

Alternation of DNA replication and chromosome segragation

The logic of the cell cycle:

cell fusion experiments (Rao & Johnson)

G1-phase nucleus immediately enters S phase; S-phase nucleus continues DNA replication

S phase cells contain a factor that can trigger DNA replication in G1 cells: S phase Promoting Factor

The logic of the cell cycle:

cell fusion experiments (Rao & Johnson)

block of re-replication

G2-phase nucleus stays in G2; S-phase nucleus continues DNA replication

The Cell Division Cycle

Balanced growth and division

Chromosome cycle

- DNA replication
- mitosis
 (precise replication

Growth cycle

- cytoplasmic growth
- cell division

 (approx. doubling

 and halving)

Dissociation of growth and chromosome cycle Oogenesis Embryogenesis

The Nobel Prize in Physiology or Medicine 2001

"for their discoveries of key regulators of the cell cycle"

Leland H. Hartwell

USA

Fred Hutchinson Cancer Research Center Seattle, WA, USA

1939 -

R. Timothy (Tim) Hunt

Great Britain

Imperial Cancer Research Fund London, Great Britain

1943 -

Paul M. Nurse

Great Britain

Imperial Cancer Research Fund London, Great Britain

1949 -

Saccharomyces cerevisiae

Lee Hartwell

Isolation of temperature sensitive cdcts mutants

Phenotype of cdc mutants

asynchronous culture

cdc mutant
with problem of
mitotic exit

Cdc28 is responsible for the first genetically controlled event

Fig. 3. The circuitry of the yeast cell cycle. Events connected by an arrow are proposed to be related such that the distal event is dependent for its occurrence upon the prior completion of the proximal event. The abbreviations are the same as in Fig. 1. Numbers refer to cdc genes that are required for progress from one event to the next; HU and TR refer to the DNA synthesis inhibitors hydroxyurea and trenimon, respectively; MF refers to the mating factor, α factor.

Cloning of cdc^{ts} genes

cdc28ts cells grown at 25 °C Transform with plasmid library of wild-type S. cerevisiae DNA

Gene X

Transformed cdc28ts cells grown at 35 °C

Cells in colony at various cell-cycle stages

Schizosaccharomyces pombe

Sir Paul Nurse

Murdoch Mitchison

cdc2^{ts} cdc25^{ts} cdc13^{ts}

cdc2 is required at two points during the cell cycle

cdc28^{5.c.} and cdc2^{5.p.} are functional homologs

Do human cells have the same gene?

Complementation used to clone a human homologue of the fission yeast cell cycle control gene cdc2

Melanie G. Lee & Paul Nurse

Cell Cycle Control Laboratory, Imperial Cancer Research Fund, Lincoln's Inn Fields, London, WC2A 3PX, UK

Melanie Lee

Cell, Vol. 45: 145-153, April 11, 1986

Cell, Vol. 49: 559-567, May 22, 1987

cdc25⁺ Functions as an Inducer in the Mitotic Control of Fission Yeast

Paul Russell and Paul Nurse

Cell Cycle Control Laboratory Imperial Cancer Research Fund Lincoln's Inn Fields London, WC2A 3PX, England

Negative Regulation of Mitosis by wee1⁺, a Gene Encoding a Protein Kinase Homolog

Paul Russell and Paul Nurse

Cell Cycle Control Laboratory Imperial Cancer Research Fund Lincoln's Inn Fields London WC2A 3PX, England

Yoshio Masui, Ph.D., FRS Professor Emeritus of Zoology University of Toronto Ontario, Canada

DRIVEN INTO

M PHASE

Professor Emeritus of Zoology University of Toronto Ontario, Canada

Periodic proteins (cyclins) during early embryonic development

Tim Hunt

Purified Maturation-Promoting Factor Contains the Product of a Xenopus Homolog of the Fission Yeast Cell Cycle Control Gene cdc2⁺

Jean Gautier,* Chris Norbury,†
Manfred Lohka,* ‡ Paul Nurse,†
and James Maller*
*Department of Pharmacology
University of Colorado School of Medicine
Denver, Colorado 80262
†ICRF Cell Cycle Control Laboratory
Microbiology Unit
Department of Biochemistry
University of Oxford
Oxford OX13QU, England

MPF is a cyclin-dependent protein-kinase

Cyclin and MPF levels during early mitotic cycles

Questions:

What causes the fast disappearance of cyclins? What is the reason of the delay between cyclin and MPF?

Cycling cell free extract

Anaphase Promoting Complex or Cyclosome

Kim Nasmyth

Anaphase Promoting Complex or Cyclosome

The G2/M transition is regulated by post-translational modification

Wee1 is a tyrosine-kinase Cdc25 is a tyrosine-phopshatase

Start of DNA replication is also controlled by proteolysis

Regulation of CDK activity

