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RANDOM GRAPHS: TYPICAL AND RARE PROPERTIES

1.1 Statistical ensembles of random graphs

1.1.1 Poissonian graphs

Two popular models of random graphs over N vertices are,

• Model I (fixed number of edges):
Consider the complete graph KN over N vertices. We define GN,NE as the
set of graphs obtained by taking only NE = cN/2 among the

�
N

2

�
edges of

KN in all possible different ways. Within Distribution I, a random graph
G is a randomly chosen element of GN,NE with the flat measure,

PI(G) =
1

�(N2 )
NE

� . (1.1)

• Model II (fixed probability of edge deletion):
Another way of generating random graphs from the complete graph is
through edge deletion. Start from KN , and delete every edge with proba-
bility 1 − c/N . This choice ensures that the average number of edges left
at the end of the deletion process equals NE defined in Distribution I. The
probability P(G) of drawing a random graph G depends on the number
NE(G) of its edges, and follows the Binomial law,

PII(G) =
� c

N

�NE (G)�
1 − c

N

�(N2 )−NE (G)
. (1.2)

In the large N limit, both distributions of random graphs share common
properties which depend on the control parameter c. We shall make explicit the
distribution considered when necessary.1

Fig. 1.1 shows examples of graphs obtained from Distribution I and for var-
ious values of c. Notice the qualitative change of structure of graphs when the
connectivity c varies from low values (graphs are mostly made of small isolated
trees) to higher ones (a large part of vertices are now connected together). This

1Distribution I is easier to implement on a computer. Drawing a graph amounts to chose
NE distinct pairs of vertices among the N(N − 1)/2 possible ones, a task which can be carried
out in O(NE) (= O(N) for finite c) steps. On the contrary, within Distribution II, all O(N2)
edges of KN have to been looked at in the course of the deletion process. However, Distribution
II does not induce any correlation between different edges and is therefore more convenient
from an analytical point of view.
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A B C

Fig. 1.1. Examples of random graphs generated at fixed number NE of edges
(Distribution I). All graph include N = 20 vertices (grey dots). The average
degrees of valency, c = 2NE/N , equal c = 0.5 (A), c = 1 (B), and c = 2 (C).
The labels of the vertices have been permuted to obtain planar graphs, i.e.
avoid crossing of edges.

change is known as the percolation transition in physics, or the appearance of a
giant component in mathematics literature.

Before reviewing some of the aspects of the percolation transition rigorously
established by mathematicians, let us mention an important fact on the valency
of vertices. As a result of the randomness of the graph generation process, each
node share edges with a variable number of neighboring vertices. Both random
graph ensembles are called Poissonian since, in the large N limit, the degree v of
a vertex, i.e. the number of its neighbors, is a random variable obeying a Poisson
law with parameter c,

ρ(v) = lim
N→∞

�
N

v

�� c

N

�v �
1− c

N

�(N−1)−v

= e−c
cv

v!
. (1.3)

In particular, ρ(0) = e−c is the fraction of isolated vertices. Control parameter
c may be thus seen as the average degree of nodes. This is what is meant in the
following when referring to c as the connectivity of the graph.

1.1.2 Other ensembles

Random graphs exist for while the distribution ρ(v) of the degrees of vertices is
not Poissonian. For instance theK-regular random graph ensemble gives uniform
weight to all graphs where every vertex has degree K exactly, zero weight to
the other graphs. Particular attention has recently been brought to the case of
algebraically decreasing laws i.e. ρ(v) ∝ v−τ at large v; this power law behaviour
is supposed to reflect the properties of various graphs ranging from technological
applications to biological networks. Let us introduce the generating function of
the degree probabilities,

G0(x) =
�

v≥0

ρ(v) xv . (1.4)
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Fig. 1.2. The percolation transition in the random graph. Fraction γ1(c) of
vertices in the largest component (A), and number ϕ∗(c) of clusters per
vertex (B) a function of the average connectivity c of the random graph.
The vertical dot–dashed line c = 1 indicates the location of the percolation
threshold.

Clearly, G0(1) = 1 since ρ is normalised, and G0 is an absoluletly convergent
series in x over [0; 1[. Furthermore, we assume that the average degree is well
defined i.e. the derivative of G0 in x = 1 is finite, and denote its value by v0. We
define the probability ρ1(v�) that a node connected to a randomly chosen edge in
the graph has itself v� other descendents. Clearly, this probability is proportional
to ρ(v� + 1) and to the degree v� + 1, with the result

ρ1(v
�) =

v� + 1

v0
ρ(v� + 1) . (1.5)

The generating function of ρ1 is thus given by

G1(x) =
�

v�≥0

ρ1(v
�) xv

�
=

1

v0

dG0

dx
(x) ; (1.6)

notice that G1(1) by the mere definition of v0, and ρ1 is normalised as expected2.

1.2 Typical properties of Poissonian random graphs

1.2.1 Overview of rigorous results

We start with some vocabulary. A (connected) component of a graph G is called
cluster. The size (order) of a cluster is the number of vertices it contains. An
isolated vertex is a cluster of size unity. The number of components of G is

2For the K–regular and the Poissonian graphs, these generating functions are, respectively,
equal to G0(x) = xK , G1(x) = xK−1, and G0(x) = G1(x) = exp(−c + cx). The equality
between G0 and G1 in the latter case reflects the absence of correlation between edges in the
Poissonian distribution.
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denoted by Φ(G). We shall indicate its normalized fraction, Φ(G)/N , by ϕ(G),
which is bounded from above by unity, and from below by e−c, the fraction of
isolated vertices. Components may be sorted by decreasing sizes Γi(G), from the
largest (i = 1) to the smallest one (i = Φ(G)).

Erdös and Rényi were able to prove the following results on the sizes of the
largest components:

• When c < 1, the largest clusters include with high probability a number
of vertices scaling asymptotically as,

Γi(G) ∼ Θ(lnN) (c < 1) , (1.7)

for all 1 ≤ i ≤ I, with I finite as N gets large. Most components include
only a bounded number vertices. More precisely the number of components
(divided by N) with a bounded number Γ of vertices is almost surely equal
to

J(Γ, c) =
1

c

ΓΓ−2

Γ!

�
c e−c

�Γ
. (1.8)

• At c = 1, the largest components contain O(N2/3) vertices. More precisely,
there exists two positive constants α1,αI such that

αI N
2/3 < ΓI(G) ≤ ΓI−1(G) ≤ . . . ≤ Γ1(G) ≤ α1 N

2/3 (c = 1), (1.9)

with I finite as N gets large.
• When c > 1, a drastic separation takes place between the largest cluster
and all other smaller components. With high probability, Γ1(G)/N = γ1(c)
where γ1(c) is the unique positive solution of

1− γ = e−c γ . (1.10)

Again, the sizes of smaller components (i ≥ 2) are given by eqn (1.7,1.8).

The phenomenon taking place at c = 1 is called percolation. While below
the percolation threshold c ≤ 1, most components are small with O(lnN) sizes,
they percolate at the transition and give birth to a giant component with O(N)
vertices. Fig. 1.2A shows the fraction γ1(c) of vertices belonging to the giant
cluster. We also report on Fig. 1.2B the average fraction of clusters,

ϕ∗(c) = − c

2

�
1− γ1(c)

2
�
+

�
1− γ1(c)

��
1− ln

�
1− γ1(c)

��
, (1.11)

which will be useful in the following. Both are non analytic functions of their
argument γ at the critical point c = 1.

At the phase transition, the largest components scale as N2/3, showing that
the fractions of vertices they contain scale as N−1/ν with a finite size scaling ex-
ponent ν = 3. The reader is referred to the existing literature for more elaborate
results on the percolation transition in random graphs.
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+ =
A A

Fig. 1.3. Addition process of one vertex A and its v = 3 edges to a random
graph G. Prior to merging, G is made of isolated nodes, small connected
components, and a giant component (surrounded by the dotted line). After
merging, the new vertex belongs to the giant component.

1.2.2 Heuristic description of the giant component

Some intuition about the above results may be gained from a simple argument.
This reasoning is not mathematically correct but the results it leads to are. The
starting point is an ubiquitous idea in probability and statistical physics, which
could be phrased as follows: “if a system is very large, its statistical properties
should be, in some sense, unaffected by a small increase in size”. We now use this
principle, which is merely a definition of what very large means, to determine
the size γ of the giant component as a function of the connectivity c (1.10).

Consider a random graph G over N vertices, with connectivity c. Add a new
vertex A to the graph to obtain G� (Fig. 1.3). If we want G� to be drawn from the
same distribution as G, a number v of edges must be attached to A, where v an
integer–valued random number following the Poisson distribution ρ (1.3). After
addition of A, some connected components of G will merge in G�. In particular,
with some probability pv, A will not be part of the giant component of G�. To
estimate pv, we note that this event happens if and only if none of the v neighbors
of A in G� belongs to the giant component of G. Thus,

pv = (1− γ1)
v , (1.12)

where γ1 is the size (fraction of vertices) of the latter. Summing both sides of
(1.13) over the distribution (1.3) of v, and asserting that the change in size of
the giant component between G and G� is o(1) for large N , we obtain

1− γ1 =
�

v≥0

ρ(v) pv =
�

v≥0

e−c
(c(1− γ1))v

v!
= e−c γ1 , (1.13)

which is precisely equation (1.10) for γ1.3

3We have ruled out here the coexistence of two distinct giant components above the thresh-
old, which would be very likely to get connected after the addition to the graph of a large (but
still small with respect to N) number of vertices and attached edges.
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For non-Poissonian ensembles the condition for percolation is that the first
derivative of G1 in x = 1 is larger than unity or, equivalently from (1.6),

�

v≥0

v(v − 2) ρ(v) > 0 . (1.14)

This equation can be simply obtained with the heuristic argument above.

1.3 Percolation transition and random 2-XORSAT

We will now illustrate the properties of random graphs on an interesting example,
the random 2-XORSAT problem.

1.3.1 Linear systems of Boolean equations

Linear systems of Boolean equations look very much like their well known coun-
terparts for integer-valued variables, except that equalities are defined modulo
two. Consider a set of N Boolean variables xi with indices i = 1, . . . , N . Any
variable shall be False (F) or True (T). The sum of two variables, denoted by +,
corresponds to the logical exclusive OR between these variables defined through,

F + T = T + F = T ,

F + F = T + T = F . (1.15)

In the following we shall use an alternative representation of the above sum rule.
Variables will be equal to 0 or 1, instead of F or T respectively. Then the +
operation coincides with the addition between integer numbers modulo two.

The following is a linear equation involving three variables,

x1 + x2 + x3 = 1 . (1.16)

Four among the 23 = 8 assignments of (x1, x2, x3) satisfy the equation: (1, 0, 0),
(0, 1, 0), (0, 0, 1) and (1, 1, 1). A Boolean system of equations is a set of Boolean
equations that have to be satisfied together. For instance, the following Boolean
system involving four variables






x1 + x2 + x3 = 1
x2 + x4 = 0
x1 + x4 = 1

(1.17)

has two solutions: (x1, x2, x3, x4) = (1, 0, 0, 0) and (0, 1, 0, 1). A system with
one or more solutions is called satisfiable. A trivial example of an unsatisfiable
Boolean system is �

x1 + x2 + x3 = 1
x1 + x2 + x3 = 0

. (1.18)

Determining whether a Boolean system admits an assignment of the Boolean
variables satisfying all the equations constitutes the XORSAT (exclusive OR
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Satisfaction) problem. In the following, we shall restrict to K-XORSAT, a variant
of XORSAT where each Boolean equation include K variables precisely.

K-XORSAT belongs to the class P of polynomial problems. Determining
whether a system is satisfiable or not can be achieved by the standard Gaussian
elimination algorithm in a time (number of elementary operations) bounded from
above by some constant times the cube of the number of bits necessary to store
the system4

If the decision version of K-XORSAT is easy its optimization version is not.
Assume you are given a system F , run the Gauss procedure and find that it is not
satisfiable. Determining the maximal number MS(F ) of satisfiable equations is
a very hard problem. Even approximating this number is very hard. It is known
that there is no approximation algorithm (unless P=NP) for XORSAT with ratio
r > 1

2 , that is, guaranteed to satisfy at least r × MS(F ) equations for any F .
But r = 1

2 is achieved, on average, by making a random guess5!

1.3.2 Models for random systems

There are many different ways of generating random Boolean systems. Perhaps
the simplest one is the following, called fixed-size ensemble. To build an equation
we pick up uniformly at random K distinct indices among the N ones, say, i1, i2
and ik. Then we consider the equation

xi1 + xi2 + . . .+ xik = v . (1.19)

The second member, v, is obtained by tossing a coin: v = 0 or v = 1 with equal
probabilities (one half) and independently of the indices of the variables in the
first member. The process is repeated M times, without correlation between
equations to obtain a system with M equations.

Another statistical ensemble is the fixed-probability ensemble. One scans the
set of all H = 2

�
N

K

�
equations one after the other. Each equation is added to

the system with probability p, discarded with probability 1− p. Then a system
with, on average, pH equations (without repetition) is obtained. In practice
one chooses p = M

H
to have the same (average) number of equations as in the

fixed-size ensemble.
The above distributions are not the only possible ones. However they are easy

to implement on a computer, are amenable to mathematical studies, and last but
not least, lead to a surprisingly rich phenomenology. One of the key quantities
which exhibits an interesting behaviour is

PSAT (N,α) = Probability that a system of random K-XORSAT with

N variables and M = αN equations is satisfiable ,

4The storage space is K times the number of equations times the number of bits necessary
to label a variable, that is, the logarithm of the number of variables appearing in the system.

5Any equation is satisfied by half of the configurations of a variables, so a randomly chosen

configuration satisfies on average M
2 ≥ MS(F )

2 equations.
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Fig. 1.4. Probability that a random 2-XORSAT formula is satisfiable as a func-
tion of the ratio α of equations per variable, and for various sizes N . The full
line is the asymptotic analytical formula (1.26).

which obviously depends on K and the statistical ensemble. Given N PSAT is
a decreasing function of α. We will see that, in the infinite size limit (and for
K ≥ 2), the decrease is abrupt at some well defined ratio, defining a phase
transition between Satisfiable and Unsatisfiable phase.

1.3.3 Phase transition in random 2-XORSAT

In 2-XORSAT each equation defines a joint constraint on two variables. Formulas
of 2-XORSAT can be represented by a graph with N vertices (one for each
variable), and αN edges. To each equation of the type xi + xj = e corresponds
an edge linking vertices i and j, and carrying 0 or 1 label (the value e of the second
member). Depending on the input model chosen (Section 1.3.2) multiple edges
are present or not. Clearly, the underlying graph is, for large N , is statistically
Poissonian with average degree:

c = 2α . (1.20)

Figure 1.4 shows the probability PSAT that a randomly extracted 2-XORSAT
formula is satisfiable as function of α, and for various sizes N . It appears that
PSAT drops quickly to zero for large N when α reaches the percolation threshold
αc =

1
2 . For ratios smaller than αc the probability of satisfaction is positive, but

smaller than unity.
Take α < 1

2 . Then the random graph G associated to a random 2-XORSAT
formula is non percolating, and made of many small components. Identical com-
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ponents (differing only by a relabelling of the variables) may appear several
times, depending on their topology. For instance consider a connected graph G�

made of E edges and V vertices. The average number of times G� appears in G
is a function of E and V only,

NE,V =

�
N

V

��
2α

N

�E �
1− 2α

N

�V (V −1)
2 +V (N−V )

(1.21)

since any vertex in G� can establish edges with other vertices in G�, but is not
allowed to be connected to any of the N − V outside vertices. When N is very
large compared to E, V we have

NE,V � NV−E
(2α)E

V !
e−2αV . (1.22)

Three cases should distinguished, depending on the value of V − E:

• V − E = 1: this is the largest value compatible with connectedness, and
corresponds to the case of trees. From (1.22) every finite tree has of the
order of N copies in G.

• V − E = 0: this correspond to trees with one additional edge, that is, to
graphs having one cycle (closed loop). The average number of unicyclic
graphs is, from (1.22), finite when N → ∞.

• V −E ≤ −1: the average number of components with more than one cycle
vanishes in the large N limit; those graphs are unlikely to be found and
can be ignored6.

Obviously a 2-XORSAT formula with tree structure is always satisfiable7. Hence
dangerous subformulas, as far as satisfiability is concerned, are associated to
unicyclic graphs. A simple thought shows that a unicyclic formula is satisfiable if
and only if the number of edges carrying label 1 along the cycle is even. Since the
values attached to the edges (second members in the formula) are uncorrelated
with the topology of the subgraph (first members) each cycle is satisfiable with
probability one half. We end up with the simple formula

PSAT (N,α) = �2−C(G)� (1.23)

where C(G) denotes the number of cycles in G, and �.� the average over G. For
a reason which will become clear below let us classify cycles according to their
length L. How many cycles of length L can we construct? We have to choose
first L vertices among N , and join them one after the order according to some
order. As neither the starting vertex nor the direction along the cycle matter,
the average number of L-cycles is

6The probability that such a graph exists is bounded from above by the average number.
7Start from one leaf, assign the attached variable to 0, propagate to the next variable

according to the edge value, and so on, up to the completion of the tree.



12 RANDOM GRAPHS: TYPICAL AND RARE PROPERTIES

NL =
N(N − 1) . . . (N − L+ 1)

2L
×
�
2α

N

�L

→ ΛL =
(2α)L

2L
. (1.24)

when N → ∞. As the emergence of a cycle between L vertices is a local event
(independent of the environment) we expect the number of L-cycles to be Poisson
distributed in the large N limit with parameter ΛL. This statement can actually
be proven, and extended to any finite collection of cycles of various lengths[?]: in
the infinite size limit, the joint distribution of the numbers of cycles of lengths
1, 2, . . . , L is the product of Poisson laws with parameters Λ1,Λ2, . . . ,ΛL calcu-
lated in (1.24). The probability of satisfaction (1.23) therefore converges to

lim
N→∞

PSAT (N,α) =
�

L≥L0





�

C≥0

e−ΛL
(ΛL/2)

C

C!




 =
�

L≥L0

e−ΛL/2 (1.25)

where L0 is the minimal cycle length. In normal random graphs L0 = 3 since
triangles are the shortest cycles. However in our 2-XORSAT model any equation,
or more precisely, any first member can appear twice or more, hence L0 = 2. We
conclude that

lim
N→∞

PSAT (N,α) = eα/2 (1− 2α)
1
4 when α < αc =

1

2
. (1.26)

The agreement of this result with the large size trend coming out from numerical
simulations is visible in Figure 1.4. As PSAT is a decreasing function of α it
remains null for all ratios larger than αc. The non analyticity of PSAT at αc

locates the Sat/Unsat phase transition of 2-XORSAT.
It is an implicit assumption of statistical physics that asymptotic results of

the kind of (1.26), rigorously valid in the N → ∞ limit, should reflect with good
accuracy the finite but large N situation. An inspection of Figure 1.4 shows this
is indeed the case. For instance, for ratio α = .3, (1.26) cannot be told from
the probability of satisfaction measured for formulas with N = 100 variables.
This statement does not hold for α = .4, where the agreement between infinite
size theory and numerics sets in when N = 1000 at least. It appears that such
finite-size effects become bigger and bigger as α gets closer and closer to the
Sat/Unsat threshold. We can guess what happens right at the threshold with
the following heuristic argument.

From rigorous results on critical random graphs the largest components at
the percolation threshold have size N

2
3 . As the slope of the giant component

size is finite when c → 1+ we can guess that the width of the critical region of
2-XORSAT is ∆c ∼ N−1/3. Loosely speaking it means that a formula with N
variables and N

2 (1 +∆c) equations is ’critical’ when N ∆c ∼ N
2
3 .

A consequence of (1.26) with α = 1
2 − aN−1/3, is that the probability of

satisfaction decays as

PSAT

�
N,αc − aN−1/3

�
∼ µ(a)N− 1

12 , (1.27)
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Fig. 1.5. PSAT as a function of the sizeN at the Sat/Unsat ratio for 2-XORSAT
in log-log plot. The slope − 1

12 (1.27) is shown for comparison.

where µ is some function of a. This scaling agrees with numerical experiments
right at the threshold (a = 0), though the small value of the decay exponent
makes an accurate check delicate (Figure 1.5).

1.4 The Potts model and rare random graphs

1.4.1 Relationship with Random Graphs

In the mean-field Potts model (Potts 1952) each of the N spins σi, i = 1, . . . , N
can take q values, σi = 0, 1, ..., q − 1. The energy function reads

E[σ1,σ2, . . . ,σN ] = − 1

N

�

i<j

δσi,σj , (1.28)

where δa,b is the Kronecker delta function. Note that the coupling, 1
N
, is chosen

to ensure that the energy is of the order of N at low temperature as in the Ising
case. The partition function of the Potts model is

ZN (q, T ) =
�

{σi=0,...,q−1}

exp



 1

TN

�

i<j

δσi,σj



 (1.29)
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where the summation runs over all qN spin configurations. δ taking value zero
or unity, the partition function may be recast in the form (Kasteleyn, Fortuin
1969, Fortuin, Kasteleyn 1972),

ZN (q, T ) =
�

{σi}

�

i<j

�
1 + w δσi,σj

�
, (1.30)

with

w = exp

�
1

T N

�
− 1 . (1.31)

When expanding the product appearing in (1.30), we obtain 2N(N−1)/2 terms
t, each of which composed by two factors, the first one given by w raised to a
power equal to the number of δs composing the second factor. We can represent
graphically each term t in the expansion as a subgraph Gt of KN . An edge
connects the vertices i and j in Gt if and only if t includes the factor δσi,σj . This
one–to–one mapping between the terms of the expansion and and the subgraphs
of KN allows us to rewrite the partition function as

ZN (q, T ) =
�

{σi}

�

G⊂KN

wNE(G)
NE(G)�

k=0

δσik
,σjk

(1.32)

where NE(G) is the number of edges in the subgraph G and ik, jk are the ver-
tices connected by the kth edge of the subgraph. We now exchange the order of
the summations and perform the sum over the spin configurations first. Given
a subgraph G with NE edges and Φ connected components (isolated vertices
included), the sum over spins configurations will give zero unless all the σs be-
longing to a connected component of G have the same value (as a consequence of
the δ factors). In such a component, one can set the σs to any of the q different
values. Hence,

ZN (q, T ) =
�

G⊂KN

wNE(G) qΦ(G) . (1.33)

As we can choose the temperature T at our convenience so can we with the
weight w. Let us thus pick up a real positive number c (smaller than N), and
choose w = c

N−c
, that is, a temperature T = Tp(c,N) ≡ [N ln(N/(N − c))]−1

from (1.31). From identity (1.33) we obtain

ZN

�
q, Tp(c,N)

�
=

�

G⊂KN

�
c

N − c

�NE(G)

qΦ(G) (1.34)

=
1

�
1− c

N

�(N2 )
�

G⊂KN

� c

N

�NE(G) �
1− c

N

�(N2 )−NE(G)
qΦ(G) .

The key observation, due to Kasteleyn and Fortuin (1969), is that the product of
the two factors depending on NE(G) in the above sum can be identified with the
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probability PI(G) of graph G in Model I for Poissonian random graphs (1.1). In
other words, up to a q-independent multiplicative factor, the partition function
of the Potts model at temperature Tp(c,N) is equal to the generating function
of the number Φ(G) of connected components of random graphs G with average
degree c,

YN (q, c) =
�

G⊂KN

PI(G) qΦ(G) . (1.35)

In particular the moments of Φ could be calculated from the knowledge of Y
through successive differentiations with respect to q in the vicinity of q = 1. A
major difficulty is that, while q is a dummy variable in the generating function
Y , it takes only integer values in the Potts partition function! Differentiation
with respect to q requires an analytic continuation procedure we now present.

For the sake of the simplicity we hereafter restrict to the calculation of the
average value of the number of components per vertex,

ϕ∗(c) = lim
N→∞

�

G⊂KN

PI(G)
Φ(G)

N
, (1.36)

to show how rigorous results presented earlier can be found back in a purely
statistical physics framework. Higher moments, and the large deviations of Φ
with respect to its expectation can be calculated along the same lines (Engel,
Monasson 2004).

1.4.2 Brief reminder on large deviations

Large deviation theory is the field of probability which deals with very unlikely
events. You are given a fair (unbiased) coin and toss it N times. The number H
of head draws has probability

pN (H) =
1

2N

�
N

H

�
. (1.37)

When N gets large H is highly concentrated around H∗ = N/2 with small
relative fluctuations of the order of O(

√
N). Yet we can ask for the probability

of observing a fraction h = H/N equal to say, 25%, of heads, far away from the
likely value h∗ = 50%. To calculate this probability we use Stirling’s asymptotic
expression for the binomial coefficient in (1.37) to obtain

pN (H = hN) = e−Nω(h)+o(N) , (1.38)

where
ω(h) = ln 2 + h lnh+ (1− h) ln(1− h) (1.39)

is called rate function. The meaning of (1.38) is that events with value of h �= h∗

are exponentially rare in N , and ω(h) give the decay (rate) exponent. The answer
to our question is e−Nω(.25) ∼ e−0.13N when N is large. Some comments are:
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• ω(h) is strictly positive, except in h = h∗ = 1
2 where it vanishes. This

is the only value for the fraction of head draws with non exponentially
small–in–N probability.

• Let h = h∗ + δh where δh is small. Using ω(h∗) = ω�(h∗) = 0 we have

PN

�
H = (h∗ + δh)N

�
= exp

�
−N

1

2
ω��(h∗) (δh)2 + . . .

�
, (1.40)

that is, δh is Gaussianly distributed with zero mean and variance

1

N ω��(h∗)
=

1

4N
. (1.41)

Hence central limit theorem is found back from the parabolic behaviour of
the rate function around its minimum8.

• ω is here a convex function of its argument. This property is true rate func-
tions describing independent events. Indeed, suppose we have H positive
(according to some criterion e.g. being a head for a coin) events among a
set of N events, then another set of N � events among which H � are positive.
If the two sets are uncorrelated

pN+N �(H +H �) ≥ pN (H)× pN �(H �) (1.42)

since the same total number H+H � of positive events could be observed in
another combination of N +N � events. Taking the logarithm and defining
h = H/N , h� = H �/N , u = N/(N +N �) we obtain

ω(uh+ (1− u)h�) ≤ uω(h) + (1− u)ω(h�) , (1.43)

for any u ∈ [0; 1]. Hence the representative curve of ω lies below the chord
joining any two points on this curve, and ω is convex. Non-convex rate
functions are found in presence of strong correlations9.

1.4.3 Large deviations for the number of components of random graphs

To describe the decomposition of a large random graph into its components, it
is convenient to introduce the probability P (Φ; c,N) of a random graph with N
vertices to have Φ components

P (Φ; c,N) =
�

G

PI(G) δ(Φ,Φ(G)), (1.44)

8Non standard behaviour e.g. fluctuations of the order of Nν with ν �= 1
2 as found in Levy

flights correspond to non-analyticies of ω in h∗ or the vanishing of the second derivative.
9Consider the following experiment. You are given three coins: the first one is fair (coin A),

the second and third coins, respectively denoted by B and C, are biased and give head with
probabilities, respectively, 1

4 and 3
4 . First draw coin A once. If the outcome is head pick up

coin B, otherwise pick up coin C. Then draw your coin N times. What is the rate function
associated to the fraction h of heads?
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where δ(a, b) denotes the Kronecker delta.
A general observation is that for given c and largeN the probability P (Φ; c,N)

gets sharply peaked at some typical value Φ∗ of Φ, and the probabilities for values
of Φ significantly different from Φ∗ being exponentially small in N . To describe
this fact more quantitatively we introduce the number of components per vertex
ϕ = Φ/N together with the quantity

ω(ϕ, c) = lim
N→∞

1

N
logP (Φ; c,N). (1.45)

Clearly ω(ϕ, c) ≤ 0 and the typical value ϕ∗ of ϕ has ω(ϕ∗, c) = 0. Averages
with PI(G) are therefore dominated by graphs G with a typical number of com-
ponents.

The focus of the present paper is on properties of random graphs which are
atypical with respect to their number of components C. In order to get access to
the properties of these graphs we introduce the biased probability distributions

PI(G; q) =
1

YN (q, c)
PI(G) qΦ(G), (1.46)

with YN (q, c) defined by (1.35). Contrary to averages with PI(G) those with
PI(G; q) are dominated by graphs with an atypical number of components which
is fixed implicitly with the parameter q. Values of q smaller than 1 shift weight
to graphs with few components whereas for q > 1 graphs with many components
dominate the distribution. The typical case is obviously recovered for q = 1.

Similar to ω(ϕ, c) it is convenient to introduce the function

y(c, q) = lim
N→∞

1

N
log YN (q, c). (1.47)

From (1.35) and (1.45) it follows to leading order in N that

YN (q, c) � N

� 1

0
dϕ exp(N [ω(ϕ, c) + ϕ log q]) (1.48)

and performing the integral by the Laplace method for large N we find that
y(c, q) and ω(ϕ, c) are Legendre transforms of each other:

y(c, q) = max
ϕ

[ω(ϕ, c) + ϕ log q]

ω(ϕ, c) = min
q

[y(c, q)− ϕ log q]

q = exp(−∂ω

∂ϕ
) , ϕ = q

∂y

∂q
(1.49)

The large deviation properties of the ensemble of random graphs as characterized
by ω(ϕ, c) can hence be inferred from y(c, q). For more information, see A. Engel,
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R. Monasson, A.K. Hartmann, On large-deviation properties of Erdos-Renyi
random graphs, Journal of Statistical Physics 117, 387 (2004).

In the next section we show how y(c, q) can be obtained from the statistical
mechanics of the Potts model.

1.5 Statistical mechanics of the Potts model

1.5.1 Free-energy in the non-percolating phase.

Let us call f(q, T ) the density of free energy of the mean-field Potts model in
the large N limit. We specialise in the following to the temperature Tp(c,N →
∞) = 1

c
. Our aim is to obtain an analytic continuation of f to real-valued q,

allowing us to calculate the average number of components10

ϕ∗(c) = −c
∂f

∂q

�
1,

1

c

�
. (1.51)

The energy function (1.28) depends on the configuration of spins C = {σi}
through the fractions x(σ; C) of variables σi equal to σ (= 0, 1, · · · , q − 1) (Wu
1982),

x(σ; C) = 1

N

N�

i=1

δσi,σ, (σ = 0, 1, ..., q − 1) . (1.52)

Of course the sum of the fractions (1.52) over σ (for a given C) is equal to unity.
Energy (1.28) may be rewritten in terms of the xs as

E[C] = −N

2

q−1�

σ=0

�
x(σ; C)

�2
+

1

2
. (1.53)

The last term on the r.h.s. of (1.53) can be neglected with respect to the first
term whose order of magnitude is O(N). The sum over the qN spin configurations
in the partition function (1.29) may be replaced with a sum over the value of
the fractions x(σ),

ZN

�
q,

1

c

�
=

(R)�

{x(σ)=0, 1
N ,

2
N ,...,1}

DN [{x(σ}] exp
�
cN

2

q−1�

σ=0

x(σ)2
�

(1.54)

10From definitions (1.35,1.36) ϕ∗(c) is the partial derivative of the generating function
YN (q, c) in q = 1, divided by N . As YN (1, c) = 1 we can differentiate lnYN (q, c) instead
of YN (q, c) itself. Kasteleyn-Fortuin correspondence says that lnZN (q, 1

c ) = lnYN (q, c) up to
an additive q-independent constant. Thus

ϕ
∗(c) = lim

N→∞

1

N

∂ lnZN

∂q

�
1,

1

c

�
. (1.50)

Permutation of the limit and the differentiation operations, and insertion of the definition of
the free energy density lead to (1.51).
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where the multiplicity DN of (number of spin configurations associated to) a set
of fractions {x(σ} is

DN [{x(σ}] =
�

N

N x(0), . . . , N x(q − 1)

�
. (1.55)

The subscript (R) indicates that the sum (1.54) is restricted to the normalized
subspace of the q-dimensional positive hypercube,

(R)
q−1�

σ=0

x(σ) = 1 . (1.56)

In the limit of large N the sum in (1.35) coincides, to exponential order in
N , with its largest term. The Potts free energy density reads

f

�
q,

1

c

�
=

(R)

min
{x(σ)}

f̂ [{x(σ)}] (1.57)

where f̂ is the q-multivariate function,

f̂
�
x(0), x(1), . . . , x(q − 1)

�
=

q−1�

σ=0

�
− 1

2
x(σ)2 +

1

c
x(σ) lnx(σ)

�
, (1.58)

and the minimum is sought under constraint (1.56).
Given the initial formulation of the problem each value of σ among 0, . . . , q−

1 plays the same role; indeed f̂ is invariant under any permutation of its q
arguments. Consequently, if {x(σ)} is a minimum of f̂ , so is {x(πσ)} for any
permutation π of the symmetric group Sq. We shall see that, depending on the
value c of the average degree, the permutation symmetry may, or may not be
broken. The breaking of the permutation symmetry of the q fractions (in the limit
q → 1!) coincides with the birth a giant component in the associated random
graph.

Consider first the permutation symmetric (PS) hypothesis for which the min-
imum is unique. Then all fractions have a common value equal to, from (1.56),

xPS(σ) =
1

q
, ∀ σ = 0, . . . , q − 1. (1.59)

Inserting (1.59) into the Potts free energy function (1.58) we obtain the following
expression for the free energy density

fPS

�
q,

1

c

�
= − 1

2q
− 1

c
ln q . (1.60)

Though the above expression has been derived for positive integer q it can be
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now straightforwardly continued to real valued q, and we obtain the average
number of components from (1.51),

ϕ∗,PS(c) = 1− c

2
. (1.61)

Comparison with the rigorous result (1.11) from random graph theory indicates
that the symmetric expression (1.61) is exact as long as c ≤ 1, and is false
above the percolation threshold. The breakdown of PS in the presence of a giant
component is a proof for the necessity of permutation symmetry breaking.

The same conclusion can be reached from an analysis of the curvature of
the free energy function (1.58) around the symmetric solution (1.59). The q × q
Hessian matrix

MPS

σ,τ
=

∂2f̂

∂x(σ)∂x(τ)

�
{xPS}

�
=

�q
c
− 1

�
δσ,τ , (1.62)

is diagonal . The normalised subspace (1.56) is spanned by q − 1 eigenvectors,
with the q − 1-fold degenerate eigenvalue ΛPS = q

c
− 1. In the q → 1 limit ΛPS

is positive for c < 1, and the PS Ansatz (1.59) is a true minimum of f̂ . For
c > 1 i.e. above the percolation threshold the PS Ansatz is a local maximum of
f̂ . This scenario is similar to the continuous phase transition taking place in the
mean-field Ising model.

1.5.2 Permutation Symmetry Breaking, Giant and Small Components

The simplest permutation symmetry broken (PSB) Ansatz is a set of fractions in
which one among the q spin values, say, σ = 0, is more frequent than the other
values,

xPSB(0) =
1

q

�
1 + (q − 1) s

�
,

xPSB(σ) =
1

q
[1− s] , (σ = 1, ..., q − 1), (1.63)

which fulfills constraint (1.56). Parameter s may a priori take any real value,
which enlarges the space in which a minimum can be searched with respect to
the symmetric case s = 0 (1.59). The free energy density of the Potts model is
obtained by inserting fractions (1.63) into (1.58). To obtain the average number
of components ϕ∗(c), it is sufficient to expand f around q = 1,

fPSB

�
q,

1

c

�
= −1

2
+ (q − 1) min

s≥0
fPSB

1 (s, c) +O
�
(q − 1)2

�
(1.64)

with

fPSB

1 (s, c) =
1

2
(1− s2)− 1

c
(1− s)

�
1− ln(1− s)

�
. (1.65)
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Minimization of fPSB

1 (s, c) with respect to s shows that, for c ≤ 1, the symmetric
solution s = 0 is the only one, whereas, for c > 1, there exists a non vanishing
optimal value s∗(c) of s that is solution of the implicit equation

1− s∗ = e−c s
∗

. (1.66)

Comparing eqns (1.66) and (1.10) allows to unveil the meaning of s∗(c): it is
simply the fraction of vertices γ1(c) belonging to the giant component. Note that
the average fraction of connected components, ϕ∗,PSB(c) = −c fPSB

1 (s∗(c), c)
from (1.51,1.64), agrees with (1.11)11.

To understand the structure of the PSB minimum (1.63), and why s∗ coin-
cides with the size of the giant component, we need a multivariate generating
function accounting for the size of the components, and not only their number.
This can be done through the introduction of a field h into the Potts Hamiltonian
(1.28),

E[σ1,σ2, . . . ,σN ] = − 1

N

�

i<j

δσi,σj − h
�

i

δσi,0. (1.67)

This field has a tendency to push spins in the 0 value if h > 0, or in any of
the remaining q − 1 values if h < 0. All the calculations exposed above can be
repeated, with the free energy functional (1.58) added a −hx(0) contribution.
In the infinite size limit the average fractions x may be derived from the density
of free energy f(q, T, h),

x(0) =
∂f

∂h
(q, T, h) , x(σ) =

1− x(0)

q − 1
(σ ≥ 1) . (1.68)

Notice that, in presence of a non zero field, the permutation symmetry of the
free energy functional f̂ is explicitly broken. It is therefore justified, and even
necessary, to look for a minimum of the form (1.63).

The one–to–one correspondence between the expansion of partition function
associated to the energy function (1.67) and the subgraphs of KN exposed in
Section 1.4.1 now demands some multiplicative factor exp(h δσi,0/T ) to be asso-
ciated to each vertex i of the subgraphs. As a consequence, the partition function
reads

11In addition the analysis of the Hessian matrix of f̂ around (1.63) shows the PSB Ansatz
is a local minimum. Define MPSB , the (q − 1)× (q − 1) Hessian matrix of

f̂

�
1−

q−1�

σ=1

x(σ), x(1), . . . , x(q − 1)

�
.

Then MPSB
σ,τ = A + B δσ,τ with A = −1 + 1/c/x(0), B = −1 + 1/c/x(1). The eigenvalues of

the Hessian matrix are: ΛPSB
1 = B −A, ΛPSB

2 = B with degeneracy q− 2. In the q → 1 limit
we find 0 < Λ2 = −1 + 1/c/(1− s∗(c)) < Λ1 = s∗(c)/c/(1− s∗(c)) for any c > 1.
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ZN (q, T, h) =
�

G⊂KN

wNE(G)
Φ(G)�

j=1

�
q − 1 +

�
eh/T

�Γ(Gj)
�

, (1.69)

where the Gjs denote the components of G. To calculate x(0) from (1.68) we dif-
ferentiate partition function (1.69) at a finite field, multiply by−T/N/ZN (q, T, h),
send N → ∞, and later make h → 0+. The output of this procedure is12

x(0) =
1− γ1

q
+ γ1 , (1.70)

where γ1 = Γ1/N is the average fraction of vertices in the giant component (if
any). Comparing eqns (1.70) and (1.63), we see that s parametrising the broken
minimum indeed coincides with γ1.

The whole distribution of component sizes is easy to derive from this approach
(Lubensky, McKane, 1981). First we differentiate eqn (1.69) with respect to h,
then send N → ∞, and finally send q → 1 to obtain

∞�

C=1

J(Γ, c)Γ e−hΓ/T = 1− s∗(h, c) , (1.71)

where J(Γ, c) is the typical number per vertex of components of size C, and
s∗(h, c) is the location of the maximum of −c fPSB

1 (s, c) − h(1 − s) where the
expression of fPSB

1 is given in (1.65). s∗(h, c) is the largest root of

1− s = e−c s−h . (1.72)

Using Lagrange inversion theorem13 we obtain s as a function of h, and identify
the power of e−h/T on both sides of eqn (1.71) to obtain (1.8) for any Γ ≥ 1.

1.5.3 At the critical point

Consider the case of critical random graphs, where the average degree is c = 1.
Then the free energy fPSB

1 is given by

fPSB

1 (s, 1) =
1

2
(1− s2)− (1− s)

�
1− ln(1− s)

�
= −1

2
+

s3

6
+O(s4) . (1.73)

Hence, for finite sizes N , the distribution of the order parameter s, which corre-
sponds to the number of vertices in the giant component, is given by

12It is assumed here that there is one component G1 of size O(N), and N−o(N) components
of size O(1). This is only assumption stable against edge-addition, see heuristic argument to
calculate the size of the giant component.

13Let us define t = (1 − s)/c, u = c exp(−c − h), then u = tϕ(t) where ϕ(t) = exp(−t).
Inversion of u(t) gives t(u) =

�
n≥1

tnu
n/n! where tn is the n − 1th derivative of ϕ(t)n in

t = 0.
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P (s) ∝ exp

�
− N

6
(q − 1)s3

�
. (1.74)

Hence we expect s ∼ N−1/3, that is, large components with O(N2/3) vertices.
A more precise calculation can be done with a non-zero field h to obtain the
accurate distribution of the largest component size. This distribution has been
calculated exactly by B. Pittel, On the largest component of a random graph at
a nearcritical stage, Journal of combinatorial theory, B82, 237 (2000).

1.6 Exercise

Consider the random 1-XORSAT model with N variables, and ratio α of clauses
per variables.

1. Show that the critical value of the ratio above which the probability of
satisfaction vanishes when N → ∞ is αc = 0.

2. Show that, for α > 0, there exists a strictly positive rate function defined
through

lim
N→∞

1

N
logPSAT (N,α) = −ω(α) . (1.75)

Calculate ω(α) in the fixed-size ensemble, and then in the fixed-probability en-
semble.


