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• Monday:   Theoretical framework for model inference 
            (special case: many interacting & stationary variables)

        Mean-field inference
          Applications covariation in protein families (I)

• Yesterday: Issues & advanced statistical physics methods
      Inverse Hopfield model & Random Matrix Theory

       Applications to covariation in proteins (II)
            to neural data (I)

• Today:   Case of interacting & non-stationary variables
   Applications to neural data (II)

        

   



  

Getting functional interactions from the activity

Data (spiking times) Functional Interactions



  

Approaches

• Principal Component Analysis or Independent Component Analysis

• Granger Causality (regressive models)

• Stationary Models:
Maximum Entropy Models

•Dynamical Models: 
Generalized Linear Models
Integrate-and-Fire Models

Bayesian
approaches



  

The Leaky Integrate-&-Fire model
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Inference of Synaptic Weights from Raster Plots
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•   Numerical calculation of P: limited to small data sets         (Paninski et al., 2004)‏
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Optimal Paths for the Potential and the Noise (1)
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f(t) (Langer 1967)
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Small σ :

Small T:



  

Optimal Paths for the Potential and the Noise (2)

The likelihood P, given J,I,{t
j,k

}, defines the optimal paths for the potential V
i
 

and the noise (current) ηι

Small σ :

Particular case: K = δ, i.e. instantaneous synaptic integration
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    (t) = + g η(t) 

S. Cocco, S. Leibler, R.M. (2009); R.M., S. Cocco (2011)



  

Looking for Contacts (1)
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Simplest case : no intermediate contact with the threshold potential



  

Looking for Contacts (2)

Contact Rules:      Contacts take place :
  Simultaneously to an input spike, with a discontinuous increase of the noise (active contacts)
  On a finite duration interval, during which noise is constant (passive contacts)

Analysis of the intermediate contact region :



  

Practice:   
  if the current and the interactions are known, the optimal paths for the potentials, 
    for the noises, and the likelihood can be found in time = cst  N2  × S 
  optimal current and couplings are found by maximizing the likelihood (which is
    convex) 

P  A   A

A

Looking for Contacts (3)



  

Properties of the inference procedure (1)

• Gives most likely interactions J and error bars ∆J

• Tested on synthetic data generated from networks with known couplings; 
   accurate as long as the noise variance is moderate: σ2  < f(g,C,V

th
,ISI) 



  

Properties of the inference procedure (2)

• Fast :  recordings of 40 neurons, 170,000 spikes in 30 sec on commercial PC
             (up to N=160, 5 millions spikes with synthetic data) 
  
             related works: N=1 neuron, ~ 100 spikes (for any σ)    (Pillow et al., 2005)

                                     N=5 neurons, ~ 500 spikes (σ=0)          (Maretsos et al., 2004)

   time discretization  → constrained optimization

 

• Limitations: synaptic integration kernel is instantaneous
                no external stimulus so far
                noise must be small (empirical extension to moderate noise)

(Koyama, Paninski, 2009)



  

•  σ = .07, .18, .36  V
th 

(g C)1/2

    I = 1.2 gV
th 

, J
red

= - J
green

= .2  CV
th

• optimal paths are exact in the σ→ 0 limit

• Gaussian fluctuations around the σ=0 optimal path

• Pessimistic point of view: Gaussian corrections to log-likelihood are 
   independent of interaction parameters!

with

How to deal with moderate noise? (1)



  

How to deal with moderate noise? (2)

• Probability of early crossing
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time

• Algorithm with Moving threshold V
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(t) …
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Application to Multi-Electrode Recordings (1)

Asymmetry of interactions and time-scales
(spontaneous activity)

Cross-correlograms Ratio J
ij 
/ J

ji



  

Application to Multi-Electrode Recordings (2)

Is the inference problem well-behaved?

Spontaneous
activity

Salamander retinal ganglion cell activity:   (N=32 cells, spontaneous activity and random flickers 
- M. Meister)



Exploring learning and memory from   
in vivo cortical multi-electrode recordings

Peyrache, Battaglia et al. (2009): 37 cells
in prefrontal cortex, before, during and after a task 



Principal component analysis of cortical recordings
(Peyrache, Battaglia et al. 2008)

  
Rat perform a rule shift task four possible rules
Activity of prefrontal cortex is recorded during: 
The sleep period prior the task (PRE)- the task- and the sleep period after the task(POST)

Patterns:
Starting with D. Hebb’s (1949) theorists have postulated cell assemblies as the main unit
 of information representation which create a coherent input to downstream areas.

 Replay and memory consolidation:
 replay of the  pattern of activity during the SWS (slow wawe sleep) in period
 corresponding to coordinated bursts of activity of the hippocampus (sharp waves) 

Replay of rule-learning related neural patterns in the prefrontal cortex 
during sleep A. Peyrache.. F. Battaglia   Nature Neuroscience 2008,

Principal component analysis of ensemble recordings reveals cell 
assemblies at high temporal resolution A.Peyrache … F. Battaglia J. 
Comput Neurosci 2009



Time is discretized in time windows
 of size ∆t=100 ms  

si
τ = {  1 if at least one spike in time window k

 0 if no spike in time windows k

n
e
u
r
o
n

Time(s)

χij=
pij-pipj

pipj(1-pi)(1-pj)

1. Spike trains from the awake epoch are binned

2. Correlation matrix computed and diagonalized



3. Only eigenvectors associated to the largest eigenvalues are
 retained, threshold value from the upper bound of eigenvalues
of correlation matrix of independent, normally distributed spike trains

Marcenko-Pastur distribution 

Tracy-Widom corrections



4. Spike trains from the sleep epoch are binned
5. The instantaneous similarity of the sleep population activity with the awake activity is 

computed through the 

• Instantaneous similarity is high in Slow Wave Sleep (SWS) (shaded areas) after learning 
of the task in coincidence with hippocampal sharp waves

Squared overlap       Rq(τ)=(Σi vq
i si(t) )2 

R1



  

Analysis of the Cortical 
Activity of a Behaving Rat

Peyrache et al., 2008

Inference of 
effective 
network J

Reproduces statistics of activity

Comparison Ising - I&F

data

Is
in

g



  

Exploring neural coding by novel optogenetic, 
high-density microrecordings 

and computational approaches 

Goal 2: estimate changes of network due to task learning  (distributed, sparse ?)

Goal 1: test capability of predicting response to a specific stimulus

With C. Bartic (Leuven), F. Battaglia (Amsterdam), S. Cocco (Paris), M. Giugliano (Antwerpen)

Goal 3: identify & manipulate cell assemblies coding for memories
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