Basics of RNA structure prediction

* Two primary methods of structure prediction

— Covariation analysis/Comparative sequence analysis

» Takes into account conserved patterns of basepairs during
evolution (2 or more sequences).

 Pairs will vary at same time during evolution yet maintaining
structural integrity

» Manifestation of secondary structure
— Minimum Free-Energy Method

» Using one sequence can determine structure of complementary
regions that are energetically stable



Comparative Sequence Analysis

Molecules with similar functions and different
nucleotide sequences will form similar structures.

Predicts secondary and tertiary structure from
underlying sequence.

Correctly identifies high percentage secondary
structure pairings and a smaller number of tertiary
interactions.

Primarily a manual method



Positional Covariation

e Helix i1s formed from two sets of sequences that are not
1dentical.
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 Positions that co-vary with one another are possible pairing partners.



Support for Comparative Models?

 Comparative vs. Experimental

« Estimate that ~98% of pairings in current comparative
model will be in the crystal structure

* Interactions not easily identified
* Tertiary base-pairings
* Aim to predict all interactions with comparative analysis

Thus, comparative sequence analysis predicts almost all of the
secondary structure base-pairs and some tertiary pairings present in
crystal structures.
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Comparative sequence analysis

The 2D of all structured RNAs have been obtained
by this method :

tRNAs, rRNAs, RNaseP, group I and group IT introns,
snRNAs, SRP RNAs, etc.

SANKOFF's problem : align and derive the 2D structure
from a set of non-alignhed sequences : NP-complete !



Working hypothesis

The native secondary
structure is the one with the
minimum free energy.



Basic Model

* RNA linear structure: R=r, r, . . . r, from
{A,C,G,U}

* RNA secondary structure: pairs (r;,r;) such that
0<i<j<n+lI.

* Goal: secondary structures with minimum free
energy.



Implementing Model Restrictions

* No knots: pairs (r;,r;) and (r,,r)) such that 1<k<j<lI.
RNA does contain knots.

e No “close” base pairs: j-1>t for some t>0.

* Complementary base pairs: A-U, C-G
with the wobble pair GoU



Tinoco-Uhlenbeck postulate

« Assumption: The energy of each base pair
1s independent of all of the other pairs and
the loop structure.

* Consequence: Total free energy 1s the sum
of all of the base pair free energies.



Independent Base Pairs
Basic Approach

» Use solutions for smaller strings to determine
solutions for larger strings.

 This 1s precisely the kind of decoupling required
for dynamic programming algorithms to work.



Independent Base Pairs
Notation

a(r;,r;) — the free energy of a base pair joining r;
and r;.

Sii— The secondary structure of the RNA strand
from base r; to base r;. Ie, the set of base pairs
between r; and r; inclusive.

E(S;;) — The free energy associated with the
secondary structure S, ;.

We define a(r;,r;) large when constraints are
violated.



Independent Base Pairs:
Calculating Free Energy

Consider the RNA strand from position i to j.
Consider whether r; is paired

If r; is paired, E(S;,))=E(S;,.1)ta(k J)+E(Sy.4,.1) for
some I-1<Kk<]

If r, isn’t paired, then E(S,,)=E(S;,;.1)



Non-canonical pairs and pseudoknots

+ In addition to A-U and G-
C pairs, non-canonical
pairs also occur. Most
common one is G-U pair,
the wobble pair.

¢ G-U is thermodynamically
favourable as Watson-
Crick pairs (A-U, G-C) .

+ Base pairs almost always

occur in nested fashion.
Exception: pseudoknots.
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Computational Complexity

Without Pseudoknot

GUUUGUUAGUGGCGUGUCCGUCCGCA
GCUGGCAAGCGAAUGUAAAGACUGAC

Rainbow constraint:

any two pairs i<j and i’<,j’

satisfy i<i’<j’<j or i’<i<j<j’

computational steps: N°



H-Pseudoknot
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Orland and Zee, Nucl. Phys. B 620, 456 (2002)

Rivas and Eddy, JMB 285, 2053 (1999)

Exact: at least N°



Dot plot
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TTIa.ps
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Minimum Free-Energy Method

Searching for structures with stable
energies

First a dot matrix analysis is carried
out to highlight complementary

regions (diagonal indicates succession
of complementary nucleotides)

The energy 1s then calculated
for each predicted structure by
summing negative base
stacking energies
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Free energy values for RNA structure

« Complementary regions are evaluated using the dynamic

A. Stacking energies for base pairs

programming algorithm to predict the most energetically
stable molecule

A/U C/G G/C U/A G/U U/G
AU y —0.9 —-1.8 -23 ~1.1 = 0.8
G G =17 2.9 —34 -23 —21 ~14 ) P
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Partition function

= Definition:

= This is a weighted counting of all structures.
=  The lower the free energy, the higher the weighting.

= According to statistical mechanical theory, this Boltzmann weighting gives
the probability density for every folding.
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= Partition function does not predict a secondary structure but can calculate
the probability for a certain base pair to form.

Pr(9)




Stack of non-Watson-Crick pairs
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Some webpages to check out

Comparative RNA Web site (CRW)

— http://www.rna.icmb.utexas.edu

MFOLD minimum energy RNA
— http://bioinfo.math.rpi.edu/~zukerm/rna/

RNA world
— http://www.imb-jena.de/RNA .html

RNA structure database
— http://www.rnabase.org/

Database of ribosomal subunit sequences
— http://rrna.uia.ac.be/
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Another direction in sequence design is designing a
sequence that folds into a given secondary structure.
This problem is called inverse folding, because it is the
inverse of the problem of finding the secondary structure
of a sequence with the minimum free energy. The
inverse folding problem is to find a sequence whose
minimum energy structure coincides with the given one
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