25, 99-104.

Sequence-specific DNA-binding Transcription Factors (RNA Pol II)

- Modular Structure
 - Sequence-specific DNA-binding Modules
 - Transcriptional Activation/Repression Modules
 - Regulatory Modules (inter- or intramolecular)
 - Multimerization Modules (homo- and heterotypic interactions)
- Regulate Transcription via Recruitment of Coactivators and Corepressors
- Chromatin Is an Integral Component in the Function of Sequence-specific Factors
- Sequence-specific Factors Can Be Regulated by Post-translational Modifications
- Sequence-specific Factors Are Often Members of Multiprotein Families
- Recognition Sites for Sequence-specific Factors Tend to Be Located in Clusters
- Sequence-specific Factors Typically Bind to DNA with Relatively Low Specificity
- Sequence-specific Factors Can Affect Transcription Initiation and/or Elongation
- Some Factors Are Commonly Found in Proximal Promoter Regions
- Sequence-specific Factors Bind to Boundary/Insulator Elements
- Some Sequence-specific Factors Can Bend DNA