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July 1997, and on a talk given at the meeting ”Towards a theoretical brain”, Les
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Criteria for sensory coding

Taking over the original ideas of H. Barlow (1960) and F. Attneave (1954),
a systematic approach to the modeling of sensory systems is being developed
since the last ten years. The general scheme is as follows:

1.

bet on what is the task fulfilled by the particular sensory system under
consideration;

. define a criterion (an objective function) that characterizes the perfor-
mance of a system performing (or trying to perform) this task;

compute the optimal performance that could be obtained, from a mathe-
matical point of view, given the signal to noise ratio (in particular taking
into account the noise at the level of receptors) and other constraints
specific to the studied system;

and eventually, compare with experimental data from neurophysiology
- e.g. on receptive fields and/or the "preferred” stimulus of neural cells
-, and also with some psychophysical empirical data such as contrast
sensitivity curves.



From step (3), one may also hope to derive plausible learning mechanisms
that may lead to this organization, providing models for the epigenetic devel-
opment.

Step (1) may be relatively easy when dealing with simple animals. For
instance one finds motion detectors in the fly visual system, which provide
velocity estimations readily used by the motor system. In such case (see e.g.
W. Bialek et al, 1991) the Bayesian inference framework (step 2) allows to
define the optimal estimator, given the statistics of the signal and the noise
level in the receptors (step 3). A different situation is when dealing with,
say, the human visual system. Even though independent channels exists, it
is clear that many different tasks have to be solved from the same incoming
optical flow. One may thus assume that the first layers in the sensory pathway
are building a non specific neural representation, or ”"code”, a priori efficient
for further processing. Yet, this hypothesis is not enough for specifying an
objective cost function (step 2). Indeed, various criteria have been proposed in
the literature, among which several based on information theoretic criteria (for
an introduction to Information Theory, see e.g. Blahut 1988). The simplest
one, studied by various authors, is what has been called the ”infomax principle”
by R. Linsker (1988): one ask for a neural network which will maximize the
mutual information between the output (the neural representation) and the
input (say the visual stimuli). The receptors and neural noises, and the finite
amount of available resources (number of neurons, synaptic resources) limit the
amount of information that can be conveyed by the network on the input, and
this limitation renders the maximization a conceptually interesting problem
and a generally difficult practical task.

Barlow’s proposal was qualitatively different. According to him, it is not
only the preservation of information that matters, but more importantly the
information presentation: the neural code should be easily readable by the
system behind. This imply a compression of information (one should take ad-
vantage of the regularities in the stimuli, coding only what makes each stimulus
unique), and the search for a code where each neuron is coding for features sta-
tistically independent from those coded by the other neurons. These aspects
are subsumed in the notion of "redundancy reduction”, and the optimal code
that achieve redundancy reduction is a factorial code.

It is worth emphazing the differences between these two criteria. Info-
max is a quantitative criterion, based on the measure in bits of the statistical
relationship between the input and the output of the network. Asking for a fac-
torial code is a qualitative requirement, on the statistical relationship between
the output neurons. Departure from factorization is however quantified by a
redundancy cost function (to be minimized) expressed in term of information
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quantities (Barlow 1989, Atick 1992).
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Figure 1: At each time step the environment provides an input S = {Sj,j =
1,..., N} to the network, which itself produces an output V= {Vi,i =1,...,p}. The
mutual information between the two random variables S and V quantifies how much
information the output conveys about the input. The redundancy ¢s a measure of the
statistical dependency between the output activities {V;,i=1,...,p}.

2 The linear-Gaussian case

The most detailed analytical studies have been performed for simple feedfor-
ward linear networks, with Gaussian input distributions, for both the infomax
principle (Linsker 1988, van Hateren 1992) and various implementations of
the redundancy reduction principle (see e.g., Barlow et al 1989, Atick 1992,
Redlich 1993, Li and Atick 1994). Taking account some features specific to
particular visual systems, the results have been applied to the visual system
of the fly (van Hateren 1992) and to mammalian retina (Atick 1992). Some of
these works include a model for the neural code in V1, which takes into account
altogether contrast, color and motion sensitivities, as well as stereo-vision, in
a multiscale representation (Li and Atick 1994). The predictions from these
calculations are in qualitative agreement with known facts on RF of ganglion
and V1 cells, and in some cases in quantitative agreement with contrast sen-
sitivity curves obtained in psychophysical experiments (Atick 1992). One can
note also that these predicted contrast sensitivity curves are qualitatively very
similar to those obtained from a completly different approach, where the retina
is modeled as a linear electric filter, the architecture of it being based on the
detailed knowledge we have on the retina organization (see J. Herault 1997).
From the theoretical point of view, what is striking is the extreme similarity
between the predictions derived from these different criteria: clearly one cannot
claim to have pointed out to a basic organization principle if other criteria lead
to almost identical results! One may think that the similarity in the results
is due to the use of a linear processing onto a Gaussian distribution. In fact,
one can see that, in that case of a linear network with Gaussian inputs, any
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”reasonable” criterion will lead to a principal component analysis, with details
depending on the particular constraints under which optimization is performed.
Still, the linear-Gaussian system remains quite interesting. One can show (Del
Giudice et al, 1995) that the maximization of mutual information, with given
input and output additive noises, leads to the following features:

1. there exists a large family of equivalent solutions (one solution being
characterized by a particular choice of synaptic couplings - or RF -); this
freedom allows for taking into account various constraints if needed;

2. the optimal processing, performed by the network onto the input signal
with any of these solutions, amounts to performing two steps: (1) a
redundancy reduction, finding the m largest principal component (m
depending on the noises levels and on the constraints); (2) a redundancy
increase in order to increase the signal-to-noise ratio in each one of these
m channels, allocating a specific amount of resource to each component
(e.g. several neurons), again according to the noises levels and to the
constraints.

It is interesting to see that one may choose a compact solution with exactly
m output neurons, or distributed solutions with any number (at least equal to
m) of output neurons. This may be relevant for the understanding of the huge
increase in the number of cells from LGN to V1.

3 Infomax for a single nonlinear cell

However, as soon as one takes into account any nonlinear aspect in the pro-
cessing (in particular the saturation of the transfer functions), one readily finds
(Linsker 1988) that the large freedom we had in the choice of the solution dis-
appears. It is thus quite important to understand the role of the nonlinearities.
Furthermore, one may ask for the optimization in the choice of nonlinearities.
On this aspect, a remarckable work, both theoretical and experimental, has
been performed by Laughlin (1981) on contrast coding in the fly visual sys-
tem. Considering a single cell responding to a local contrast (so the input to
the cell is a single scalar), Laughlin derived the optimal transfer function from
an information theoretic point of view, and showed that this prediction com-
pares very well with its experimental measurement of the cell respons curve.
The theoretical result is that, in order to maximize the amount of information
conveyed about the input signal, the cell should perform what is known in im-
age processing as ”sampling equalization”: for a bounded output activity (say
between 0 and 1), the derivative of the transfer function should be equal to
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the probability distribution function (p.d.f.) of the input (here the contrast),
so that every possible output occurs with equal probability (Laughlin 1981).

4 Infomax leads to redundancy reduction

The next step is to consider an array of output neurons, coding for a multidi-
mensional stimulus. It turns out that a very general statement can be derived
for feedforward networks with non linear transfer functions and arbitrary input
(signal) distributions. We have shown (Nadal and Parga 1994) that, in the low
noise limit, the maximization of mutual information between the input and
the output, if performed over both the synaptic efficacies and the choice of the
transfer functions, leads to a factorial code - hence to redundancy reduction
a la Barlow! To be more explicit, consider the simplest feedforward network,
where each output neuron has its activity equal to a (specific) nonlinear trans-
fer function applied to a post-synaptic potential (PSP). This PSP is a linear
superposition of the inputs, the coefficients being the synaptic efficacies. Our
result states that the mutual information will be maximum if: (1) the linear
part of the processing, that is the choice of the synaptic efficacies, is such that
the PSP’s (hence the activities of the output cells) are statistically indepen-
dent; (2) and for each cell the transfer function is chosen according to the
sampling equalization rule.

Interestingly, this result is related to studies in signal processing on blind
source separation (BSS) (which is decorrelation in the time domain, see e.g.
Comon, 1994). In particular, it implies that the mutual information can be
used as a cost function for performing blind source separation (Nadal and Parga
1994). This has been turned into algorithms showing promising performance
on particular BSS applications (Bell and Sejnowski 1995). It has been then
realized that this infomax approach, for that BSS case, is equivalent to a
maximum likelihood approach (Gaeta and Lacoume 1990, Pham et al 1992),
since they both lead to the very same cost function (Cardoso 1997).

Recently, we have also considered feedforward networks with arbitrary
stochastic output activities (Nadal, Brunel and Parga 1997). We have shown
that the result on factorization remains valid in the limit of vanishing input
noise, whenever it is the probability distribution of each output (and not the
activity itself) which depends on a (cell dependent) deterministic function of
the input: the maximization of the mutual information between the input and
the output, over the choice of these deterministic functions, leads to a factorial
code. This is an important extension since it shows that the result applies in
particular in the more realistic case of spiking neurons.

One should emphasis that this factorization, as part of the optimal solu-

5



tion when information maximization is performed, occurs also with any non
linear processing before the output layer. This means that, for any input dis-
tribution being a non linear mixture of independent spatio-temporal signals,
there exists a nonlinear network, with one or more hidden layers, with which
the output will convey as much information as possible by providing a factorial
representation. This representation, although not unique, reflects directly the
statistical structure of the input data. In addition, the infomax cost function,
already tested for the simplest networks (that is for feedforward networks with
no hidden layer, see Bell and Sejnowski 1995), leads to simple unsupervised
backprobagation algorithms for multilayer networks (Nadal and Parga 1997).

5 Conclusion

To conclude, we have shown that, at least in the low input noise limit, max-
imization of information implies factorization. However, understanding the
possible consequences of the infomax principle requires a much better under-
standing of the statistical structure of the signal (in the case of the visual
system, one may ask for the structure at the ”pixel” level, or may be at the
”object” level.

It remains also to understand what subsists when one consider noisy in-
puts. A reasonnable guess is that one will get a result similar to the one
discussed for the linear-Gaussian network: infomax may lead to redundancy
reduction, that is to the factorization of the input signal into its independent
components, together with a redundancy increase in each one of these inde-
pendent channels.

Finally, we stress that, although the infomax principle offers a simple uni-
fying framework for studying sensory coding, it is certainly not the only pos-
sible approach. An interesting alternative approach has been proposed by
Olshausen and Field (1996), who argue that sparseness might be the relevant
quality criterion for the neural code. We note, however, that the requirement
for sparse coding might be considered as a constraint in an infomax approach,
which should be easily taken into account at least in the linear case (as we
have seen, optimal solutions exists with a large number of ouput cells).
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