Regulatory Sequence Analysis

Matrix-based approaches for pattern discovery

Jacques van Helden Jacques.van.Helden@ulb.ac.be

Alignment of transcription factor binding sites

Binding sites for the yeast Pho4p transcription factor (Source : Oshima et al. Gene 179, 1996; 171-177)

Gene	Site Name	Sequence	Affinity
PHO5	UASp2	aCtCaCACACGTGGGACTAGC-	high
PHO84	Site D	TTTCCAGCACGTGGGGCGGA	high
PHO81	UAS	TTATGGCACGTGCGAATAA	high
PHO8	Proximal	GTGATCGCTGCACGTGGCCCGA	high
PHO5	UASp3	TAATTTGGCATGTGCGATCTC	low
PHO84	Site C	ACGTCCACGTGGAACTAT	low
PHO84	Site A	TTTATCACGTGACACTTTTT	low
group 1	consensus	gCACGTGggac	high-low
PHO5	UASp1	TAAATTAGCACGTTTTCGC	medium
PHO84	Site E	AATACGCACGTTTTTAATCTA	medium
PHO84	Site B	TTACGCACGTTGGTGCTG	low
PHO8	Distal	TTACCCGCACGCTTAATAT	low
group 2	consensus	cgCACGTTt	med-low

Degenerate

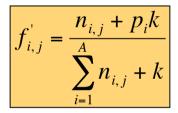
-----GCACGTKKk------

consensus

٠

Regulatory sites : matrix description

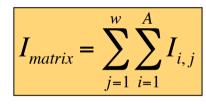
Alignment matrix


Pos	1	2	3	4	5	6	7	8	9	10	11	12
Base												
Α	1	3	2	0	8	0	0	0	0	0	1	2
С	2	2	3	8	0	8	0	0	0	2	0	2
G	1	2	3	0	0	0	8	0	5	4	5	2
Т	4	1	0	0	0	0	0	8	3	2	2	2
			V	С	Α	С	G	Τ	K	В		

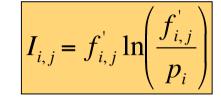
Binding site for the yeast Pho4p transcription factor (Source : Transfac matrix F\$PHO4_01)

Position-weight matrix

Prior	Pos	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00	11.00	12.00
0.33	Α	-0.79	0.13	-0.23	-2.20	1.05	-2.20	-2.20	-2.20	-2.20	-2.20	-0.79	-0.23
0.18	С	0.32	0.32	0.70	1.65	-2.20	1.65	-2.20	-2.20	-2.20	0.32	-2.20	0.32
0.18	G	-0.29	0.32	0.70	-2.20	-2.20	-2.20	1.65	-2.20	1.19	0.97	1.19	0.32
0.33	т	0.39	-0.79	-2.20	-2.20	-2.20	-2.20	-2.20	1.05	0.13	-0.23	-0.23	-0.23
1	Sum	-0.37	-0.02	-1.02	-4.94	-5.55	-4.94	-4.94	-5.55	-3.08	-1.13	-2.03	0.19


$$W_{i,j} = \ln\left(\frac{f_{i,j}}{p_i}\right)$$

Reference: Hertz (1999). Bioinformatics 15:563-577.


Information content

Prior	Pos	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00	11.00	12.00
0.33	Α	-0.12	0.05	-0.06	-0.08	0.97	-0.08	-0.08	-0.08	-0.08	-0.08	-0.12	-0.06
0.18	С	0.08	0.08	0.25	1.50	-0.04	1.50	-0.04	-0.04	-0.04	0.08	-0.04	0.08
0.18	G	-0.04	0.08	0.25	-0.04	-0.04	-0.04	1.50	-0.04	0.68	0.45	0.68	0.08
0.33	т	0.19	-0.12	-0.08	-0.08	-0.08	-0.08	-0.08	0.97	0.05	-0.06	-0.06	-0.06
1	Sum	0.11	0.09	0.36	1.29	0.80	1.29	1.29	0.80	0.61	0.39	0.47	0.04

k

 $f'_{i,j}$

$$f'_{i,j} = \frac{n_{i,j} + p_i k}{\sum_{i=1}^{A} n_{i,j} + k}$$

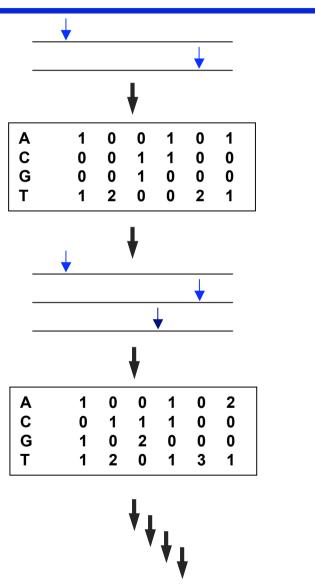
A	alphabet size	(=4)
---	---------------	------

- *w matrix width* (=12)
- p_i prior residue probability for residue i
- $f_{i,j}$ relative frequency of residue i at position j
 - pseudo weight (arbitrary, 1 in this case)
 - corrected frequency of residue i at position j

Reference: Hertz (1999). Bioinformatics 15:563-577.

Pattern discovery: typical dimensionality

- Typical case: GAL genes
 - s 6 genes
 - \circ occ_e expected pattern occurrence: 12
 - L 800 bp upstream sequences analysis on both strands
 - w matrix width = 25
- Let us assume that
 - A signal can be found on any strand
 - Each sequence contains one or several occurrences


$$N_{alignments} = C_{2s(L-w+1)}^{occ_e} = 8.8 \times 10^{38}$$

Matrix-based pattern discovery

- Problem: the number of possible matrices is too large to be tractable
- Approaches: define heuristics to extract a matrix with highest possible information content (lowest probability to be due to random effect) → optimization techniques
- Two approaches working with regulatory sequences
 - greedy algorithm
 - e gibbs sampling

Pattern discovery: greedy algorithm (consensus, by Jerry Hertz)

- 1) Create all possible matrices with two sequences
- 2) Retain the most significant matrices only
- 3) Find best match in next sequence and incorporate it into the matrix
- 4) Iterate from (2) untill all sequences are incorporated
- 5) Return the most significant matrices

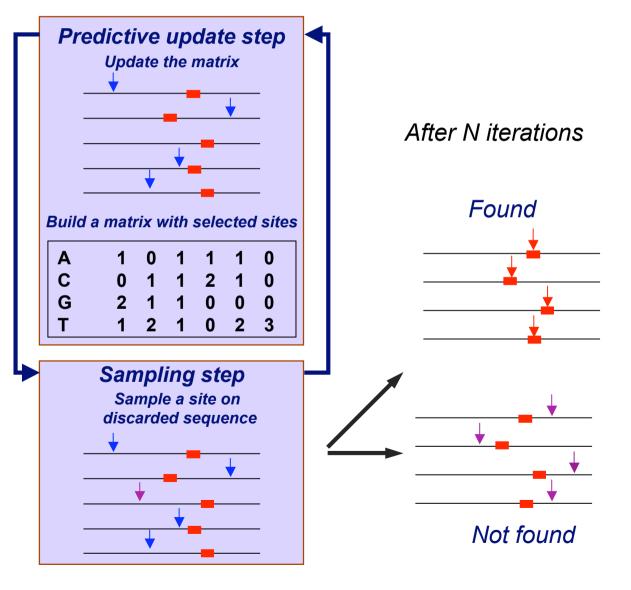
Greedy algorithm: weaknesses

- Returns multiple matrices, but they are generally slight variants of the same pattern
- Time-consuming
- Sensitive to sequence ordering in the input data set
- Takes into account prior residue frequencies, but not oligonucleotide bias
- References
 - □ Hertz et al. (1990). Comput Appl Biosci 6(2), 81-92.
 - Hertz, G. Z. & Stormo, G. D. (1999). Bioinformatics 15(7-8), 563-77.
 - Stormo, G. D. & Hartzell, G. W. d. (1989). Proc Natl Acad Sci U S A 86(4), 1183-7.

Pattern discovery: The Gibbs sampler (gibbs motif sampler, by Andrew Neuwald)

Pretend you know the motif, this might become true

1) Initialization


- o select a random set of sites in the sequence set
- o Create a matrix with these sites

2) Sampling

- o Isolate one sequence from the set, and score each site of the matrix
- o Select one "random" site, with a probability proportional to the score $(A_x, \text{ see next slide}).$

3) Predictive update

- o Replace the old site with a new site, and update the matrix
- Iterate steps 2 and 3 for a fixed number of cycles

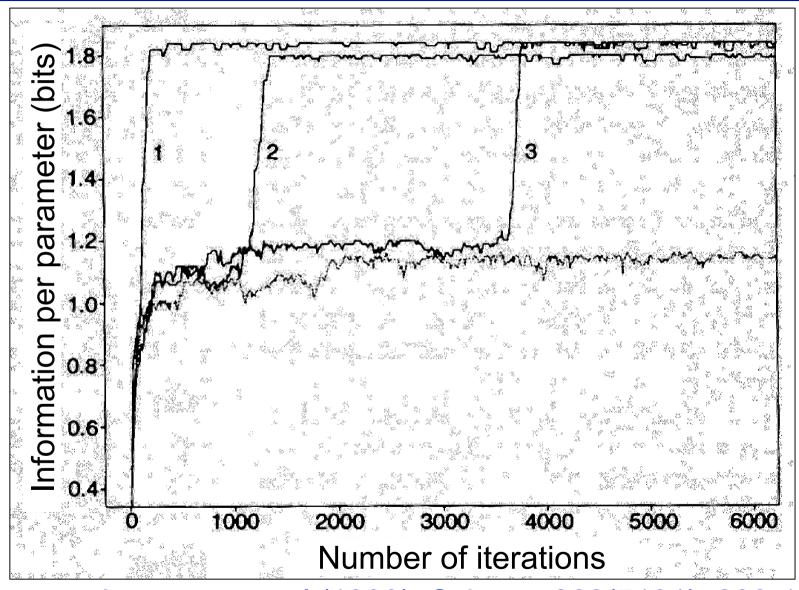
Gibbs sampling - scoring scheme

$$A_x = Q_x / P_x$$

- A_x weight of segment x (used for random selection)
- Q_x probability to generate segment *x* according to pattern probabilities q_{ii}
- P_x probability to generate segment *x* according to the background probabilities p_i

$$q_{i,j} = \frac{c_{i,j} + b_j}{N - 1 + B}$$

- *i* index for the site
- *j* index for the residue
- $c_{i,i}$ counts for residue *j* at site *i*
- \vec{N} number of sequences
- b_i pseudo-count for residue j
- \vec{B} sum of pseudo-counts


$$F = \sum_{i=1}^{W} \sum_{j=1}^{R} c_{i,j} \ln\left(\frac{q_{i,j}}{p_j}\right)$$

- W width of the matrix
- *R* number of distinct residues
- p_j prior probability for residue j

Stochastic vs deterministic behaviour

- Why to select a random site ?
 - A deterministic behaviour would consist in selecting, at each iteration, the highest scoring site (the one which matches best the matrix)
 - This would give poor results because the program is attracted too fast towards local optima.
- Stochastic behaviour
 - At each iteration, the next site is selected in a stochastic rather than deterministic way: the probability of each site to be selected is proportional to its scoring with the matrix
 - This allows to avoid weak local optima, and converge towards better solutions.

Gibbs sampling: optimization of information content

source: Lawrence et al.(1993). Science 262(5131), 208-14.

Gibbs sampling: strength

- Fast
- Probabilistic description of the patterns
- Can run with proteins or DNA

Gibbs sampling: weaknesses

- Returns a different result at each run
- Can be attracted by local maxima
 solution: run repeatedly and check which motifs come often
- The original Gibbs sampler takes into account prior residue frequencies, but not oligonucleotide bias
 - \rightarrow in yeast, often returns A/T-rich regions
 - This is however improved in some versions of the Gibbs samplers which use Markov chains for estimating the bacground probabilities (eg the MotifSampler developed by Gert Thijs)
- No threshold on pattern significance
 - $\theta \rightarrow$ frequent false positive

Improvements of the gibbs sampler

- Neuwald 1993
 - Phase shifting
- Neuwald 1995
 - 0 or several matches per sequence
 - column sampling (spacings can be admitted between columns of the matrix)
- Roth (1998) : AlignACE
 - Specific implementation for DNA (double strand is treated)
 - post-filtering of motifs according to number of matches in the genome, in order to discard frequent motifs
- Lui (2000), Thijs (2000)
 - Markov-chain based calculation of background probabilities

References

Original Gibbs sampler

- □ Lawrence et al. (1993). Science 262(5131), 208-14.
- Neuwald et al. (1995). Protein Sci 4(8), 1618-32.
- Neuwald et al. (1997). Nucleic Acids Res 25(9), 1665-77.
- MotifSampler
 - Thijs et al. (2002). J.Computational Biology 9:447-464.

AlignACE, ScanACE and CompACE gibbs sampler tools for regulatory sequence analysis

- Single/both strands
- Return multiple matrices, with iterative masking preventing slight variants of the same pattern
- Matrix clustering
- A posteriori evaluation of pattern significance, by analysing the whole-genome frequency of the discovered matrix.
- References
 - Roth et al. (1998). Nat Biotechnol 16(10), 939-45.
 - **Tavazoie et al. (1999). Nat Genet 22(3), 281-5.**
 - Hughes et al. (2000). J Mol Biol 296(5), 1205-14.
 - McGuire et al. (2000). Genome Res 10(6), 744-57.

Matrix-based pattern discovery: strengths

- More specific description of degeneracy than with stringbased approaches (frequency of each residue at each position).
- The resulting pattern is more accurate than a string for pattern matching (more sensitive scoring scheme)

Matrix-based pattern discovery: weaknesses

- The results strongly depend on parameter setting. Two essential parameters have to be selected :
 - Matrix width
 - Expected number of sites
- The best parameter may change from gene family to gene family.
 Choosing the appropriate setting requires experience.
- Impossible to evaluate all possible alignments
- Does not take into account higher-order correlation between adjacent positions (oligonucleotide bias)