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‘ Abstract |

This work deals with the analytical study of coding a discrete set of
categories by a large assembly of neurons. We consider population

coding schemes, which can also be seen as instances of exemplar

models proposed in the literature to account for phenomena in the
psychophysics of categorization. We quantify the coding efficiency
by the mutual information between the discrete categories and the
neural code and characterize the properties of the most efficient
codes in the limit of a large number of coding cells. One key result
is that the highest stimulus-discriminating parts of the neuronal
tuning curves should be placed in the transition regions between
categories in stimulus space.

‘ 1. Methods |

1.1 General Framework

Processing chain:

W—xX—r—u

oeu=1,..., M categories
e Probabilities of occurrence g, > 0

(Zy Qu = 1)

e Input (sensory) space x € RK

e A category = P(x|u)
e Neural response r = {r{,..., 7N} T

Figure 1: Example of the
feedforward processing

® 1. category estimate (decoding)

1.2 Population Coding

e population of N cells

e activity r; of cell i given by P;(r;|x)

e no correlations (given x): P(r|x) = Hllil P;(r;|x)

e each cell 7 is stimulus selective

e tuning curve (mean response): f;(x) = R; f(x,X;, a;) where
. X; : preferred stimuli

. a; : width of the receptive field

. R; : maximal rate

one dimensional case: f;(x) = Rif(x;ixi)
2.1.2 Sharp Tuning Curves
S N { 1if x € [6;,0;11]
; r; = :
0 — 0 otherwise

Hypothesis: a; small.
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where
2

o % is the minimal variance of any X(r)

o Feat(x;) = X0 P/ (ulx;)?/ P(pulx;)

2.2 Short Time Limit

The previous results concern regimes of reasonably well-defined
classes and sufficiently large signal-to-noise ratio. We have also
studied noisy/short-time processing.

At most one cell emits one spike during a short time window [0, T|:
Pi(r; = 1|x) = fi(x)

Pi(r; =0[x) =1—fi(x) 7

with 0 < f,,.;, < fi(X) < fiax for every input x and every cell i.
Assuming TN fiax << 1, one gets

M .
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Ir)=1Yf Y, i n—L
i u=1 qu

where f; = [d%x P(x) f;(x) is the mean rate of cell i averaged

over all possible inputs, and fiy = [d® P(x|u) fi(x) its mean
rate conditional to the category .

The mutual information is maximized by maximizing the Kull-
back divergence between the probabilities {qlm, u=1,.., M} and
{qy,y = 1,..., M}: each cell must be as specific as possible to
one and only one category. This implies that, in an optimized code,
most cells will have a receptive field avoiding any domain in the in-
put space where categories overlap.

Mutual Information: Sharp Tuning Curve (1-d) I

1.3 Goals

e quantify the coding efficiency of the neural population with
respect to the classification task at hand

e characterize the optimal neural code

Coding efficiency is quantified by the mutual information I(y, r)
between the categories y and the neural response r, defined by:

M
P(r
r) = Y au [ @eP(elp) n D08
— P(x)
u=1
where P(r) is the probability density function of r.

‘ 2. Results |

2.1 Information Content for Large but
Finite N

2.1.1 Smooth Tuning Curves

Hypotheses:
® smooth tuning curves

e for any neural activity the maximum likelihood X(r) is well de-
fined and unique

e Large N limit (N > K)

1,30 = 111) = 5 [ %P Fea () : Feoie)”

where x = {x;, k =1, ...,K}, and:
0°In P
o [Feode(¥)] g = — [ dNr P(x]x) = rfx)

axkaxz

is the Fisher information matrix characterizing the sensibility
of r with respect to small variations of x
M 92 In P(j[x)
¢ [Fcat(x)}kl - Zyzl P(‘u|x) 00X 0X]
is the Fisher information matrix characterizing the sensibility
of u with respect to small variations of x

e VA,B € MK(]R), A:B= t?’(ATB) — Zk,l A1 By

‘ 3. Discussion |

3.1 Perceptual Consequences

e discriminability of stimuli x and x 4+ dx [Seung and Sompolinsky,
1993]:

d' = ‘&C‘\/Fcode(x)
e the higher the Fisher information F_ 4.(x) the higher the dis-
criminability d’
If the code is optimized:
® F..4e Will typically be the greatest at the boundary

® higher cross-category than within-category discriminability
e Categorical Perception (CP) [Harnad, 1987]

Our results show that optimal coding underlies CP: CP is a nec-
essary byproduct of the minimization of misclassification
probability.

3.2 Category Learning and the Infer-
otemporal Cortex

The Inferotemporal (IT) cortex of the monkey is known as a site

e for object recognition and classification

e where population coding is a strategy widely used [e.g. Young
and Yamane, 1992, Vogels, 1999]

e where perceptual learning implies neural modifications [Kobatake
et al., 1998]

= best candidate for testing our predictions

Experimental study of Freedman 25/

et al. [2003]: 20|
>

e continuous set of morphed vi- 515

sual stimuli interpolating be- ém
tween cats and dogs =

o O

e two monkeys trained on a clas-
sification task (cats/dogs)

0.0 0.2 0.4 0.6 0.8 1.0
Position on morph line

e almost half of all recorded IT

= ' Figure 4: Distribution of
neurons have preferred stimuli

preferred stimuli for recorded I'T
located at the class boundary . ;ns [Knoblich et al., 2002]

Mutual Information: Smooth Tuning Curve (K-d) I
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Expectations on the optimal neural code.

We assume P(p|x) to have a S-shape.  This entails that
[0P(14|x)/0x| is the greatest at the boundary between categories.
Feat(x) is therefore typically the greatest in these regions.
Foge(x) for a given cell is the highest at the flanks of the cell

where the slope of the tuning curve is the steepest. [Seung and
Sompolinsky, 1993]

As N < oo, an optimized code leads to:
e a larger value of F_ 4.(x) at the class boundaries
e more cells coding for boundaries, ie

. their steepest slope will be located in these regions
. between categories cells will have a sharper tuning curve

. typically, more cells are therefore expected at the boundary

Numerical lllustration (1-d)
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e (A) Optimal tuning curves ob-
tained numerically.

e (B) As a function of x, differ-
ence between the Fisher infor-
mation F_,4.(x) for the opti- S N~
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Figure 2: 1d numerical

optimization
Numerical lllustration (2-d)
e two Gaussian categories, cen- 2)
tered at (—2,0) and (2,0) e U~V
e bell-shaped tuning curves - s
e gray dashed contour: P(x) DOV O o
L) A NG
e dashed circles: initial cells 23.
. . = ooYal
e solid ellipses: configuration -4 -2 0 2 4
obtained from numerical op-
timization Figure 3: 2d numerical

optimization (x = (x,v))

3.3 Future Work

e study of the case of non-abutting categories
e generalization of the result to high-dimensional spaces
e consideration of noise correlations

e characterization of learning mechanisms that aim at attaining an
optimal code, for both supervised and unsupervised learning of
categories

e experimental investigations
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