
From Exemplar Theory to Population Coding and Back.
An Ideal Observer Approach.

Laurent Bonnasse-Gahot†,∗ and Jean-Pierre Nadal†,‡
†Centre d’Analyse et de Mathématique Sociales
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Abstract

Exploiting the analogy between exemplar
models and population coding schemes,
we characterize, by means of information
theoretic tools, the efficiency of a large but
finite population of cells coding for a dis-
crete set of categories (e.g. vowels). The
optimal code is shown to typically allocate
more cells to class boundaries than to re-
gions further apart. We then discuss the
predicted perceptual consequences and re-
view existing exemplar models in the light
of our general results.

Keywords: exemplar models, population cod-
ing, speech perception, information theory, psy-
chophysics.

1 Introduction

Exemplar models (Hintzman, 1986; Nosofsky,
1986) originally stem from the field of psychol-
ogy as general models of perception and catego-
rization. They have subsequently been applied to
speech perception (Lacerda, 1995; Johnson, 1997)
and extended to speech production (Pierrehum-
bert, 2001, 2003). Although a neuroscientific in-
terpretation has sometimes been mentioned (Lac-
erda, 1998), such an approach has never been se-
riously exploited. For instance Kruschke’s model,
“motivated by a molar-level psychological theory”
(Kruschke, 1992), despite a terminology partly
borrowed from neuroscience – e.g. activation, re-
ceptive field –, remains in line with traditional con-
nectionism, as suggested by the use of node in-
stead of neuron or cell.

In this paper, within the framework of speech
perception, we propose to take seriously the
hypothesis that exemplar models can be given a
direct interpretation in term of neural represen-
tation. Taking advantage of a recent literature in
neuroscience, and making use of standard tools
from information theory (see, e.g., Blahut, 1987;
Cover and Thomas, 2006), we show not only that
this neuroscientific approach is plausible but also
that it makes it possible to study in a very general
way the optimal neural coding of categories (e.g.
vowels), independently of any assumptions about
learning or decoding method. This, in turn, will
be shown to have consequences for exemplar
theory.

This paper is organized as follows. Section 2
sums up the main mathematical result derived
in Bonnasse-Gahot and Nadal (2007). In subsec-
tion 2.1, we first give a description of the model
we use, pointing out its links with both exemplar
theory and theoretical neuroscience. We then ex-
hibit in subsection 2.2 the main formula as well as
the following predictions. In section 3 we present
the perceptual interpretation and consequences of
our result. Section 4 considers existing models in
the light of our results, and the last section finally
gives the concluding remarks.

2 Population coding of categories

2.1 Model description
We assume given a discrete set of categories
µ = 1, . . . ,M (such as phonemes, but our results
are applicable to other modalities than speech as
well), with probabilities of occurrences qµ ≥ 0,



so that
∑

µ qµ = 1. Each category defines a
density distribution P (x|µ) over the continuous
stimulus space (see Pierrehumbert, 2003, p. 119).
Along with classical exemplar views, the stimulus
space is assumed to be of finite dimensions, those
dimensions being those relevant to speech per-
ception (e.g. in the case of vowels, the perceptual
dimensions might be the fundamental frequency
F0 and the first formants F1, F2, F3). For the sake
of clarity, we consider here a one dimensional
case : x ∈ R (the general case of x ∈ RK is
presented in Bonnasse-Gahot and Nadal, 2007).

Playing the role of N stored exemplars or N
(Kruschke’s) hidden nodes, we consider a popula-
tion of N neurons. Each neuron i has an activity
specific to a location within the input space, with
a mean response given by its tuning curve fi(x),
centered around a value xi (the preferred stimu-
lus of cell i, which can be considered as the stored
exemplar), and with a width ai. A typical tuning
curve is given by a bell-shaped function, such as

fi(x) = Fi exp

(
−(x− xi)2

2a2
i

)
In a standard exemplar model, one would have a
uniform value ai = a of the width. Here, the
heterogenity in the widths ai allows for local de-
formations of the perceptual space defined by the
output of the neuronal population (we will discuss
this point in section 3).
We assume that the responses of the neurons
(given x) are not correlated, so that the overall ac-
tivity r = {r1, . . . , rN} has a factorized probabil-
ity density function :

P (r|x) =
N∏

i=1

Pi(ri|x)

with thus ∑
ri

Pi(ri|x)ri = fi(x).

For the numerical illustration of our results, we
will consider that, given an input x, the activity
(number of spikes) ri of the ith neuron is gener-
ated according to a Poisson statistics with mean
rate fi(x), that is:

Pi(ri|x) =

(
fi(x)

)ri

ri!
e−fi(x) (2.1)

This Poisson model is taken here for both its math-
ematical simplicity and its biological plausibility
(see e.g., Tolhurst et al., 1983; Softky and Koch,
1993).

Such a coding is a typical instance of population
coding (see e.g., Pouget et al., 2000), a strategy
widely used in the brain that consists in encoding
information by large assemblies of neurons. Two
well-known examples are given by the represen-
tation of movement direction in the primate motor
cortex (Georgopoulos et al., 1986), or by the head-
direction cells in rats (Taube et al., 1990). A par-
ticularly relevant example here is the inferotempo-
ral cortex in the monkey, which has been shown to
be a site for object recognition (see Tanaka, 1996,
for a review) and classification. There, popula-
tion coding is a strategy widely used (e.g. Young
and Yamane, 1992; Vogels, 1999), and has already
be given an exemplar-based interpretation (Logo-
thetis et al., 1995; Sigala and Logothetis, 2002;
Sigala, 2004).
We are interested in quantifying the coding effi-
ciency of such a (neural) representation, and in
characterizing the optimal one. Optimality is de-
fined as minimizing the probability of error of an
ideal observer during a task of classification. We
do not address the question of learning or decod-
ing. We thus do not assume any particular type
of learning process nor any decoding method, so
that our results remain general and can be applied
to any model that shares the same basic assump-
tions (e.g. Nosofsky, 1986; Kruschke, 1992; Lac-
erda, 1995; Johnson, 1997).

2.2 Results

Mutual information. In theoretical neuro-
science, population coding efficiency has been
computed by means of information theoretic
tools, in the case of both continuous and discrete
stimuli (Seung and Sompolinsky, 1993; Brunel
and Nadal, 1998; Kang and Sompolinsky, 2001).
We perform a similar analysis in the present
context of categorical perception.

A relevant quantity is the mutual information
that measures the statistical dependency between
two variables. Here, we want to compute the mu-
tual information between the set of categories and
the neural representation. Maximization of this
quantity (which can be the result of learning or
adaptation) will have the consequence of minimiz-
ing the probability of misclassifying an incoming



stimulus.
The mutual information between the categories

µ and the neural activities r is defined by (Blahut,
1987):

I(µ, r) =
M∑

µ=1

qµ

∫
dNrP (r|µ) log

P (r|µ)
P (r)

(2.2)
where P (r) is the probability density function
(p.d.f.) of r:

P (r) =
M∑

µ=1

qµP (r|µ). (2.3)

This quantity I(µ, r) is positive and, by virtue
of the data-processing theorem (see e.g. Blahut,
1987), it is upper bounded by the information
I(µ, x) conveyed by the sensory input x about
µ. Under mild assumptions one can show that
limN→∞ I(µ, r) = I(µ, x).

Large but finite population. In Bonnasse-
Gahot and Nadal (2007), we show that for finite
but large N the leading correction to this N →∞
limit is given by:

I(µ, x)− I(µ, r) =
1
2

∫
dx p(x)

Fcat(x)
Fcode(x)

(2.4)

where p(x) is the p.d.f. of the stimulus x: p(x) =∑
µ qµP (x|µ),

and Fcode(x) ≥ 0 is the Fisher information char-
acterizing the sensibility of r with respect to small
variations of x (see, e.g., Blahut, 1987):

Fcode(x) = −
∫

dNrP (r|x)
∂2 lnP (r|x)

∂x2

(2.5)
and Fcat(x) ≥ 0 is the Fisher information charac-
terizing the sensibility of µ with respect to small
variations of x:

Fcat(x) = −
M∑

µ=1

P (µ|x)
∂2 lnP (µ|x)

∂x2
(2.6)

which can also be written as

Fcat(x) =
M∑

µ=1

P ′(µ|x)2

P (µ|x)
(2.7)

where P (µ|x) is the probability of having cate-
gory µ knowing the stimulus x (ie the identifica-
tion function), given, according to Bayes’ rule, by

P (µ|x) =
P (x|µ)qµ

p(x)
(2.8)

In (2.7), P ′(µ|x) denotes the derivative of P (µ|x)
with respect to x.

The Fisher information Fcode(x) is specific to
the coding stage x → r: it tells how well the neu-
ral code can discriminate nearby sensory inputs.
The term Fcat(x) =

∑M
µ=1 P ′(µ|x)2/P (µ|x) is

specific of the sensory encoding µ → x and thus
does not depend on the neural code: it tells how
the statistics in the input space are well correlated
or not to the categories.

Main qualitative consequences. Typically, an
identification function P (µ|x) has an S-shape,
whose slope |P ′(µ|x)| is largest near the bound-
aries between categories. This entails that the
quantity Fcat(x) =

∑M
µ=1 P ′(µ|x)2/P (µ|x) is

greater in these regions. If the code is to be op-
timized, we therefore expect, as the number N of
neurons is limited, Fisher information Fcode(x) to
be greater between categories than within (see Eq.
2.4). As a consequence, more cells will be devoted
to these regions of overlap compared to regions
where only one category dominates. This is rem-
iniscent of the Support Vector Machine approach
(Cortes and Vapnik, 1995), a technique very pop-
ular in machine learning, that identifies exemplars
closest to the class boundary as being the most
crucial ones for a given classification task. Be-
sides, this result seem to find support in functional
imagery and neuro-physiology. First, using func-
tional imagery methods, Guenther et al. (2004)
show both for speech and non-speech sounds that
category learning entails neural activity in the au-
ditory cortex to be higher in response to stimuli
close to the boundary (‘non-prototypical’ stimuli)
than in response to prototypical stimuli (that lie
in a more central region of a given category) (see
also Guenther and Bohland, 2002, and section 4).
Second, in the neuro-physiology of the inferotem-
poral cortex of the monkey brain, Freedman and
colleagues found that category learning leads to a
distribution of preferred stimuli mainly peaked at
the class boundary: almost half of all the recorded
neurons have indeed their preferred stimuli located
at the class boundary (Knoblich et al., 2002, Fig.
12).

Numerical Illustration. Figure 1 shows a nu-
merical example involving two categories, whose
distributions are shown in Fig. 1.A, and N =
15 neurons initially equidistributed. The optimal
{xi}N

i=1 and {ai}N
i=1 are obtained by numerically
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Figure 1: One-dimensional example involving two
Gaussian categories. (A) Probability distributions
of the two categories. (B) Optimal tuning curves.
(C) Difference between the Fisher information
F

opt
code for the optimal code, and the Fisher infor-

mation F init
code for a equidistributed distribution of

preferred stimuli.

maximizing (using simulated annealing) the dif-
ference I(µ, r) − I(µ, x) given by equation 2.4.
Fig. 1.B shows the resulting tuning curves. As
expected, Fisher information Fcode(x) (plotted in
Fig. 1.C) is the greatest at the boundary between
the two categories, and more neurons are allocated
in this region compared to regions further apart.
Note also that the tuning curves are sharper near
the boundary, ie the width ai of the corresponding
cells is narrower than the width of cells away from
the boundary. One could see that this width plays

the role of the inverse of the ‘attentional weight’
found in classical exemplar-based models (Nosof-
sky, 1986; Kruschke, 1992). In other words, more
local ‘attention’ is devoted to the class boundary,
further sensitizing the neuronal population to this
region. Note that this is a collective effect, coming
from having both an heterogeneous set of widths
(each cell i having its own ai) and a specific dis-
tribution of preferred stimuli.

3 Towards an explanation of categorical
perception

As previously stated, if the code is optimized,
the Fisher information Fcode(x) is greater at the
boundary between categories than within (Eq.
2.4). The Fisher information Fcode(x) is linked
to the discriminability d′ (from signal detection
theory, and commonly used in psychophysics; see
e.g. Green and Swets, 1988) of two stimuli x and
x + δx according to (Seung and Sompolinsky,
1993) :

d′ = |δx|
√

Fcode(x) (3.9)

Thus, a perceptual consequence of maximizing
mutual information between neural responses
and categories, under the constraint of a fixed
number of cells, is that discriminability d′ will
be greater at the boundary between categories,
a phenomenon traditionally called categorical
perception (Harnad, 1987).
Categorical perception was first described within
the field of speech perception as an innate process
specific to human speech that implied high
discriminability between items from different
(phonemic) categories and zero discriminabil-
ity within a category (Liberman et al., 1957).
This strong version of categorical perception
was subsequently undermined: not only this
phenomenon can be acquired (Abramson and
Lisker, 1970; Francis and Nusbaum, 2002) but it
is also not specific to speech (Goldstone, 1994;
Livingston et al., 1998; Özgen and Davies, 2002)
nor to human (Kuhl and Padden, 1983; Kluender
et al., 1998). Moreover, the all-or-none effect on
discriminability was never found experimentally:
within-category differences are discriminable.
Our result fits well into this framework, for it
can apply to any modality, might be induced by
learning, and does not assume anything specific
to human. Besides, the discriminability within a
category is not zero.



Another way to present the effects induced
by the adaptation of the neural configuration
is in terms of compression/expansion of the
perceptual space defined by the output of the
neuronal population. If discriminability is higher
(respectively lower) after learning than before,
then the perceptual space can be seen as expanded
(resp. contracted). Category learning might
imply different outcomes. For example, using
visual stimuli, Goldstone (1994) found acquired
distinctiveness at the class boundary (increased
between-categories differences), whereas Liv-
ingston et al. (1998) found acquired similarity
(increased within-category similarity). In the
case of the learning of new phonetic categories,
Francis and Nusbaum (2002) reported both com-
pression and expansion of the perceptual space.
Whether category learning induce within-category
compression and/or between-category expansion
might depend on the initial ability of the neuronal
population. In the numerical illustration given by
figure 1, we see that, compared to the equidis-
tributed initial configuration of preferred stimuli,
there is acquired distinctiveness at the boundary
and acquired similarity within categories. Such
a warping of the perceptual space is related to a
phenomenon found in speech perception literature
called the perceptual magnet effect (Kuhl, 1991),
stating that discriminability is lower around
prototypical stimuli than around non-prototypical
ones, even if the corresponding stimuli belong
to the same category. These prototypicality
effects (as well as frequency effects) will be
more extensively studied in a forthcoming paper
(Bonnasse-Gahot and Nadal, in preparation).

An important aspect of our model is that we do
not need category labels so as to find categorical
effects, which might shed light on one of the
most disputed issues on categorical perception.
This question, that finds its roots in the Whorfian
hypothesis stating that our language shapes our
vision of the world (Kay and Kempton, 1984),
paradoxically concerns the very basis of this
phenomenon: is categorical perception really
perceptual ? Views are divided. Some argue
that this phenomenon is not perceptual after all
but only results from the use of verbal labels
(Roberson and Davidoff, 2000), whereas others
maintain that categorization does alter perception
(Goldstone et al., 2001; Notman et al., 2005).

Our view follows the latter. Our result indeed
gives an optimal bound on discriminability, based
on a purely sensory level, and thus gives credit
to a perceptual account for the two phenomena
described above, namely categorical perception
and perceptual magnet effect. Note, however,
that we do not claim that other processes, such as
top-down influences, memory effects, or labeling,
might not intervene in discriminability judgments.

To conclude, our result indicates that categor-
ical perception is not a mere by-product of cate-
gory learning but serves a function, that is to mini-
mize classification errors. This gives a quantitative
theoretical support to the Native Language Neu-
ral Commitment posited by Kuhl (2004) stating
that language experience induces neuronal modi-
fications that aim at enhancing the features rele-
vant for native language but entail difficulties in
the learning of a foreign language (see, e.g., Kuhl
et al., 1992; Iverson et al., 2003).

4 Comparison with existing models

In this section we want to reconsider existing
models in the light of our results. Two main kinds
of models, designed to account for categorical
perception and/or perceptual magnet effect, are
concerned : exemplar-based models (Lacerda,
1998; Goldstone et al., 1996) and neural maps
(Bauer et al., 1996; Guenther and Gjaja, 1996;
Guenther and Bohland, 2002). Note that all
these models share the same basic assumptions
concerning the architecture: a perceptual map is
covered by ‘cells’ or ‘exemplars’ centered around
a preferred stimuli with the responsiveness of
their receptive field decreasing as the incoming
stimulus moves away from the preferred stimulus.
The models differ by how this map is decoded
(e.g. with a specific additional layer), and/or by
the learning algorithm used to build the map. In
our case, we have characterized the coding effi-
ciency of a map (see equation 2.4), independently
of any learning process or decoding method.
Taking as a reference the expected properties
of an optimal code, we can thus compare our
predictions with the empirical results obtained
using specific algorithms.

As we have seen in section 2.2, a direct
consequence of equation 2.4 is that category
centers are represented by fewer cells (neurons,



exemplars) than category boundaries, which in
turn explain why perceptual phenomena such as
categorical perception or the perceptual magnet
effect might arise (section 3). This is in line with
results obtained by Goldstone et al. (1996), Bauer
et al. (1996), Guenther and Bohland (2002) but in
disagreement with models proposed by Guenther
and Gjaja (1996) or Lacerda (1995, 1998). Let us
review these two latter models in more depth.
Interestingly, Guenther and Gjaja (1996) model
is the only one from the above list for which the
learning algorithm is not specifically meant to
solve a categorization task. Following traditional
self-organizing map approach, the learning mech-
anism leads to a situation where the distribution
of preferred stimuli of the coding cells follows the
distribution of stimuli. This actually corresponds
to a situation of density estimation (representing
the distribution of x, instead of coding for the
categories), and should lead to higher discrim-
inability where the distribution of stimuli peaks,
ie at the center of the categories, contrary to a
situation of categorical perception. Guenther
et al. (1999) have experimentally shown that the
same distribution of stimuli can lead to opposite
perceptual outcomes, depending on the training
task (discrimination vs categorization). Guenther
therefore proposed a different version so as to
take into account the need for categorization. This
time, the subsequent model allocates more cells
to the boundary (Guenther and Bohland, 2002;
Guenther et al., 2004), in agreement with our
qualitative predictions.
Let us now turn to Lacerda’s model (Lacerda,
1995, 1998). It basically assumes that every
encountered exemplar is stored, leading again to
more cells around the modes of the distribution of
stimuli, contrary to our result. In order to explain
the perceptual phenomena discussed above, a
discrimination measure involving the category
label of the exemplars is introduced. This runs
counter to the fact that labels might not be used
in a discrimination task, especially in the case
of the magnet effect for which it is assumed
that all items belong to the same category. For
instance, in Iverson and Kuhl (1995), subjects
were conditioned to view all items as belonging
to the same category, which might prevent them
from using category labels, hence working on a
more perceptual basis.

More generally, our result goes counter to the
most common working hypothesis in compu-
tational exemplar models that all encountered
exemplars are stored, leading to a higher density
of cells at the center of a category. It also sheds
light on the “head-filling up problem” (Kruschke,
1992; Johnson, 1997; Pierrehumbert, 2001) that
the more traditional approach has to face, as
the memory is of finite size. It indeed shows
that some exemplars are more informative about
categories than others, and that much compression
can thereby be achieved at the center of a category.

5 Conclusion and Future Works

To sum-up, we first gave a neural interpretation of
exemplar models in terms of population coding
of categories, which makes it possible to address
the question of optimal coding with information
theoretic tools that have been shown to be relevant
in computational neuroscience. We find that the
mutual information between the activity of a neu-
ronal population and a set of discrete categories
is simply given by the average over the input
space of the ratio of the Fisher information of
the categories over the Fisher information of the
neuronal population. As seen in section 2.2, the
category related Fisher information is typically
the greatest at the boundary between categories.
As neural resources are limited, this entails that,
if there is adaptation, the Fisher information
of the neuronal population should also be the
greatest between categories in order to minimize
the probability of misclassifying an incoming
stimulus. As this Fisher information is directly
related to the discriminability, category learning
implies better cross-category discrimination than
within-category discrimination, which gives
an explanation of categorical perception (see
section 3).

As we have seen, we make no assumption on the
learning mechanism nor on the decoding method.
This makes it possible to evaluate existing mod-
els (section 4) and more generally to establish a
groundwork for future work. A possible direction
for future research will now consist in studying
these mechanisms in more depth.

Let us first get into the question of decoding.
Several methods such as population vector or
maximum likelihood have already been proposed



in theoretical neuroscience, so that this point
might not be a technical issue. More interestingly,
one can ask whether decoding is necessary.
Empirical research has indeed shown that cat-
egorical information as well as fine phonetic
details within-categories are used by the listener
(Miller, 1994; McMurray et al., 2002). In that
spirit, our results might give clues on how two
different levels of representation, one continuous
and concrete (stimulus) and one discrete and
abstract (categories), can be combined within the
same neural representation. On the one hand,
thanks to population coding, information about
the stimulus and its detailed properties might be
retrieved, but on the other hand, because of the
neural modifications induced by category learning
(language experience), this neural representation
also contains information about the category the
stimulus belongs to.
Concerning the question of learning, cross-
language studies have demonstrated that infants
of 6 months of age are already tuned to their
native language, as in the case of the perception
of vowels (Kuhl et al., 1992), well before they
can talk or have acquired a lexicon. Moreover,
many experiments have recently shown that both
adult, infant, and animal listeners are able to
extract distributional information from the input
signal (Saffran et al., 1996; Guenther et al., 1999;
Lotto, 2000). Maye et al. (2002) showed not only
that 6 and 8-month old infants are sensitive to
the statistical distribution of the speech sounds
they hear in their environment but also that this
in turn influences their discrimination ability.
These results call for the study of unsupervised
learning that would aim at attaining the ideal state
described by our result. Such a study will have
to face a paradoxical issue given by our result.
More resources have indeed to be allocated to
category boundaries that are typically regions
where exemplars are rarely encountered. As a
consequence, one might ask how information
about the distribution of stimuli might be extracted
from regions of low-frequency ‘traffic’. Beyond
technical issues, this question is particularly
interesting from a developmental perspective.
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