Basics of RNA structure prediction

- Two primary methods of structure prediction
 - Covariation analysis/Comparative sequence analysis
 - Takes into account conserved patterns of basepairs during evolution (2 or more sequences).
 - Pairs will vary at same time during evolution yet maintaining structural integrity
 - Manifestation of secondary structure
 - Minimum Free-Energy Method
 - Using one sequence can determine structure of complementary regions that are energetically stable

Comparative Sequence Analysis

- Molecules with similar functions and different nucleotide sequences will form similar structures.
- Predicts secondary and tertiary structure from underlying sequence.
- Correctly identifies high percentage secondary structure pairings and a smaller number of tertiary interactions.
- Primarily a manual method

Positional Covariation

• Helix is formed from two sets of sequences that are not identical.

I. Sequence alignment

• Search for positions that co-vary.

• Positions that co-vary with one another are possible pairing partners.

Support for Comparative Models?

- Comparative vs. Experimental
 - Estimate that ~98% of pairings in current comparative model will be in the crystal structure
- Interactions not easily identified
 - Tertiary base-pairings
 - Aim to predict all interactions with comparative analysis

Thus, comparative sequence analysis predicts almost all of the secondary structure base-pairs and some tertiary pairings present in crystal structures.

Tertiary pair or contact

Comparative sequence analysis

The 2D of all structured RNAs have been obtained by this method:

tRNAs, rRNAs, RNaseP, group I and group II introns, snRNAs, SRP RNAs, etc.

SANKOFF's problem: align and derive the 2D structure from a set of non-aligned sequences: NP-complete!

Working hypothesis

The native secondary structure is the one with the minimum free energy.

Basic Model

- RNA linear structure: R=r₁ r₂ . . . r_n from {A,C,G,U}
- RNA secondary structure: pairs (r_i,r_j) such that 0 < i < j < n+1.
- Goal: secondary structures with minimum free energy.

Implementing Model Restrictions

- No knots: pairs (r_i,r_j) and (r_k,r_l) such that i<k<j<l. RNA does contain knots.
- No "close" base pairs: j-i>t for some t>0.
- Complementary base pairs: A-U, C-G with the wobble pair GoU

Tinoco-Uhlenbeck postulate

- Assumption: The energy of each base pair is independent of all of the other pairs and the loop structure.
- Consequence: Total free energy is the sum of all of the base pair free energies.

Independent Base Pairs Basic Approach

- Use solutions for smaller strings to determine solutions for larger strings.
- This is **precisely** the kind of decoupling required for dynamic programming algorithms to work.

Independent Base Pairs Notation

- $a(r_i,r_j)$ the free energy of a base pair joining r_i and r_i .
- $S_{i,j}$ The secondary structure of the RNA strand from base r_i to base r_j . Ie, the set of base pairs between r_i and r_j inclusive.
- $E(S_{i,j})$ The free energy associated with the secondary structure $S_{i,j}$.
- We define $a(r_i,r_j)$ large when constraints are violated.

Independent Base Pairs: Calculating Free Energy

- Consider the RNA strand from position i to j.
- Consider whether r_j is paired
- If r_j is paired, $E(S_{i,j})=E(S_{i,k-1})+a(k,j)+E(S_{k+1,j-1})$ for some i-1<k<j
- If r_i isn't paired, then E(S_{i,i})=E(S_{i,i-1})

Non-canonical pairs and pseudoknots

- In addition to A-U and G-C pairs, non-canonical pairs also occur. Most common one is G-U pair, the wobble pair.
- G-U is thermodynamically favourable as Watson-Crick pairs (A-U, G-C).
- Base pairs almost always occur in nested fashion.
 Exception: pseudoknots.

Pseudoknot

Kissing hairpins

Hairpin loop - bulge contact

RNA Tertiary Structure

Do not obey"parentheses rule"

Computational Complexity

Without Pseudoknot

GUUUGUUAGUGGCGUGUCCGCA GCUGGCAAGCGAAUGUAAAGACUGAC

Rainbow constraint:

any two pairs i<j and i'<,j' satisfy i<i'<j'<j or i'<i<j<j'

computational steps: N³

H-Pseudoknot

Dot plot

rna.ps

dot.ps

Minimum Free-Energy Method

- Searching for structures with stable energies
- First a dot matrix analysis is carried out to highlight complementary regions (diagonal indicates succession of complementary nucleotides)

 The energy is then calculated for each predicted structure by summing negative base stacking energies

Free energy values for RNA structure

• Complementary regions are evaluated using the dynamic programming algorithm to predict the most energetically stable molecule

A. Stacking energies for base pairs							
	A/U		C/G	G/C	U/A	G/U	U/G
/U	-0.9	of cital in	-1.8	-2.3	-1.1	-1.1	-0.8
/G	-1.7		-2.9	-3.4	-2.3	-2.1	-1.4
/C	-2.1		-2.0	-2.9	-1.8	-1.9	-1.2
ſ/A	-0.9		-1.7	-2.1	-0.9	-1.0	-0.5
/U	-0.5		-1.2	-1.4	-0.8	-0.4	-0.2
ſ/G	-1.0		-1.9	-2.1	-1.1	-1.5	-0.4
			B. Destabil	izing energ	ies for loops		
umber of bases		1911	5	0 0	10	20	30
nternal	The state of the s	ON ACTUAL TO	5.3		6.6	7.0	7.4
ulge		3.9	4.8		5.5	6.3	6.7
lairpin	LIGHT OF	DOM:	4.4		5.3	6.1	6.5
	//G //C //A //U //G [umber nternal ulge	/U -0.9 //G -1.7 //C -2.1 //A -0.9 //U -0.5 //G -1.0 [umber of bases nternal ulge	/U -0.9 //G -1.7 //C -2.1 //A -0.9 //U -0.5 //G -1.0 [umber of bases 1 nternal - ulge 3.9	A/U C/G /U -0.9 -1.8 //G -1.7 -2.9 //C -2.1 -2.0 I/A -0.9 -1.7 I/U -0.5 -1.2 I/G -1.0 -1.9 B. Destabil Iumber of bases 1 5 nternal - 5.3 ulge 3.9 4.8	A/U C/G G/C /U -0.9 -1.8 -2.3 //G -1.7 -2.9 -3.4 //C -2.1 -2.0 -2.9 I/A -0.9 -1.7 -2.1 I/U -0.5 -1.2 -1.4 I/G -1.0 -1.9 -2.1 B. Destabilizing energy Iumber of bases 1 5 nternal - 5.3 ulge 3.9 4.8	A/U C/G G/C U/A /U -0.9 -1.8 -2.3 -1.1 /G -1.7 -2.9 -3.4 -2.3 //C -2.1 -2.0 -2.9 -1.8 //A -0.9 -1.7 -2.1 -0.9 //U -0.5 -1.2 -1.4 -0.8 //G -1.0 -1.9 -2.1 -1.1 B. Destabilizing energies for loops [umber of bases 1 5 10 nternal - 5.3 6.6 ulge 3.9 4.8 5.5	A/U C/G G/C U/A G/U /U -0.9 -1.8 -2.3 -1.1 -1.1 /G -1.7 -2.9 -3.4 -2.3 -2.1 //C -2.1 -2.0 -2.9 -1.8 -1.9 //A -0.9 -1.7 -2.1 -0.9 -1.0 //U -0.5 -1.2 -1.4 -0.8 -0.4 //G -1.0 -1.9 -2.1 -1.1 -1.5 B. Destabilizing energies for loops [umber of bases 1 5 10 20 nternal - 5.3 6.6 7.0 ulge 3.9 4.8 5.5 6.3

ACGU...

UGCG...

ACGUAA

UGCGCG

internal loop

bulge

hairpin loop

Example

Partition function

$$Q = \sum_{S \in S} e^{-rac{\Delta G_S}{RT}}$$
 .

Definition:

- This is a weighted counting of all structures.
- The lower the free energy, the higher the weighting.
- According to statistical mechanical theory, this Boltzmann weighting gives the probability density for every folding.

$$\Pr(S) = rac{e^{-rac{E(S)}{RT}}}{Q_{1,n}}$$

 Partition function does not predict a secondary structure but can calculate the probability for a certain base pair to form.

Loop E motif is a continuous Stack of non-Watson-Crick pairs

Some webpages to check out

- Comparative RNA Web site (CRW)
 - http://www.rna.icmb.utexas.edu
- MFOLD minimum energy RNA
 - http://bioinfo.math.rpi.edu/~zukerm/rna/
- RNA world
 - http://www.imb-jena.de/RNA.html
- RNA structure database
 - http://www.rnabase.org/
- Database of ribosomal subunit sequences
 - http://rrna.uia.ac.be/

Inverse folding

Another direction in sequence design is designing a sequence that folds into a given secondary structure. This problem is called *inverse folding*, because it is the inverse of the problem of finding the secondary structure of a sequence with the minimum free energy. The inverse folding problem is to find a sequence whose minimum energy structure coincides with the given one

Inverse folding

