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Abstract
This work deals with the analytical study of coding a discrete set of
categories by a large assembly of neurons. We consider population
coding schemes, which can also be seen as instances of exemplar
models proposed in the literature to account for phenomena in the
psychophysics of categorization. We quantify the coding efficiency
by the mutual information between the discrete categories and the
neural code and characterize the properties of the most efficient
codes in the limit of a large number of coding cells. One key result
is that the highest stimulus-discriminating parts of the neuronal
tuning curves should be placed in the transition regions between
categories in stimulus space.

1. Methods

1.1 General Framework
Processing chain:

µ → x → r → µ̂

• µ = 1, . . . , M categories
• Probabilities of occurrence qµ ≥ 0

(∑µ qµ = 1)

• Input (sensory) space x ∈ RK

• A category ≡ P(x|µ)
• Neural response r = {r1, . . . , rN}
• µ̂: category estimate (decoding) Figure 1: Example of the

feedforward processing

1.2 Population Coding
• population of N cells
• activity ri of cell i given by Pi(ri|x)
• no correlations (given x): P(r|x) = ∏N

i=1 Pi(ri|x)
• each cell i is stimulus selective
• tuning curve (mean response): fi(x) = Ri f (x, xi, ai) where

� xi : preferred stimuli
� ai : width of the receptive field
� Ri : maximal rate

one dimensional case: fi(x) = Ri f (x−xi
ai

)

1.3 Goals
• quantify the coding efficiency of the neural population with

respect to the classification task at hand
• characterize the optimal neural code

Coding efficiency is quantified by the mutual information I(µ, r)
between the categories µ and the neural response r, defined by:

I(µ, r) =
M
∑

µ=1
qµ

∫
dNr P(r|µ) ln

P(r|µ)
P(r)

where P(r) is the probability density function of r.

2. Results

2.1 Information Content for Large but
Finite N

2.1.1 Smooth Tuning Curves

Hypotheses:
• smooth tuning curves
• for any neural activity the maximum likelihood x̂(r) is well de-

fined and unique
• Large N limit (N � K)

Mutual Information: Smooth Tuning Curve (K-d)

I(µ, x)− I(µ, r) =
1
2

∫
dKx p(x)Fcat(x) : Fcode(x)−1

where x = {xk, k = 1, ..., K}, and:

•
[
Fcode(x)

]
kl = −

∫
dNr P(r|x) ∂2 ln P(r|x)

∂xk∂xl

is the Fisher information matrix characterizing the sensibility
of r with respect to small variations of x

•
[
Fcat(x)

]
kl = −∑M

µ=1 P(µ|x) ∂2 ln P(µ|x)
∂xk∂xl

is the Fisher information matrix characterizing the sensibility
of µ with respect to small variations of x

• ∀A, B ∈ MK(R), A : B = tr(A>B) = ∑k,l AklBkl

Expectations on the optimal neural code.
We assume P(µ|x) to have a S-shape. This entails that
|∂P(µ|x)/∂x| is the greatest at the boundary between categories.
Fcat(x) is therefore typically the greatest in these regions.
Fcode(x) for a given cell is the highest at the flanks of the cell
where the slope of the tuning curve is the steepest. [Seung and
Sompolinsky, 1993]

As N < ∞, an optimized code leads to:
• a larger value of Fcode(x) at the class boundaries
•more cells coding for boundaries, ie

� their steepest slope will be located in these regions
� between categories cells will have a sharper tuning curve
� typically, more cells are therefore expected at the boundary

Numerical Illustration (1-d)

• two Gaussian categories, cen-
tered at 0 and 1
• bell-shaped tuning curves:

fi(x) = exp
(
− (x−xi)2

2a2
i

)
• (A) Optimal tuning curves ob-

tained numerically.
• (B) As a function of x, differ-

ence between the Fisher infor-
mation Fcode(x) for the opti-
mal code, and the one for the
equidistributed distribution of
preferred stimuli
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Figure 2: 1d numerical
optimization

Numerical Illustration (2-d)

• two Gaussian categories, cen-
tered at (−2, 0) and (2, 0)
• bell-shaped tuning curves
• gray dashed contour: P(x)
• dashed circles: initial cells
• solid ellipses: configuration

obtained from numerical op-
timization
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Figure 3: 2d numerical
optimization (x = (x, y))

2.1.2 Sharp Tuning Curves
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{

1 if x ∈ [θi, θi+1]
0 otherwise

Hypothesis: ai small.

Mutual Information: Sharp Tuning Curve (1-d)

I(µ, x)− I(µ, r) =
1
2 ∑

i
ai p(xi) Fcat(xi)×

a2
i

12

where
• a2

i
12 is the minimal variance of any x̂(r)

• Fcat(xi) = ∑M
µ=1 P′(µ|xi)2/P(µ|xi)

2.2 Short Time Limit
The previous results concern regimes of reasonably well-defined
classes and sufficiently large signal-to-noise ratio. We have also
studied noisy/short-time processing.

At most one cell emits one spike during a short time window [0, τ]:
Pi(ri = 1|x) = fi(x) τ
Pi(ri = 0|x) = 1− fi(x) τ
with 0 < fmin ≤ fi(x) ≤ fmax for every input x and every cell i.
Assuming τN fmax � 1, one gets

I(µ, r) = τ ∑
i

f̄i
M
∑

µ=1
qi,µ ln

qi,µ

qµ

where f̄i =
∫

dKx P(x) fi(x) is the mean rate of cell i averaged
over all possible inputs, and f̄ µ

i =
∫

dKx P(x|µ) fi(x) its mean
rate conditional to the category µ.

The mutual information is maximized by maximizing the Kull-
back divergence between the probabilities {qi,µ, µ = 1, ..., M} and
{qµ, µ = 1, ..., M}: each cell must be as specific as possible to
one and only one category. This implies that, in an optimized code,
most cells will have a receptive field avoiding any domain in the in-
put space where categories overlap.

3. Discussion

3.1 Perceptual Consequences
• discriminability of stimuli x and x + δx [Seung and Sompolinsky,

1993]:
d′ = |δx|

√
Fcode(x)

• the higher the Fisher information Fcode(x) the higher the dis-
criminability d′

If the code is optimized:
• Fcode will typically be the greatest at the boundary
• higher cross-category than within-category discriminability
• Categorical Perception (CP) [Harnad, 1987]
Our results show that optimal coding underlies CP: CP is a nec-
essary byproduct of the minimization of misclassification
probability.

3.2 Category Learning and the Infer-
otemporal Cortex
The Inferotemporal (IT) cortex of the monkey is known as a site
• for object recognition and classification
• where population coding is a strategy widely used [e.g. Young

and Yamane, 1992, Vogels, 1999]
• where perceptual learning implies neural modifications [Kobatake

et al., 1998]
⇒ best candidate for testing our predictions

Experimental study of Freedman
et al. [2003]:
• continuous set of morphed vi-

sual stimuli interpolating be-
tween cats and dogs
• two monkeys trained on a clas-

sification task (cats/dogs)
• almost half of all recorded IT

neurons have preferred stimuli
located at the class boundary
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Figure 12: Distribution of preferred stimuli (morph in-
dices) for experimental IT neurons.

Differences in the CCI distributions appear to be
more substantial. However, the highest CCI in the
model is greater than that of the experimental IT neu-
rons, showing that model units can show similar de-
grees of category tuning as the experimental neurons.

4.1.1 Noise

What could be the source of the differences between
the tuning properties of model units and experimen-
tal neurons? One factor is the deterministic response
of model units in contrast to the noisy responses of ex-
perimental neurons which show trial-to-trial variations
even for the same stimulus. Such random fluctuations
in a neuron’s firing rate can have a strong impact on
the CCI value of neurons with preferred stimuli near
the class boundary, where stimuli belonging to different
classes produce similar responses, pointing to a possi-
ble explanation for the high number of neurons in the
experiment with low CCI values.

Indeed, adding independent Gaussian noise to the re-
sponses of model units produces only modest shifts in
the BWI and ROC distributions, but leads to a CCI dis-
tribution that is dominated by units with low CCI val-
ues, as in the experiment (Fig. 17). In the ROC value
distribution, the proportion of units with intermedi-
ate ROC values decreased, producing a more “convex”
shape as in the experiment. In general, the agreement
with the experimental distribution is excellent, BWI and
ROC distributions are not statistically significantly dif-
ferent (p ≥ 0.2, Wilcoxon rank sum test), and the CCI
distribution is only marginally different (p = 0.06).

4.1.2 Resampling

Another factor that might affect the population tun-
ing properties is the distribution of preferred stimuli.
In fact, calculating the distribution of preferred stimuli
of the experimental IT neurons reveals a difference be-
tween experimental and model populations: As Fig. 12
shows, almost half of all experimental neurons have
preferred stimuli at the class boundary, whereas the
model units have a distribution that contains more neu-
rons tuned to morph line centers (Fig. 3).

This difference could either be the signature of task-

dependent influences on IT learning, or it could be due
to statistics of the stimulus ensemble, as the later stages
of the monkeys’ training focussed on stimuli close to the
boundary (which where most difficult for the monkeys
to learn). It will be interesting to examine this question
more closely in future studies where stimulus exposure
is better controlled.

We investigated the effect of the distribution of pre-
ferred stimuli on the population tuning properties by
resampling from the population of 144 model units to ob-
tain a population with a distribution of preferred stim-
uli as in Fig. 12. Afterwards, a population of 116 units,
the size of the experimental population, was drawn
from those noisy units such that the distribution of units
over the morph indices fit the experimental population.
This procedure was repeated for a total of 100 trials and
the results were averaged to obtain the correct number
of values.

Fig. 18 shows the population tuning properties of
the resampled model distribution (with a distribution
of preferred stimuli as in Fig. 12), chosen from the de-
terministic model units of Fig. 16. Interestingly, distri-
butions are not very different from the non-resampled
case, in line with the results in Figs. 5, 7, and 10 that
show only modest changes in the index values for units
with preferred stimuli at the border compared to di-
rectly adjacent positions.

We investigated the combined effect of noise and
distribution of preferred stimuli on population tuning
properties by adding independent Gaussian noise with
amplitude n to the responses of model units, and resam-
pling from the population of 144 model units to obtain
a population with a distribution of preferred stimuli as
in Fig. 12. In particular the morph indices of the noisy
model units were determined after adding noise to their
response, to allow for possible shifts in the the location
of the preferred stimulus in morph space. As before,
this procedure was repeated 100 times and the results
were averaged to obtain the correct number of values.

Fig. 19 shows the population tuning properties of the
resampled model distribution, for neurons with a noise
level of n = 0.08 (a noise level of n = 0.1, as in Fig. 17,
produced only slightly worse fits to the experimental
distribution). We again find very good agreement with
the experimental distribution, BWI and ROC distribu-
tions are not statistically significantly different (p ≥ 0.1,
Wilcoxon rank sum test), and the CCI distribution is
only marginally different (p = 0.03).
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Figure 4: Distribution of
preferred stimuli for recorded IT
neurons [Knoblich et al., 2002]

3.3 Future Work
• study of the case of non-abutting categories
• generalization of the result to high-dimensional spaces
• consideration of noise correlations
• characterization of learning mechanisms that aim at attaining an

optimal code, for both supervised and unsupervised learning of
categories
• experimental investigations
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