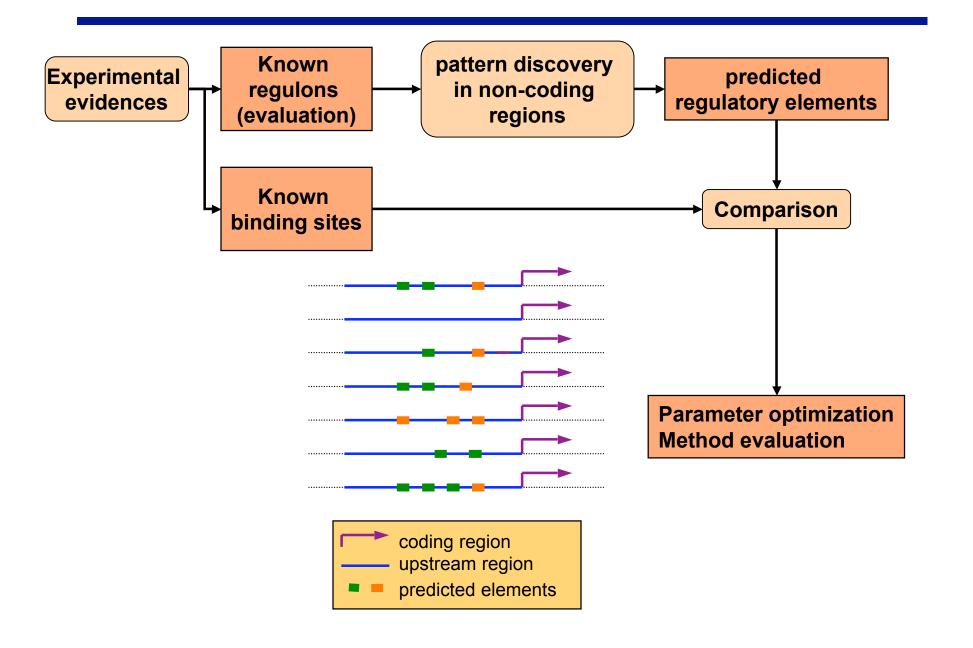

Regulatory Sequence Analysis

Pattern discovery String-based approaches


Jacques van Helden Jacques.van.Helden@ulb.ac.be

Detection of over-represented patterns

- Knowing that a set of genes are co-regulated, one can expect that their upstream regions contains some regulatory signal.
- This signal is likely to be more frequent in the upstream regions of the coregulated genes than in a random selection of genes.
- In order to discover signals responsible for the co-regulation of a group of genes, we will thus detect over-represented patterns in their upstream sequences.

Evaluation with known regulons

Testing the performances with known regulons

- NIT
 - 7 genes expressed under low nitrogen conditions
- MET
 - 10 genes expressed in absence of methionine
- PHO
 - 5 genes expressed under phosphate stress
- GAL
 - 6 genes expressed in presence of galactose
- **...**

Pattern discovery: string-based algorithms

- Count occurrences observed for each word
- Calculate expected word frequencies
 - Choice of a model :
 - independently distributed nucleotides (equiprobable or biased alphabet utilization)
 - Markov chain : on basis of subword frequencies
 - External reference (e.g. word frequencies observed in the whole set of upstream sequences)
- Calculate a score for each word
 - obs/exp ratio (very bad)
 - log-likelihood
 - Z-value
 - binomial probability
- Select all words above a defined threshold
 - Statistical criterion for establishing the threshold

Background model

- In order to detect over-represented patterns, the observed occurrences are compared to the random expectation.
- The random expectation can be estimated according to different models
 - Bernouilli model, with a specific probability for each nucleotide.
 - Markov model, calibrated on the basis of the input sequence itself.
 - External background : occurrences for the same pattern in a reference data set
 - whole genome
 - intergenic sequences
 - set of all upstream sequences for the organism considered

The most frequent oligonucleotides are not informative

- A (too) simple approach would consist in detecting the most frequent oligonucleotides (for example hexanucleotides) for each group of upstream sequences.
- This would however lead to deceiving results.
 - In all the sequence sets, the same kind of patterns are selected: AT-rich hexanucleotides.

PHO

aaaaaa|ttttt 51 aaaaag|cttttt 15 aagaaa|tttctt 14 qaaaaa|ttttc 13 12 tgccaa|ttggca aaaaat|attttt 12 12 aaatta|taattt agaaaa|ttttct 11 11 caagaa | ttcttg 11 aaacgt|acgttt 11 aaagaa|ttcttt 10 acqtqc|qcacqt aataat|attatt 10 aagaag|cttctt 10 atataa|ttatat 10

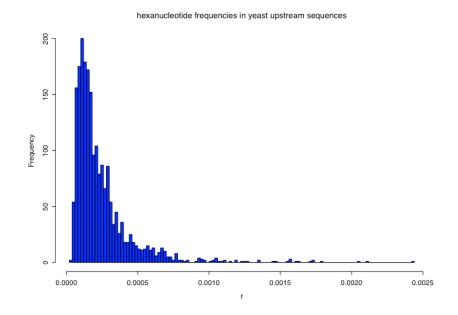
MET

105 aaaaaa|tttttt 41 atatat|atatat 40 qaaaaa|ttttc tatata|tatata 40 35 aaaaat|attttt aagaaa|tttctt 29 agaaaa|ttttct 28 aaaata|tatttt 26 25 aaaaaq|cttttt 24 agaaat|atttct 22 aaataa|ttattt 21 taaaaa|tttta 21 tgaaaa|ttttca ataata|tattat 20 atataa|ttatat 20

NIT

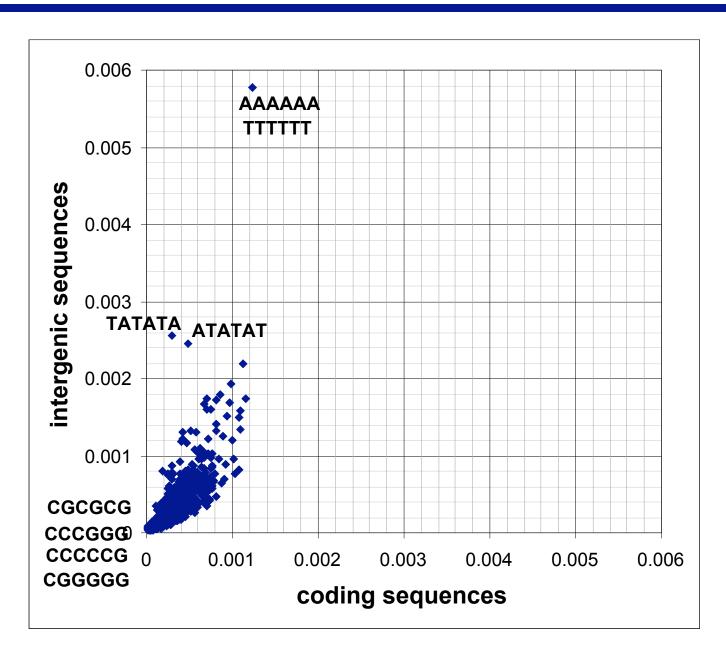
80 aaaaaa|tttttt cttatc|gataag 26 22 tatata|tatata ataaga|tcttat 20 20 aagaaa|tttctt qaaaaa|ttttc 19 atatat|atatat 19 agataa|ttatct 17 17 agaaaa|ttttct 16 aaagaa|ttcttt 16 aaaaca|tgtttt 15 aaaaaq|cttttt 14 agaaga | tcttct tgataa|ttatca 14 atataa|ttatat 14

GAL

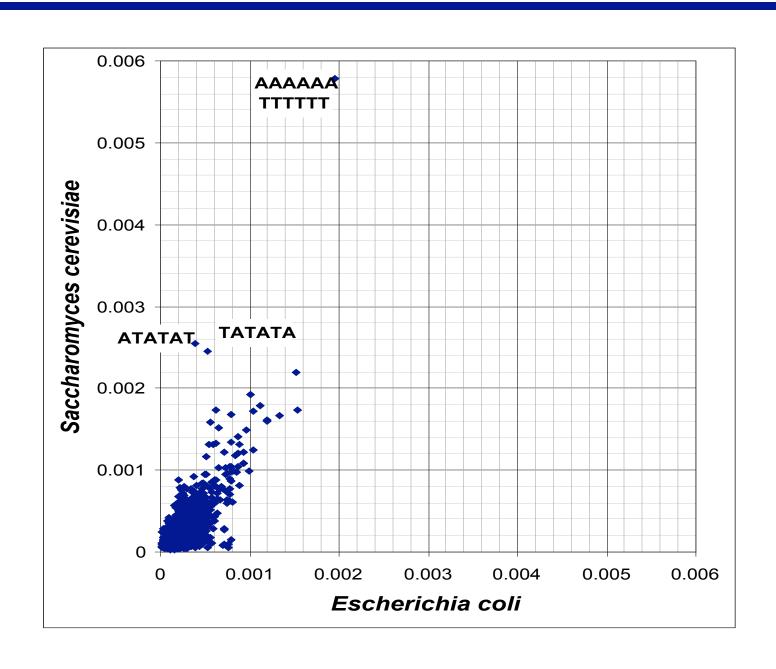

aaaaaa|ttttt 47 17 aaaaat|attttt 17 aatata|tatatt aaaatt|aatttt 16 15 aaaata|tatttt attttc|qaaaat 13 aaataa|ttattt 13 aaatat|atattt 13 12 ataaaa|ttttat 12 atatta|taatat atatat|atatat 11 11 tgaaaa|ttttca caaaaa|tttttg 11 11 taaaaa|tttta agatat|atatct 11

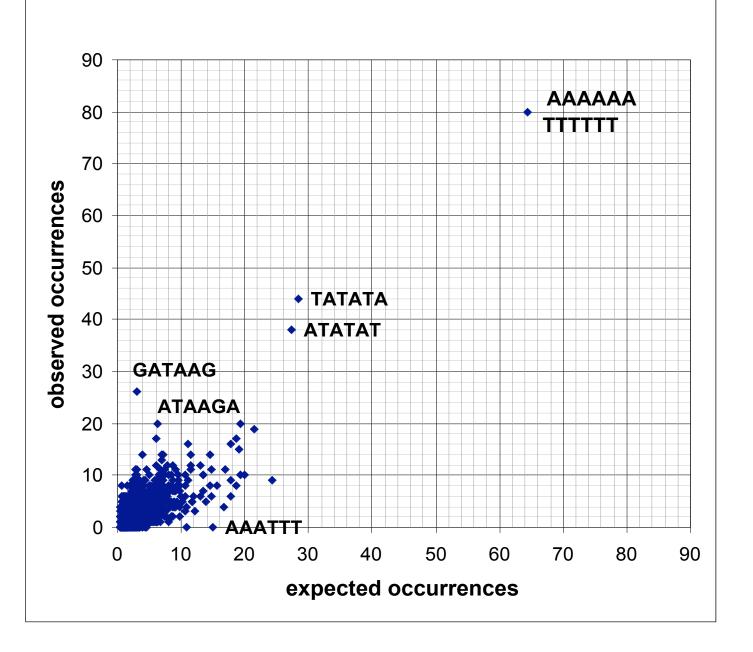
A more relevant criterion for over-representation

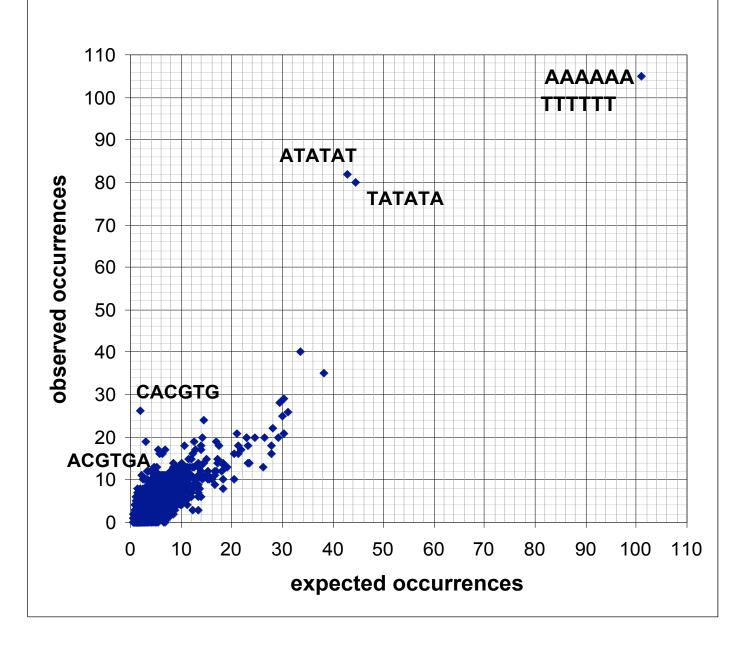
- A more relevant criterion for over-representation is to detect patterns which are more frequent in the upstream sequences of the selected genes (co-regulated) than the random expectation.
- The random expectation is calculated by counting the frequency of each pattern in the complete set of upstream sequences (all genes of the genome).

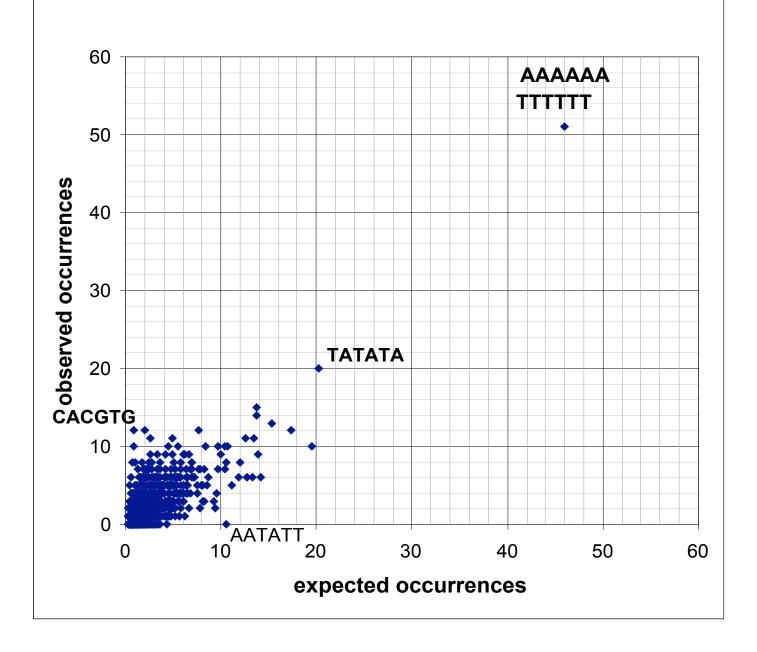

Hexanucleotide frequencies in all upstream sequences

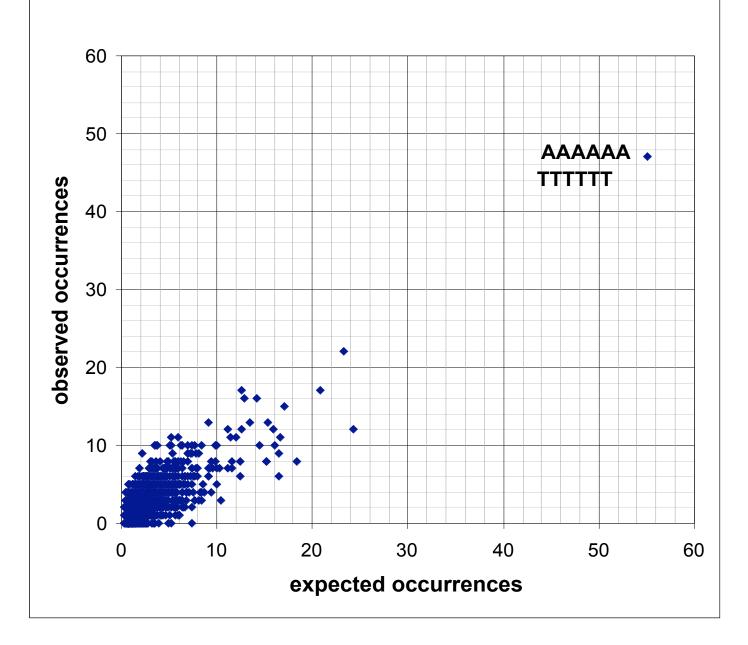
- Hexanucleotide frequencies were measured in the whole set of 6000 yeast upstream sequences
 - range 4.5E-5 to 1.2E-2
 - \square max(f)/min(f)=268




6nt frequencies differ between coding and non-coding sequences


Inter-species variations in intergenic 6nt frequencies


Hexanucleotide occurrences in upsteam sequences of the NIT family


Hexanucleotide occurrences in upsteam sequences of the MET family

Hexanucleotide occurrences in upsteam sequences of the PHO family

Hexanucleotide occurrences in upsteam sequences of the GAL family

Scoring scheme - Binomial

Advantages

- rigorous probability
- appropriate for small sequence sets, where some words have a very low expected number of occurrences (<1)
- Weaknesses
 - bias for self-overlapping words
- Probability to observe exactly s occurrences

$$P(X = s) = \frac{n!}{s!(n-s)!} p^{s} (1-p)^{n-s}$$

Probability to observe at least s occurrences

$$P(X \ge s) = \sum_{i=s}^{n} \frac{n!}{s!(n-i)!} p^{i} (1-p)^{n-i}$$

Where

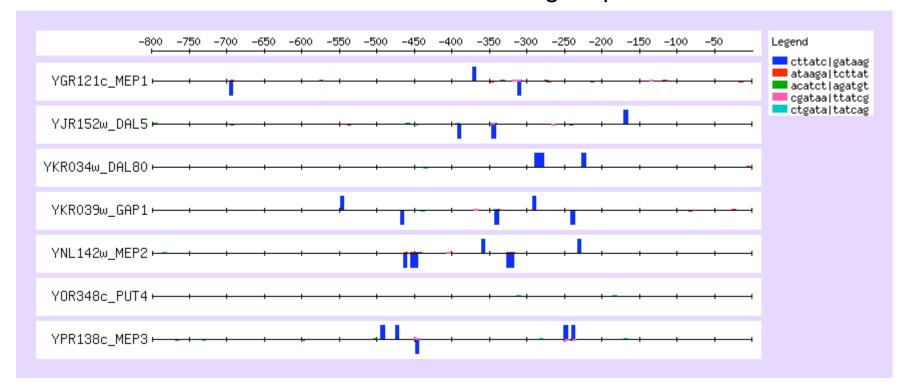
s = occurrences

n = positions on sequence

p = word probability

Hexanucleotide analysis of the NIT family

Sequence	exp freq	occ	exp	P-value	E-value	sig	matching
			OCC				sequences
ATAAGa	0.00110	18	6.1	6.20E-05	1.30E-01	0.89	6
GATAAG.	0.00053	24	2.9	1.20E-14	2.60E-11	10.59	6
.cGATAA	0.00048	10	2.7	0.00044	9.20E-01	0.04	5
ctGATA	0.00052	11	2.9	0.00019	4.00E-01	0.4	6
acatct	0.00051	11	2.8	0.00016	3.40E-01	0.47	4


Genes
Known motifs
GATAAg

DAL5, DAL80, GAP1, MEP1, MEP2, MEP3, PUT4 Factors

Gln3p; Nil1p; Gzf3p; Uga43p

Feature-map of discovered patterns - NIT family

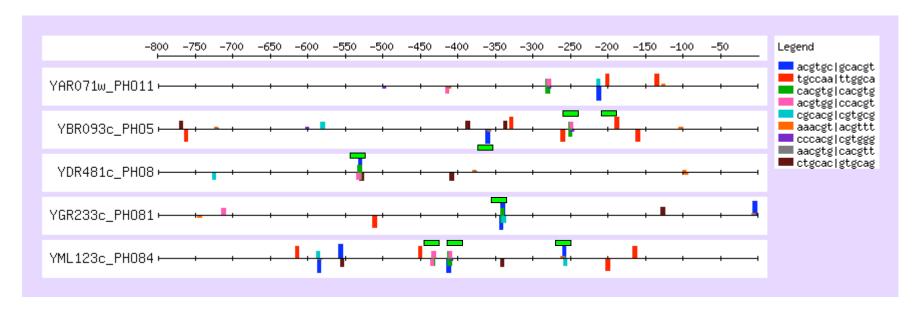
- Typical features of yeast GATA-boxes
 - Multiple occurrences per sequences.
 - Occurrences generally appear clustered (at least two with a spacing of 0-60bp).
 - This probably stimulates synergic effects.
- Remark: PUT4 does not contain a single optimal motif

Hexanucleotide analysis of the PHO family

Sequence	exp freq	осс	exp	P-value	E-value	sig	matching
			occ				sequences
CGTGGG	0.00013	5	0.5	0.00021	4.30E-01	0.36	3
ACGTGc.	0.00021	9	8.0	2.50E-07	5.20E-04	3.29	5
ACGTGG.	0.00018	7	0.7	9.00E-06	1.90E-02	1.73	5
CACGTG	0.00012	6	0.5	8.90E-06	1.90E-02	1.73	5
.cgCACG	0.00013	6	0.5	1.40E-05	2.90E-02	1.54	5
ctgCAC	0.00024	8	1.0	7.80E-06	1.60E-02	1.79	4
ACGT <u>TT.</u>	0.00061	10	2.4	0.00019	3.90E-01	0.41	5
CACGT <u>T</u>	0.00030	7	1.2	0.00024	5.00E-01	0.3	5
tgccaa	0.00048	12	1.9	7.40E-07	1.50E-03	2.81	4

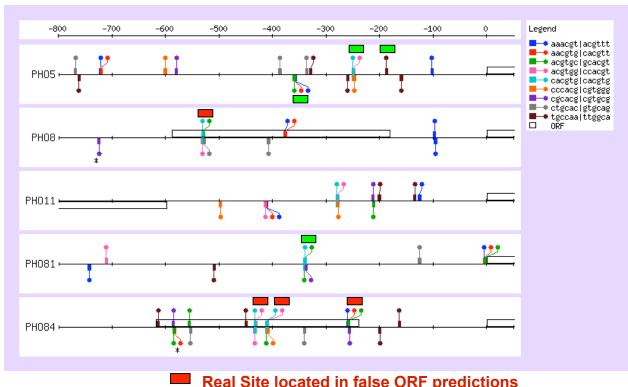
Genes
Known motifs
CACGTGGG
CACGTTTT

PHO5, PHO8, PHO11, PHO84, PHO81


Factors

Pho4p (high affinity)

Pho4p (medium affinity)


Feature-map of discovered patterns - PHO family

- The feature-map provides a convenient representation of the discovered patterns
 - Each colour represents one pattern.
 - Box height reflects pattern significance.
 - Clusters of mutually overlapping words represent sites larger than 6 bp.
- Green bars were superimposed, to indicate the positions of experimentally proven sites, and compare predictions with experimental knowledge.
 - For PHO11, no site is documented, we can thus not check the predictions.
 - For the other genes, the proven sites are detected as clusters of overlapping words

Clipping of upstream coding sequences

- In the particular case of the the yeast Saccharomyces cerevisiae, the initial annotations were overpredictive, and contained many false ORFs.
- Clipping upstream ORFs sometimes results in a loss of information.
- In the case of the PHO family, half of the know sites would be clipped, and the pattern discovery program would not identify any significant motif anymore.
- This problem has recently been solved, with the new annotations based on comparative genomics.

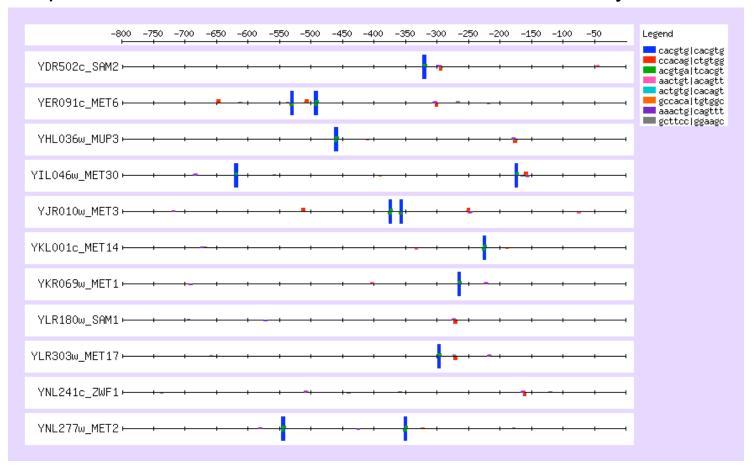
Real Site located in false ORF predictions

Hexanucleotide analysis of the MET family

Sequence	exp freq	occ	exp	P-value	E-value	sig	matching
			occ				sequences
ACGTGa	0.00033	13	2.9	1.00E-05	2.20E-02	1.67	9
.CACGTG.	0.00012	13	1.0	6.90E-11	1.40E-07	6.84	9
tCACGTG.	0.00033	13	2.9	1.00E-05	2.20E-02	1.67	9
tCACGTGa	consensus						
TGTGGc	0.00027	10	2.3	1.50E-04	3.20E-01	0.49	7
CTGTGG.	0.00022	11	1.9	4.30E-06	8.90E-03	2.05	8
aCTGTG	0.00036	12	3.1	9.90E-05	2.10E-01	0.69	9
.aaCTGT	0.00063	17	5.4	4.90E-05	1.00E-01	0.99	11
aaaCTG	0.00074	17	6.4	0.00037	7.60E-01	0.12	11
aaaCTGTGGc	consensus						
gcttcc	0.00039	12	3.4	0.00021	4.50E-01	0.35	7

Genes SAM2, MET6, MUP3, MET30, MET3, MET14, MET1, SAM1,

MET17, ZWF1, MET2


Known motifs Factors

TCACGTG Cbf1p/Met4p/Met28p

AAAACTGTGG Met31p; Met32p

Feature-map of discovered patterns - MET family

- Two distinct motifs (combinations of words) are apparent.
 - blue-green TCACGTGA Met4p/Met28p/Cbf1p
 - red-violet AAACTGTG Met31p; Met32p
- Multiple clustered motifs ar sometimes found, but not always.

Expected frequency calibration

- The results of string-based pattern discovery depend drastically on the choice of a background model.
- Taking the MET family as example
 - With 6nt calibration in intergenic sequences, the Met4p binding site appears at rank 1, and Met31p at rank 3
 - With equiprobable nucleotides, Met4p only appears are rank 20, and Met31p at rank 32. In other terms, they will never be considered as the most interesting motifs
 - With a single-nucleotide calibration, the Met4p appears at rank 4 and Met31p at rank 13. The first motif would thus have been easily detected, but not the second one.

		Backg	round model	
pattern	rev compl	intergenic	alpha	iid
atcacg	cgtgat	9	44	139
gtcacg	cgtgac	5	34	266
.tcacgt	acgtga.	2	4	20
cacgtg	cacgtg	1	3	23
acgtga.	.tcacgt	2	4	20
cgtgac	gtcacg	5	34	266
cgtgat	atcacg	9	44	139
gccaca	tgtggc	7	17	164
.ccacag	ctgtgg.	3	13	99
cacagt	actgtg	6	21	75
acagtt.	.aactgt	4	19	32
cagttt	aaactg	10	18	33
gcttcc	ggaagc	8	10	77

Effect of oligonucleotide size on the significance

	oligoncleotide length										
Family	Pattern	4	5	6	7	8	9				
NIT	aGATAAGa	1.8	4.1	9.1	4.6	0.9	-				
MET	gTCACGTG	4.4	4.1	7	8.2	3.2	-				
	AAACTGTGg	1.5	2.3	1.6	4.8	5.2	4.9				
PHO	CACGTggg	4.7	8.4	4.4	4.3	4.3	-				
	aTGCCAA	2.6	1.5	2.6	0.6	-	-				
	CTGCAC	-	-	1.7	-	-	-				
INO	CAACAAg	2.9	2.1	3.7	1.3	-	-				
	cCATGTGAA	-	-	2.7	3.2	6.4	0.4				
PDR	tCCGTGGa	1.5	3.3	7.4	6.9	4.2	1.4				
	tCCGCGga	6.9	7.1	4.5	5.6	1.8	1				
GCN4	GCNgtGACTCa	5.4	8.8	8.2	7.7	4.7	-				
	CAGCGGa	3.3	3.5	4	0.6	-	-				
YAP	CATTACTAA	-	-	1	2.3	2.1	3.2				
	cCGTTCC	0.1	0.5	3.3	0.3	-	-				
YAP (40	00bpc)aTTACTAA	-	-	0.7	4.5	2.5	3.5				
	cCGTTCC	8.0	0.5	2.4	0.7	0.2	-				
TUP	gtGGGGta	10.1	9	8.6	5.6	3	-				
	catAGGCAC	3.3	3.3	4.3	2.6	3.3	1.7				

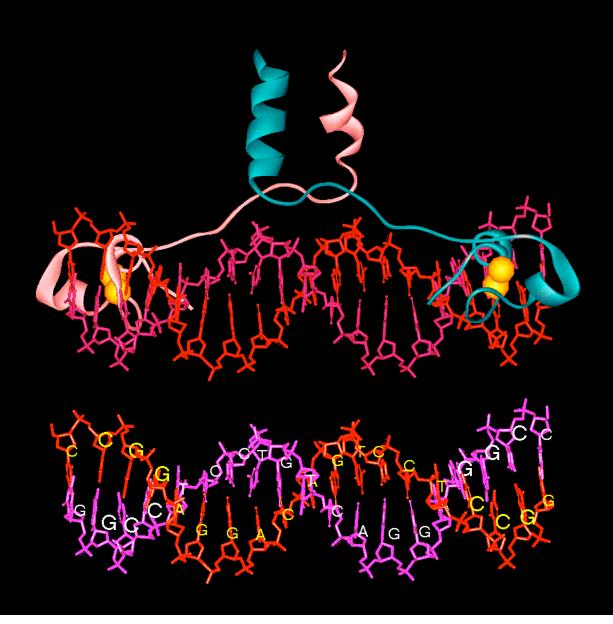
oligo-analysis results with known regulons (sig > 1)

Family	Factor	DNA-binding Domain	Known motifs	oligont	reverse oligont	score
NIT	GATA factors	Zn finger	GATAAG	TCTTATCT	AGATAAGA	20.0
MET	Cbf1p/Met4p/Met28p Met31p, Met32p	bHLH/bLZ/bLZ Zn finger	TCACGTG AAAACTGTGG	CACGTGAT CACGTGAC AACTGTGGCG	ATCACGTG GTCACGTG CGCCACAGTT	9.0 9.0 3.6
РНО	Pho4p (high affinity) Pho4p (medium affin.)	ьнін ьнін	GCACGTGGG GCACGTTTT	CCCACGTGCG AAACGTGCG TGCCAA CTGCAC	CGCACGTGGG CGCACGTTT TTGGCA GTGCAG	4.4 4.4 2.6 1.8
PDR	Pdr1p, Pdr3p	Zn ₂ Cys ₆ binuclear cluster	tytCCGYGGary	TCCGTGGAA TCCGCGG	TTCCACGGA CCGCGGA	7.4 4.5
GCN4	Gcn4p	bZip	RRTGACTCTTT	ATGACTCA AGTGACTCA ATGACTCT ATGACTCC ATGACTA CCGCTG GCCGGT	TGAGTCAT TGAGTCACT AGAGTCAT GGAGTCAT TAGTCAT CAGCGG ACCGGC	8.5 8.5 8.5 8.5 3.8 3.7
INO	Ino2p/Opi1p	bHLH/leucine zipper	CATGTGAAWT	CAACAACG CAACAAG TTCACATG	CGTTGTTG CTTGTTG CATGTGAA	3.8 3.8 2.8
HAP 2/3/4	Hap2/3/4/5p		CCAAY	AGAGAGA	TCTCTCT	2.8
GAL4	Gal4p	Zn ₂ Cys ₆ binucl. cluster	CGGn ₁₁ CCG	no sign	nificant pattern	•

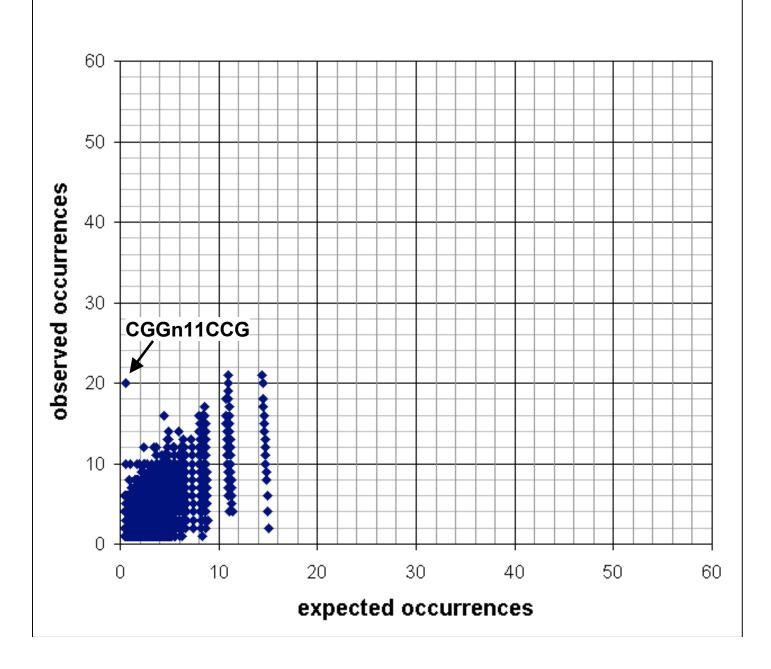
van Helden et al. (1998). J Mol Biol 281(5), 827-42.

Hexanucleotide analysis of the GAL family

Sequence	exp freq	OCC	exp		E-value	sig	matching sequences
agacat	0.00044	9	2.1	0.00033	0.69	0.16	4


Genes GAL1, GAL2, GAL7, GAL80, MEL1, GCY1

Known motifs Factors


CGGn₅wn₅CCG Gal4p

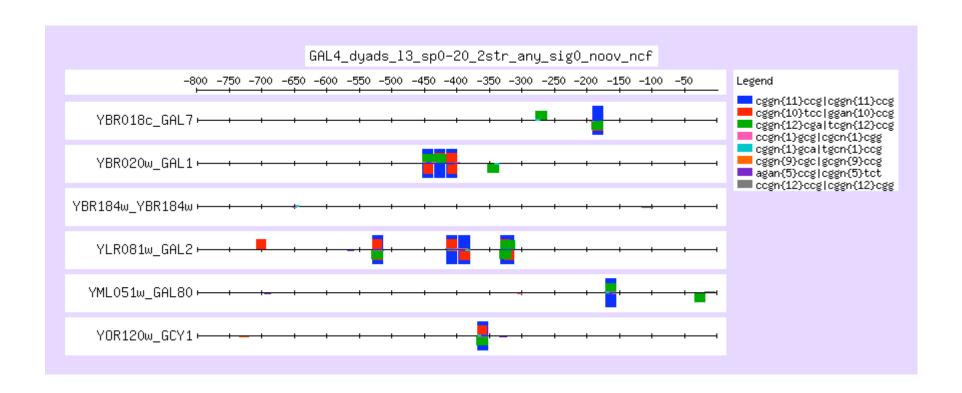
- With the GAL family, the program returns a single pattern.
 - The significance of this pattern is very low.
 - □ This level of significance is expected at random ~ once per sequence set.
 - This can be considered as a negative result: the program did not detect any really significant pattern.
- Why did the program fail to discover the GAL4 motif?

Structure of the Gal4p-DNA interface

spaced pairs of trinucleotides in upsteam sequences of the GAL family

Dyad analysis of the GAL family

Sequence	exp freq	obs	exp	P-value	E-value	sig
		ОСС	OCC			
GGaCCG.	0.00006	10	0.5	2.70E-10	1.20E-05	4.92
.CGGCga	0.00006	10	0.5	4.80E-10	2.10E-05	4.68
.CGGCCG.	0.00007	20	0.6	2.10E-12	9.20E-08	7.03
.CGGtCC	0.00006	10	0.5	2.70E-10	1.20E-05	4.92
.CGGcgC	0.00004	6	0.4	5.30E-06	2.30E-01	0.64
tcgccg.	0.00006	10	0.5	4.80E-10	2.10E-05	4.68
cCGCCG.	0.00005	6	0.4	6.40E-06	2.80E-01	0.55
yCGGackCCGa						
AGACCG	0.00010	8	0.9	7.00E-06	3.10E-01	0.51
CCG.GCG	0.00005	6	0.5	9.30E-06	4.00E-01	0.39

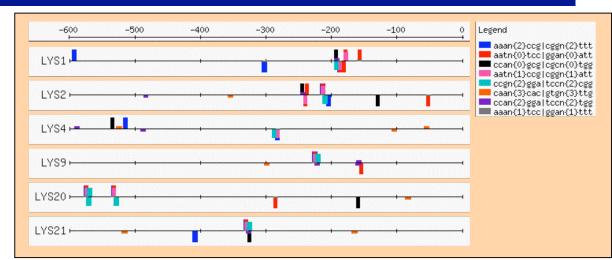

Genes GAL1, GAL2, GAL7, GAL80, MEL1, GCY1

Known motifs Factors

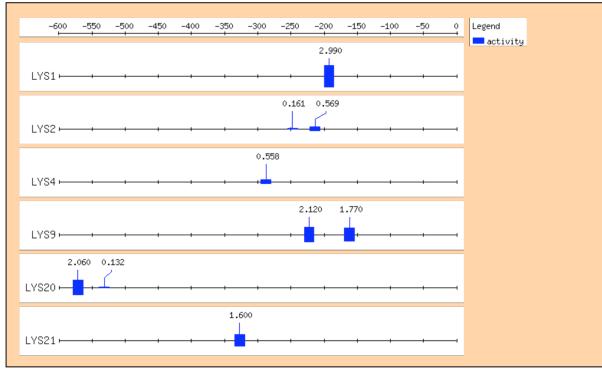
CGGn₅wn₅CCG Gal4p

Feature-map of discovered patterns - GAL family

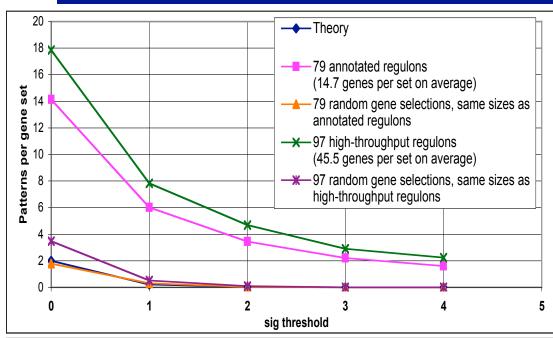
- Clusters of overlapping dyads indicates that conservation extends over 3 bp on each side of the dyad.
- Some genes, but not all, contain multiple motifs (synergic effect).

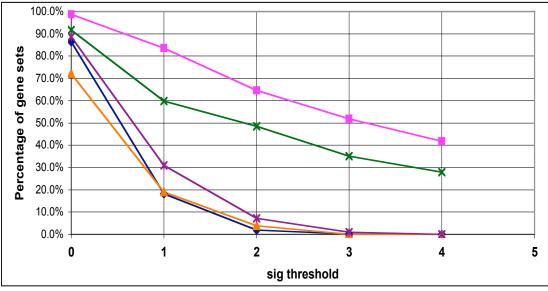

Dyad analysis: regulons of Zn cluster proteins

FACTOR	# genes	KNOWN MOTIFS	DYADS	REVERSE DYADS	SCORE
GAL4	6	CGGn ₁₁ CCG	TCGGAn ₉ TCCGG TCGGCGCAGAn ₄ TCCGG	CCGGAn ₉ TCCGA CCGGAn ₄ TCTGCGCCGA	7.8 7.8
HAP1	9	CGGnnntanCGG	GGAn ₅ CGGC GGGGGn ₁₂ GGC CCTn ₁₀ GGC	GCCGn ₅ TCC GCCn ₁₂ CCCCC GCCn ₁₀ AGG	1.8 1.4 1.1
LEU3	5	RCCggnnccGGY	CCGn ₃ CCG	CGGn₃CGG	1.0
LYS	6	wwwTCCrnyGGAwww	AAATTCCG TCCGCTGGA	CGGAATTT TCCAGCGGA	1.9 1.0
PDR	6	tytCCGYGGary	CTCCGTGGAA CTCCGCGGAA	TTCCACGGAG TTCCGCGGAG	6.7 6.7
PPR1	3	wyCGGnnwwykCCGaw		CGGn ₆ CCG	0.5
PUT3	2	yCGGnangcgnannnCCGa	CGGn ₁₀ CCG	CGGn ₁₀ CCG	1.2
UGA3	3	aaarccgcsggcggsawt	CGGn ₁₄ AGG GCCn ₁₁ TCC	CCTn ₁₄ CCG GGAn ₁₁ GGC	1.7 1.0
UME6	25	tagccgccga	TCGGCGGCTA	TAGCCGCCGA	4.9
CAT8	5	CGGnnnnnnGGA	CGGn ₄ ATGGAA	TTCCATn ₄ CCG	6.0


van Helden et al. (2000). Nucleic Acids Res 28(8), 1808-18.

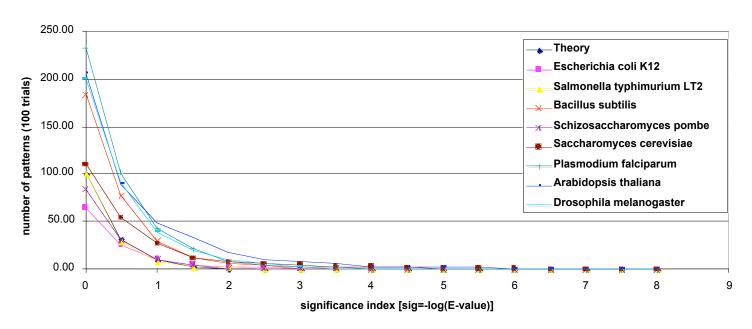
Comparison of discovered patterns with known sites (LYS family)


Patterns discovered by dyad analysis



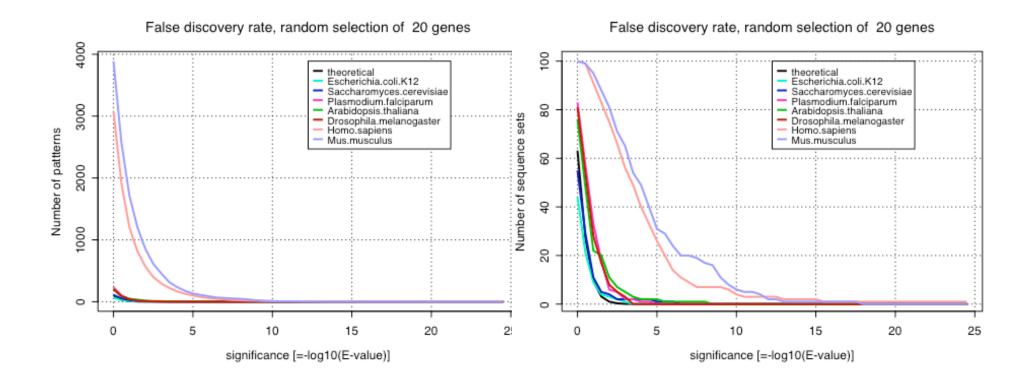
Experimental measurement of activity

Validation of pattern discovery with yeast regulons



- Regulons were collected from TRANSFAC and aMAZE.
- All the regulons with ≥5 genes were analyzed.
 - Significant patterns (sig ≥ 2) are detected in 65% of the regulons.
- As a negative control, sets of random genes were analyzed.
 - The rate of false positive follows pretty well the statistical expectation.

Rate of false positive in different organisms


- The analysis of random gene selections allows to evaluate the rate of false positive returned by a pattern discovery program.
- The rate of false positive is good for microbes (bacteria, yeasts, ...), but increases for multicellular organisms (e.g. the fly *Drosophila*, the plant *Arabidopsis thaliana*, ...).
- The rate of false positive is also higher in the protozoan *Plasmodium* falciparum (the agent of the malaria) than in bacteria and yeast.

oligo-analysis with random gene selections

Rate of false positive in higher organisms

- The rate of false positive increases dramatically with higher organisms.
- This is likely to come from
 - a bad treatment of repetitive elements : genome-scale calibration does not account for local frequencies
 - positional heterogeneities : oligonucleotide frequencies depend on the distance from the gene
 - the higher heterogeneity of genomic sequences in these organisms (GC-rich vs AT-rich promoters)
- We are currently developing more elaborate background models to treat this problem.

String-based pattern discovery: strengths

- Deterministic (not heuristic) and exhaustive
 - all possible words/dyads are tested
 - ability to return several patterns in a single run
- Fast (2-3 seconds/family)
- Time increases linearly with sequence set
 - Can be applied to very large sequence sets (full genomes)
- Ability to return a negative answer
 - "not a single over-represented pattern in this sequence set"
 - Corollary: very low false positive rate
- Pattern assembly refines the result
 - ability to detect some level of degeneracy (result contains words differing by single substitutions)
 - ability to detect motifs larger than the oligonucleotide size (result contains strongly overlapping words)

String-based pattern discovery: weaknesses

- No direct treatment of pattern degeneracy
 - NB: degenerated words can be analyzed with similar statistics, but it is not tractable due to the increase of the number of patterns: 15^k possible words of length k.
- String patterns are poor descriptions for genome-scale pattern matching.
 - Matrices are more appropriate to describe the weight of each substitution at a given position.

Solution

- string-approach for pattern discovery
- use discovered strings as seeds for building a matrix, which can be used for pattern search