Mécanique quantique – L2

TD 2

Adrien Mahé – Sylvain Nascimbène

http://www.phys.ens.fr/~nascimbene/td/td_index.html

1 Fonctions d'opérateurs

Soit \widehat{A} une observable dont on note λ_{α} les valeurs propres et $|\psi_{\alpha,i}\rangle$ les vecteurs propres. Soit de plus f une fonction du plan complexe dans lui-même. On définit l'application linéaire $f(\widehat{A})$ par

$$f(\widehat{A})|\psi_{\alpha,i}\rangle = f(\lambda_{\alpha})|\psi_{\alpha,i}\rangle$$

- 1. À quelle condition $f(\hat{A})$ est-elle une observable?
- 2. Soit \hat{P}_{α} le projecteur sur le sous-espace propre associé à λ_{α} . Montrer que

$$f(\widehat{A}) = \sum_{\alpha} f(\lambda_{\alpha}) \widehat{P}_{\alpha}$$

3. Montrer que

$$\widehat{P}_{\alpha} = \prod_{\beta \neq \alpha} \frac{\widehat{A} - \lambda_{\beta}}{\lambda_{\alpha} - \lambda_{\beta}}$$

4. Application Soit \hat{R} la matrice définie par

$$\widehat{R} = \left(\begin{array}{cc} 0 & 1\\ 1 & 0 \end{array}\right)$$

Trouver les valeurs propres de \hat{R} . En déduire la matrice de $f(\hat{R}) = \exp(i\theta \hat{R})$. Cet opérateur est-il une observable?

5. A partir de maintenant on suppose que f est développable en série entière, de la forme

$$f(z) = \sum_{n} a_n z^n$$

Montrer que

$$f(\widehat{A}) = \sum_{n} a_n \widehat{A}^n$$

6. Changement de base

Soit \hat{U} un opérateur unitaire, qui représente un changement de base de vecteurs orthogonaux.

Montrer que

$$\widehat{U}^{\dagger} f(\widehat{A}) \widehat{U} = f(\widehat{U}^{\dagger} \widehat{A} \widehat{U})$$

7. Soient \widehat{A} et \widehat{B} deux observables commutant avec $[\widehat{A},\widehat{B}]$. Montrer que

$$[\widehat{A}, f(\widehat{B})] = [\widehat{A}, \widehat{B}]f'(\widehat{B}).$$

Indication : on pourra montrer que pour n entier, on a $[\widehat{A}, \widehat{B}^n] = n\widehat{B}^{n-1}[\widehat{A}, \widehat{B}]$. Application au cas où $[\widehat{A}, \widehat{B}] = i\hbar$.

2 Notion d'opérateur d'évolution

On considère un système quantique évoluant selon un hamiltonien $\widehat{H}(t)$.

- 1. Écrire l'équation de Schrödinger satisfaite par un ket $|\psi(t)\rangle$.
- 2. Soit $|\psi(t_0)\rangle$ l'état du système à un instant t_0 . En utilisant la linéarité de l'équation de Schrödinger, montrer qu'à un instant t quelconque on a une relation du type :

$$|\psi(t)\rangle = \widehat{U}(t, t_0)|\psi(t_0)\rangle,$$

où \widehat{U} est un opérateur linéaire satisfaisant l'équation différentielle :

$$\begin{cases} i\hbar\partial_t \widehat{U} &= \widehat{H}\widehat{U} \\ \widehat{U}(t_0, t_0) &= \text{Id.} \end{cases}$$

 \hat{U} est baptisé opérateur d'évolution du système.

3. Soit $\hat{T} = \hat{U}^{\dagger}\hat{U}$. Montrer que

$$\partial_t \hat{T} = 0.$$

En déduire que \hat{U} est unitaire. À quelle propriété physique ceci est-il rattaché?

4. Soit $\hat{U}'(t,t_0) = \hat{U}(t,t_1)\hat{U}(t_1,t_0)$. Quelle équation différentielle \hat{U}' satisfait-elle? En déduire que :

$$\hat{U}(t, t_0) = \hat{U}(t, t_1)\hat{U}(t_1, t_0),$$

puis que:

$$\widehat{U}(t_1, t_0)^{-1} = \widehat{U}(t_0, t_1).$$

5. Dans le cas où \widehat{H} est indépendant du temps montrer que :

$$\widehat{U}(t, t_0) = e^{-i(t - t_0)\widehat{H}/\hbar}.$$

3 L'effet Zénon quantique

On considère dans cette partie un système préparé à t=0 dans un état $|\psi_0\rangle$ et évoluant selon un hamiltonien \widehat{H}_0 indépendant du temps.

1. Montrer que pour un temps δt suffisamment court, on a :

$$|\psi(\delta t)\rangle = \left(1 - i\delta t \frac{\widehat{H}_0}{\hbar} - \delta t^2 \frac{\widehat{H}_0^2}{2\hbar^2} + O(\delta t^3)\right) |\psi_0\rangle.$$

2. En déduire que la probabilité de trouver le système dans l'état $|\psi_0\rangle$ à l'instant δt s'écrit :

$$P_0(\delta t) = 1 - \frac{\Delta H_0^2}{\hbar^2} \delta t^2 + O(\delta t^3),$$

avec
$$\Delta H_0^2 = \langle \psi_0 | \widehat{H}_0^2 | \psi_0 \rangle - \langle \psi_0 | \widehat{H}_0 | \psi_0 \rangle^2$$
.

- 3. On réalise des mesures sur le système aux instant $t_1, t_2, ..., t_N$, avec $t_{i+1} t_i = \delta t$. Calculer la probabilité $P_0(N, \delta t)$ de trouver à toutes les mesures le système dans l'état $|\psi_0\rangle$. On se placera dans la limite $\delta t \to 0$, $N \to \infty$, avec $N\delta t = T$ fixé.
- 4. Que trouve-t-on dans le cas d'une observation continue du système? En déduire qu'une casserole quantique ne bout pas si on l'observe.

Bibliographie

W. M. Itano, D. J. Heinsen, J. J. Bokkinger, D. J. Wineland, « Quantum Zeno effect », Phys. Rev. A 41 2295 (1990)