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SOLUTIONS TO EXERCISES

3.1 Exercise 1: Detailed study of 1-XORSAT

Figure 3.1(top) shows the probability PSAT that a randomly extracted 1-XORSAT
formula is satisfiable as a function of the ratio α, and for sizes N ranging from
100 to 1000. We see that PSAT is a decreasing function of α and N .

Consider the subformula made of the ni equations with first member equal
to xi. This formula is always satisfiable if ni = 0 or ni = 1. If ni ≥ 2 the
formula is satisfiable if and only if all second members are equal (to 0, or to
1), an event with probability ( 12 )

ni−1 decreasing exponentially with the number
of equations. Hence we have to consider the following variant of the celebrated
Birthday problem16. Consider a year with a number N of days, how should scale
the number M of students in a class to be sure that no two students have the
same birthday date?

p̄ =
M−1�

i=0

�
1− i

N

�
= exp

�
−M(M − 1)

2N
+O(M3/N2)

�
. (3.1)

Hence we expect a cross-over from large to small p̄ when M crosses the scaling
regime

√
N . Going back to the 1-XORSAT model we expect PSAT to have a non

zero limit value when the number of equations and variables are both sent to
infinity at a fixed ratio y = M/

√
N . In other words, random 1-XORSAT formulas

with N variables, M equations or with, say, 100×N variables, 10×M equations
should have roughly the same probabilities of being satisfiable. To check this
hypothesis we replot the data in Figure 3.1 after multiplication of the abscissa
of each point by

√
N (to keep y fixed instead of α). The outcome is shown in the

bottom panel of Figure 3.1. Data obtained for various sizes nicely collapse on a
single limit curve function of y.

The calculation of this limit function, usually called scaling function, is done
hereafter in the fixed-probability 1-XORSAT model where the number of equa-
tions is a Poisson variable of mean value M̄ = y

√
N . We will discuss the equiv-

alence between the fixed-probability and the fixed-size ensembles later. In the
fixed-probability ensemble the numbers ni of occurence of each variable xi are

16The Birthday problem is a classical elementary probability problem: given a class with M
students, what is the probability that at least two of them have the same birthday date? The
answer for M = 25 is p � 57%, while a much lower value is expected on intuitive grounds when
M is much smaller than the number N = 365 of days in a year.
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Fig. 3.1. Top: Probability that a random 1-XORSAT formula is satisfiable as
a function of the ratio α of equations per variable, and for various sizes
N . Bottom: same data as in the left panel after the horizontal rescaling
α → α×

√
N = y; note the use of a log scale for the vertical axis. The dashed

line shows the scaling function Φ1(y) (3.3).

independent Poisson variables with average value M̄/N = y/
√
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probability of satisfaction is

P p

SAT
(N,α =

y√
N

) =



e−y/
√
N



1 +
�

n≥1

(y/
√
N)n

n!

�
1

2

�n−1







N



42 SOLUTIONS TO EXERCISES

=
�
2e−y/(2

√
N) − e−y/

√
N

�N
, (3.2)

where the p subscript denotes the use of the fixed-probability ensemble. We
obtain the desired scaling function

Φ1(y) ≡ lim
N→∞

lnP p

SAT
(N,α =

y√
N

) = −y2

4
, (3.3)

in excellent agreement with the rescaled data of Figure 3.1 (bottom) [?].
For finite but large N there is a tiny probability that a randomly extracted

formula is actually satisifiable even when α > 0. A natural question is to char-
acterize the ‘rate’ at which PSAT tends to zero as N increases (at fixed α).
Answering to such questions is the very scope of large deviation theory. Looking
for events with very small probabilities is not only interesting from an academic
point of view, but can also be crucial in practical applications.

Figure 3.2 shows minus the logarithm of PSAT , divided by N , as a function
of the ratio α and for various sizes N . Once again the data corresponding to
different sizes collapse on a single curve, meaning that

PSAT (N,α) = e−N ω1(α)+o(N) . (3.4)

Decay exponent ω1 is called rate function in probability theory. We can derive
its value in the fixed-probability ensemble from (3.2) with y = α×

√
N , with the

immediate result

ωp

1(α) = α− ln
�
2 eα/2 − 1

�
. (3.5)

The agreement with numerics is very good for small ratios, but deteriorates as α
increases. The reason is simple. In the fixed-probability ensemble the number M
of equations is not fixed but may fluctuate around the average value M̄ = αN .
The ratio α̃ = M/N , is with high probability equal to α, but large deviations
(α̃ �= α) are possible and described by the rate function17,

Ω(α̃|α) = α̃− α− α ln(α/α̃) . (3.6)

However the probability that a random 1-XORSAT formula with M equations is
satisfiable is also exponentially small in N , with a rate function ω1(α) increasing
with α. Thus, in the fixed-probability ensemble, a trade-off is found between
ratios α̃ close to α (formulas likely to be generated) and close to 0 (formulas
likely to be satisfiable). As a result the fixed-probability rate function is

17M obeys a Poisson law with parameter M̄ . Using Stirling formula,

e−M̄ M̄M

M !
� e−αN (α̃N)αN

√
2πN

�
e

αN

�αN

= e−N Ω(α̃|α)+o(N) ,

where Ω is defined in (3.6).
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Fig. 3.2. Same data as Figure 3.1 with: logarithmic scale on the vertical axis,
and rescaling by −1/N . The scaling functions ω1 (3.7) and ωp

1 (3.5) for,
respectively, the fixed-size and fixed-probability ensembles are shown.

ωp

1(α) = min
α̃

�
ω1(α̃) + Ω(α̃|α)

�
, (3.7)

and is smaller than ω1(α). It is an easy check that the optimal ratio α̃∗ =
α/(2 − e−α/2) < α as expected. Inverting (3.7) we deduce the rate function ω1

in the fixed-size ensemble, in excellent agreement with numerics (Figure 3.2).
This example underlines that thermodynamically equivalent ensembles have to
be considered with care as far as rare events are concerned.

Remark that, when α → 0, α̃ = α + O(α2), and ωp

1(α) = ω1(α) + O(α3).
This common value coincides with the scaling function −Φ1(α) (3.3). This iden-
tity is expected on general basis, and justifies the agreement between the fixed-
probability scaling function and the numerics based on the fixed-size ensemble
(Figure 3.1, right).

3.2 Exercise 2: dynamics of the UC heuristics

Let α0 denote the equation per variable ratio of the 3-XORSAT instance to be
solved. We call Ej(T ) the number of j–equations (including j variables) after T
variables have been assigned by the solving procedure. T will be called hereafter
‘time’, not to be confused with the computational effort. At time T = 0 we have
E3(0) = α0N , E2(0) = E1(0) = 0. Assume that the variable x assigned at time
T is chosen from a single-variable clause, that is, independently of the j-equation
content. Call nj(T ) the number of occurrences of x in j-equations (j = 2, 3). The
evolution equations for the populations of 2-,3-equations read
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E3(T + 1) = E3(T )− n3(T ) , E2(T + 1) = E2(T )− n2(T ) + n3(T ) . (3.8)

Flows n2, n3 are of course random variables that depend on the instance under
consideration at time T , and on the choice of variable done by UC. What are
their distributions? At time T there remain N−T untouched variables; x appears
in any of the Ej(T ) j-equation with probability pj =

j

N−T
, independently of the

other equations. In the large N limit and at fixed fraction of assigned variables,
t = T

N
, the binomial distribution converges to a Poisson law with mean

�nj�T =
j ej
1− t

where ej =
Ej(T )

N
(3.9)

is the density of j-equations at time T . The key remark is that, when N → ∞, ej
is a slowly varying and non stochastic quantity and is a function of the fraction
t = T

N
rather than T itself. Let us iterate (3.8) between times T0 = tN and

T0 + ∆T where 1 � ∆T � N e.g. ∆T = O(
√
N). Then the change ∆E3 in

the number of 3-equations is (minus) the sum of the stochastic variables nj(T )
for T = T0, T0 + 1, . . . , T0 + ∆T . As these variables are uncorrelated Poisson
variables with O(1) mean (3.9) ∆E3 will be of the order of ∆T , and the change
in the density e3 will be of order of ∆T/N → 0. Applying central limit theorem
∆E3/∆T will be almost surely equal to −�n3�t given by (3.9) and with the
equation density measured at reduced time t. The argument can be extended
to 2-equations, and we conclude that e2, e3 are deterministic (self-averaging)
quantities obeying the two coupled differential equations

de3
dt

(t) = − 3 e3
1− t

,
de3
dt

(t) =
3 e3
1− t

− 2 e2
1− t

. (3.10)

Those equations, together with the initial condition e3(0) = α0, e2(0) = 0 can
be easily solved,

e3(t) = α0(1− t)3 , e2(t) = 3α0 t (1− t)2 . (3.11)

To sum up, the dynamical evolution of the equation populations may be seen as a
slow and deterministic evolution of the equation densities to which are superim-
posed fast, small fluctuations. The distribution of the fluctuations adiabatically
follows the slow trajectory. This scenario is pictured in Figure 3.3.

The trajectories we have derived in the previous Section are correct provided
no contradiction emerges. But contradictions may happen as soon as there are
E1 = 2 unit-equations, and are all the more likely than E1 is large. Actually
the set of 1-equations form a 1-XORSAT instance which is unsatisfiable with a
finite probability as soon as E1 is of the order of

√
N from the results of Exercise

1. Assume now that E1(T ) � N after T variables have been assigned, what
is the probability ρT that no contradiction emerges when the T th variable is
assigned by UC? This probability is clearly one when E1 = 0. When E1 ≥ 1 we
pick up a 1-equation, say, x6 = 1, and wonder whether the opposite 1-equation,
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Fig. 3.3. Deterministic versus stochastic dynamics of the equation population
E as a function of the number of steps T of the algorithm. On the slow
time scale (fraction t = T/N) the density e = E/N of (2- or 3-) equations
varies smoothly according to a deterministic law. Blowing up of the dynam-
ics around some point t�, e� shows the existence of small and fast fluctuations
around this trajectory. Fluctuations are stochastic but their probability dis-
tribution depends upon the slow variables t�, e� only.

x6 = 0, is present among the (E1−1) 1-equations left. As equations are uniformly
distributed over the set of N − T untouched variables

ρT =

�
1− 1

2(N − T )

�max(E1(T )−1,0)

. (3.12)

The presence of the max in the above equation ensures it remains correct even in
the absence of unit-equations (E1 = 0). E1(T ) is a stochastic variable. However
from the decoupling between fast and slow time scales sketched in Figure 3.3
the probability distribution of E1(T ) depends only on the slow time scale t.
Let us call µ(E1; t) this probability. Multiplying (3.12) over the times T = 0
to T = N − 1 we deduce the probability that DPLL has successfully found a
solution without ever backtracking,

ρsuccess = exp



−
� 1

0

dt

2(1− t)

�

E1≥1

µ(E1; t) (E1 − 1)



 (3.13)

in the large N limit.
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Fig. 3.4. Evolution of the number E1 of 1-equations as one more variable is
assigned. n2 denotes the number of 2-equations reduced to 1-equations, s1
the number of 1-equations satisfied. If E1 ≥ 1 a variable is fixed through
unit-propagation: E1 decreases by one plus s1, and increases by n2. In the
absence of unit-equation (E1 = 0) the number of 1-equations after the as-
signment is simply E�

1 = n2.

We are left with the calculation of µ. Figure 3.4 sketches the stochastic evo-
lution of the number E1 during one step. The number of 1-equations produced
from 2-equations, n2, is a Poisson variable with average value, from (3.11),

d(t) =
2 e2(t)

1− t
= 6α0 t(1− t) (3.14)

when N → ∞. The number of satisfied 1-equations, s1, is negligible as long as
E1 remains bounded. The probability that the number of 1-equations goes from
E1 to E�

1 when T → T + 1 defines the entry of the transition matrix

M(E�
1, E1; t) =

�

n2≥0

e−d(t) d(t)
n2

n2!
δE�

1−(E1+n2−δE1 )
. (3.15)

from which a master equation for the probability of E1 at time T may be written.
On time scales 1 � ∆T � N this master equation converges to the equilibrium
distribution µ, conveniently expressed in terms of the generating function

G(x; t) =
�

E1≥0

µ(E1; t) x
E1 =

(1− d(t))(x− 1)

x ed(t) (1−x) − 1
. (3.16)

The above is a sensible result for d(t) ≤ 1 but does not make sense when d(t) >
1 since a probability cannot be negative! The reason is that we have derived
(3.16) under the implicit condition that no contradiction was encountered. This
assumption cannot hold when the average rate of 1-equation production, d(t), is
larger that one, the rate at which 1-equations are satisfed by unit-propagation.
From (3.14) we see, when α > αE = 2

3 , the trajectory would cross the

αD(p) =
1

2(1− p)
(3.17)

on which d = 1 for some time tD < 1. A contradiction is very likely to emerge
before the crossing.
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When α < αE d remains smaller than unity at any time. In this regime the
probability of success reads, using (3.13) and (3.16),

ρsuccess = exp

�
3α

4
− 1

2

�
3α

2− 3α
tanh−1

��
3α

2− 3α

��
. (3.18)

ρsuccess is a decreasing function of the ratio α, down from unity for α = 0 to
zero for α = αE . In can be shown that, right at αE , ρsuccess ∼ exp(−Cst×N

1
6 )

decreases as a stretched exponential of the size. The value of the exponent,
and its robustness against the splitting heuristics are explained in Deroulers,
Monasson, Critical behaviour of combinatorial search algorithm and the unit-
clause universality class, Europhysics Letters 68, 153 (2004).


