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 Monday: Theoretical framework for model inference
(special case: many interacting & stationary variables)
Mean-field inference
Applications covariation in protein families (1)

* Yesterday: Issues & advanced statistical physics methods
Inverse Hopfield model & Random Matrix Theory
Applications to covariation in proteins (1l)

to neural data (1)

* Today: Case of interacting & non-stationary variables
Applications to neural data (1)



Getting functional interactions from the activity
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Approaches

* Principal Component Analysis or Independent Component Analysis

» Granger Causality (regressive models)

* Stationary Models:
Maximum Entropy Models
Bayesian
°Dynamical Models: approaches
Generalized Linear Models
Integrate-and-Fire Models




The Leaky Integrate-&-Fire model
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Inference of Synaptic Weights from Raster Plots
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o P[{t,}[{J;}]=product of FPT probabilities
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« {3} maximizing P[{J 5[ {t 3] =P[{t, JRIFTP T3]/ PLAE 5] ?

 Numerical calculation of P: limited to small data sets

(Paninski et al., 2004)



Optimal Paths for the Potential and the Noise (1)

Small O :

The likelihood P, given JL {t. },

defines the optimal paths for the
potential V. and the noise (current) n
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Optimal Paths for the Potential and the Noise (2)

Small 0 : The likelihood P, given J.1, {tj’k}, defines the optimal paths for the potential V.
and the noise (current) n
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Particular case: K = 9, i.e. instantaneous synaptic integration

S. Cocco, S. Leibler, R.M. (2009); R M., S. Cocco (2011)



Looking for Contacts (1)

Simplest case : no intermediate contact with the threshold potential

n/ev,




Looking for Contacts (2)

Analysis of the intermediate contact region :

Contact Rules:  Contacts take place :
> Simultaneously to an input spike, with a discontinuous increase of the noise (active contacts)
> On a finite duration interval, during which noise is constant (passive contacts)



Looking for Contacts (3)

Practice:
> if the current and the interactions are known, the optimal paths for the potentials,
for the noises, and the likelithood can be found in time = cst N? xS

> optimal current and couplings are found by maximizing the likelihood (which is
convex)



Properties of the inference procedure (1)

 Gives most likely interactions J and error bars AJ
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* Tested on synthetic data generated from networks with known couplings;
accurate as long as the noise variance is moderate: 0* < f(g,C,V ,ISI)



Properties of the inference procedure (2)

* Fast : recordings of 40 neurons, 170,000 spikes in 30 sec on commercial PC
(up to N=160, 5 millions spikes with synthetic data)

related works: N=1 neuron, ~ 100 spikes (for any O)
N=5 neurons, ~ 500 spikes (0=0)
time discretization — constrained optimization

» Limitations: synaptic integration kernel is instantaneous
no external stimulus so far
noise must be small (empirical extension to moderate noise)



How to deal with moderate noise? (1)

e optimal paths are exact in the 0 —» O limit
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* Pessimistic point of view: Gaussian corrections to log-likelihood are
independent of interaction parameters!



How to deal with moderate noise? (2)

* Probability of early crossing \%

p=1

, time

« Algorithm with Moving threshold V (1) ...



Application to Multi-Electrode Recordings (1)

Asymmetry of interactions and time-scales
(spontaneous activity)

Cross-correlograms Ratio Jij/ J
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Application to Multi-Electrode Recordings (2)

Salamander retinal ganglion cell activity: (N=32 cells, spontaneous activity and random flickers
- M. Meister)
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Is the inference problem well-behaved?
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Exploring learning and memory from
in vivo cortical multi-electrode recordings
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Principal component analysis of cortical recordings
(Peyrache, Battaglia et al. 2008)

Rat perform a rule shift task four possible rules
Activity of prefrontal cortex is recorded during:
The sleep period prior the task (PRE)- the task- and the sleep period after the task(rost)

Patterns:
Starting with D. Hebb’s (1949) theorists have postulated cell assemblies as the main unit
of information representation which create a coherent input to downstream areas.

Replay and memory consolidation:
replay of the pattern of activity during the SWS (slow wawe sleep) in period
corresponding to coordinated bursts of activity of the hippocampus (sharp waves)

Replay of rule-learning related neural patterns in the prefrontal cortex
during sleep A. Peyrache.. F. Battaglia Nature Neuroscience 2008,

Principal component analysis of ensemble recordings reveals cell
assemblies at high temporal resolution A.Peyrache ... F. Battaglia J.
Comput Neurosci 2009
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2. Correlation matrix computed and diagonalized

Spike trains from the awake epoch are binned
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Time is discretized in time windows
of size At=100 ms

1 if at least one spike in time window k
0 if no spike in time windows k
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3. Only eigenvectors associated to the largest eigenvalues are
retained, threshold value from the upper bound of eigenvalues
of correlation matrix of independent, normally distributed spike trains

Tracy-Widom corrections
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4. Spike trains from the sleep epoch are binned

5. The instantaneous similarity of the sleep population activity with the awake activity is
computed through the

Squared overlap  RI(T)=(Z, v4. s(t) )
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* Instantaneous similarity is high in Slow Wave Sleep (SWS) (shaded areas) after learning
of the task in coincidence with hippocampal sharp waves



Analysis of the Cortical [ - )
Activity of a Behaving Rat

firing rates (Hz)
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Exploring neural coding by novel optogenetic,
high-density microrecordings
and computational approaches LIGHTENME

With C. Bartic (Leuven), F. Battaglia (Amsterdam), S. Cocco (Paris), M. Giugliano (Antwerpen)

Goal 1: test capability of predicting response to a specific stimulus

Goal 2: estimate changes of network due to task learning (distributed, sparse ?)

Goal 3: 1dentify & manipulate cell assemblies coding for memories
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