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Quantum simulations with ultracold quantum gases
Immanuel Bloch1,2*, Jean Dalibard3 and Sylvain Nascimbène1,3

Ultracold quantum gases offer a unique setting for quantum simulation of interacting many-body systems. The high degree
of controllability, the novel detection possibilities and the extreme physical parameter regimes that can be reached in these
‘artificial solids’ provide an exciting complementary set-up compared with natural condensed-matter systems, much in the
spirit of Feynman’s vision of a quantum simulator. Here we review recent advances in technology and discuss progress in a
number of areas where experimental results have already been obtained.

Calculate or simulate? Predicting the evolution of a multi-
component system is often a challenge that can be solved
either by direct mathematical analysis or by a device that

simulates its behaviour. In many cases the latter approach may
offer a faster solution, better accuracy and/or a more illustrative
representation than possible with available numerical methods. A
celebrated example is the ensemble of astronomical clocks that
were built in Asia and Europe in the period between 1000 and
1500. They were used to predict the position of the planets and the
constellations, the phases of themoon and its eclipses.

The general interest in the simulation of physical phenomena
has been greatly revitalized during the past decade. This renaissance
results from the conjunction of new needs and new tools. The new
needs originate in the increasing role of quantum effects in the states
of matter relevant for modern technology1. The computational
power required to describe an assembly of particles in quantum
physics increases exponentially with the number of its constituents.
The numerical description of a sample of quantum matter is thus
often limited to a small number of constituents, and this may
prevent one from addressing with the desired accuracy important
phenomena such as high-Tc superconductivity.

The new tools have emerged thanks to recent advances in the
control of atomic gases. Here, we will restrict ourselves to the case
of neutral atom assemblies, well suited for the analog simulation
of complex quantum systems. The design of an analog simulator
starts with the proper mapping of the Hamiltonian of the system
to be simulated. This includes both single-particle physics and the
interaction between the constituents. Next, one should prepare the
simulator in a state which is relevant for the physical problem of
interest. This can be a well-identified quantum state (for example,
the ground state) or an equilibrium state at non-zero temperature.
Finally, one must perform measurements on the simulator with
the highest-possible precision.We show that quantum atomic gases
provide a uniqueway to fulfil all the stages of this programme.

We have chosen three topics to illustrate the power of cold-
atom assemblies for implementing analog quantum simulation.
The first one deals with the control of interactions provided by
Feshbach resonances. We focus on the very strongly interacting
regime, where the fluid becomes scale-invariant and its behaviour
is characterized by a few dimensionless coefficients. This gas forms
a simulator for other strongly interacting fluids, a notion that is
validated by comparing the measured coefficients with the results
of state-of-the-art quantum Monte Carlo calculations. The second
topic deals with the control of the energy landscape at the level of the
single-particle Hamiltonian. We choose the paradigmatic example
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of optical lattices to explore quantum phase transitions, such as
the passage from a superfluid to a Mott insulator. Single-atom
control and detection allow one to study the time evolution of
these strongly correlated fluids, a very difficult task for a program
running on a classical computer. The last topic is the control of
the topology in which the quantum fluid evolves. Artificial gauge
fields can be applied to the gas, opening the way to the simulation
of quantum Hall systems and of topological insulators, their time-
reversal-invariant generalization. Artificial fields can reach values
well above those achievable for electrons moving in a real crystal,
thus illustrating another important feature of a simulator: it enables
the exploration of parameter ranges well beyond what is achievable
with the initial system.

Ultracold Fermi gases
We first consider quantum simulation of ultracold Fermi gases
with attractive interactions. These gases constitute a model system
of interacting fermions, whose physical behaviour is very rich2–4.
The phenomenon of Feshbach resonance provides a means to tune
the strength of interactions between atoms over several orders of
magnitude by means of an external magnetic field. This leads to the
possibility of investigating different regimes of superfluidity with a
single physical system. In the case of ultracold gases, interatomic
interactions can be described using a single parameter, the so-called
scattering length a. The other natural length scale to consider in a
Fermi gas is its inverse Fermi momentum k−1F , which is essentially
equal to themean interparticle distance. The physical behaviour of a
Fermi gas is then governed by the ratio 1/(kFa) of these two lengths.

In the case of weakly attractive interactions (1/kFa→−∞),
the superfluid behaviour of the gas can be understood using the
Bardeen–Cooper–Schrieffer (BCS) theory of pairing5. Developed
in the 1950s, this theory has proven extremely successful for the
understanding of conventional superconductors, and constitutes
a starting point for modelling more complex systems. BCS
superfluidity originates from the weak pairing of particles into
Cooper pairs, which are made of two particles of opposite spin
and velocity (Fig. 1a).

In the other limit of interaction strength (1/kFa→+∞), atom
pairs are so strongly bound that one can picture the gas as
an ensemble of molecules of which the internal structure does
not play a crucial role. As these molecules are made of two
fermions, they behave as bosonic particles and form aBose–Einstein
condensate (BEC) at low temperature. It is important to mention
that although the attraction between atoms is very strong, the
molecules themselves are weakly interacting.
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Figure 1 | Equations of state of interacting ultracold Fermi gases.
a, Schematic representation of the BEC–BCS crossover. For weak attractive
interactions, atoms of opposite spin and momentum form Cooper pairs
whose spatial extent greatly exceeds the mean interparticle distance. In the
opposite limit of strongly attractive interactions, the gas is made of tightly
bound molecules forming a BEC. In the middle of the crossover between
the BCS and BEC regimes, the scattering length diverges at the unitary
limit, leading to a strongly correlated state of matter. b, Equation of state of
the ground state of a Fermi gas in the BEC–BCS crossover, expressed as the
pressure normalized by the non-interacting pressure as a function of the
interaction parameter 1/kFa. (For the definition of the Fermi momentum kF,
see ref. 18.) The solid red line is obtained from the fixed-node diffusion
Monte Carlo simulation of ref. 140 and the blue dots are experimental data
from ref. 18. Panel reproduced with permission from ref. 18, © 2010 AAAS.
c, Finite-temperature equation of state of the unitary Fermi gas. The dark
(light) blue dots are the experimental data from ref. 40 (ref. 19) and the red
dots are the bold diagrammatic Monte Carlo data from ref. 41. The grey
area indicates the superfluid phase; the location of the normal/superfluid
phase transition is taken from ref. 19. Panel reproduced with permission
from ref. 19, © 2012 AAAS.

The regime of large scattering lengths (1/kF|a| ∼< 1) interpolates
between these two well-understood behaviours and constitutes the
so-called BEC–BCS crossover. In this regime the gas is strongly
interacting and its theoretical understanding defies standard
many-body techniques. Analytical results for these systems are
relatively rare, limited either to a few particles6,7 or to short-range

correlations for themany-body problem8. As the interaction energy
is comparable to the Fermi energy, there is no small parameter in the
system and standard many-body techniques based on perturbation
expansions cannot be used.

As a first example of a quantum simulation, let us first focus on
the specific case of a Fermi gas with resonant interactions (a=∞),
the so-called ‘unitary limit’. The scattering length being infinite, it
does not appear in the equation of state of the gas; hence at low
temperature one is left with just two energy scales, the chemical
potential µ and the Fermi energy EF. These quantities are then
necessarily proportional, resulting in a simple expression for the
equation of stateµ=ξEF. The quantity ξ is a dimensionless number
that describes the full thermodynamic properties of a unitary Fermi
gas9. It is expected to be independent of the elementary constituents
of the gas, as long as they interact with short-range interactions
described by an infinite scattering length. This universal character
of ξ makes it relevant not only in the cold-atom context but also for
modelling low-density neutron matter in the crust of neutron stars,
despite densities twenty-five orders of magnitude larger than cold-
atom systems10. The measurement of the parameter ξ constitutes a
simple prototype of a quantum simulationwith ultracold atoms.

Taking advantage of the simple form of the universal equation
of state, the parameter ξ was extracted experimentally from various
observables, such as the dynamics of the gas after release from the
trap11–13, the in situ cloud size14,15, the speed of sound16, or direct
measurement of the equation of state17–19. These measurements
agree within 5% on the value ξ ' 0.4. The good precision achieved
in experiments allows one to discriminate between the various
existing theoretical predictions for the parameter ξ .Whereas simple
mean-field theories provide a poor quantitative description of the
unitary gas because of the strong interactions, variational Monte
Carlo methods are in very good agreement with the experimental
results (Fig. 1; refs 20,21).

The quantum simulation of low-temperature Fermi fluids was
also extended to arbitrary values of the scattering length a. The
ground-state equation of state wasmeasured in thewhole BEC–BCS
crossover through a study of collective mode frequencies22,23 and
a measurement of the gas pressure18. Once again these data were
found in good agreement with Monte Carlo simulations. The
quantum simulation was also extended to other observables, such
as the spin susceptibility24,25, and to the case of Fermi gases with
imbalanced spin populations15,18,26–30.

The theoretical understanding of finite-temperature effects is
even more difficult and until recently no consensus was established
for the equation of state31–37. Measurements of the equation of state
in the unitary limit13,19,38–41 thus proved useful in discriminating
between various theoretical approaches. Remarkably, the precision
of several per cent achieved in recent measurements40,41 led to the
validation of the diagrammatic Monte Carlo technique41 (Box 1
and Fig. 1c). Moreover, the high-temperature virial expansion
of the equation of state extracted from these experimental
data could also be compared with to theoretical studies of
strongly interacting few-body systems42–44. Similarly to the case
of liquid 4He, a lambda-shaped feature was observed in the
equation of state at the superfluid transition19, the theoretical
understanding of which requires improvements in the precision of
numerical simulations.

Detailed comparison between experiment and theory remains
to be performed in the whole parameter space of interaction
strength, temperature and spin imbalance. Moreover, new
kinds of Fermi systems are currently being developed, such
as two-component Fermi gases with mass-imbalanced effective
spins and three-component Fermi gases. The first precision
measurements on these systems were recently performed in ref. 45
with spin-imbalanced 40K–6Li mixtures. Qualitatively new physical
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Box 1 | Measuring the equation of state.

One of the defining characteristics of a quantum simulator is the
ability to perform high-precision measurements of key observ-
ables. The combined measurement of several intensive quantities,
such as the gas density n, chemical potential µ and temperature
T , allows one to reconstruct the equation of state n(µ,T ) of the
investigated system.

New techniques have recently been developed to extract with
good precision the equation of state of an ultracold gas from its
in situ density profile. In most cases, the atomic gas is held in a
harmonic trap V generated from a magnetic field curvature or a
focused laser beam. Hence, the gas density profile is non-uniform,
and the atom distribution is determined by the conditions of local
hydrostatic equilibrium

dP =−n dV , dT = 0

The Gibbs–Duhem relation dP = S dT + n dµ leads to the re-
lation dµ = −dV ; that is, the local chemical potential varies
as the trapping potential. A position-resolved measurement of
thermodynamic quantities thus provides, from a single image, the
equation of state for all chemical potential values.

It is not obvious how tomeasure the thermodynamic quantities
n, P , and T from the recorded density profile. Indeed, standard
atom imaging provides a two-dimensional profile of the density
integrated along the line of sight of the probe beam. Reconstruct-
ing the atom density n requires one to invert the integration
process using an Abel transformation19,28,41. Alternatively, the

pressure P can be directly obtained by once again integrating
the atom density along one direction of the two-dimensional
profile18,19,40,141,142 (Fig. B1). Finally, the temperature can be ex-
tracted, either by using an auxiliary ultracold gas whose equation
of state is knownwell and which is at thermal equilibriumwith the
gas of interest40,143, or from the low-density regions of the trapped
gas where interaction effects are weak19,41.
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Figure B1 | Measuring the local pressure inside a trapped gas. The CCD
(charge-coupled device) camera signal corresponds to the atom density
integrated along the line of sight x. An further integration along y provides
a one-dimensional profile, which is proportional to the local gas pressure
P(z) inside the gas along the z axis.

behaviours are expected to occur with these systems, making this
branch of quantum simulation an exciting direction of research
over the coming years.

Optical lattices
In a typical condensed-matter system, electrons can be modelled as
moving on a lattice generated by the periodic array of atom cores.
Such a general setting can be simulated with ultracold atoms using
the concept of an ‘optical lattice’46. Here, the periodic potential
through which the particles move is generated externally by making
use of the interference pattern of overlapping laser beams. The
alternating bright and dark regions of such an interference pattern
are experienced by the atoms as a periodic potential through the
optical dipole force. For large-enough detunings from an atomic
transition frequency, such optical light fields can be considered to
be purely conservative and defect-free potentials. By superimposing
laser fields at various angles, any lattice geometry that can be
conceived by Fourier synthesis can thereby be realized in the
experiments47. So far, experiments have mainly focused on simple
cubic-type lattices, which can be generated by superimposing three
independent standing waves48. However, recently, also superlattice
structures49,50, triangular51, hexagonal51,52 and Kagomé53 lattices
have been realized. The band-structure and topology of these
lattices can be tuned in situ, for example, by simply changing
the intensity, frequency or phase of the superimposed laser fields.
One of the latest examples of this type of tunability includes the
controlled movement and merging of Dirac cones on a hexagonal
lattice52. This unique degree of optical control of the lattice structure
also allows one to time-modulate the lattice potentials in space.
The resulting time-averaged effective tunnel couplings can be tuned
by the modulation strength and frequency54,55 and have enabled
the experimental control of the magnitude and sign of the tunnel
coupling between lattice sites56,57.

Things become even more interesting when interactions come
into play. As neutral atoms typically only experience short-
ranged collisional interactions, these can be efficiently described
as on-site interactions. Only when two or more particles meet
on a lattice site do they take note of the interaction induced
by the collisional partner. The Hamiltonian of such interacting
ultracold atoms on a lattice is given by the Hubbard model,
which serves as one of the most prominent models for a solid
in condensed-matter physics46,58–61. In this model, the hopping
between neighbouring sites is characterized by a tunnel coupling
J and an on-site interaction energy U . For the case of bosons and
repulsive interactions (U > 0) the system undergoes a quantum
phase transition from a superfluid to a Mott insulator as the ratio
of interaction to kinetic energy U/J is tuned above a critical
interaction strength62–64. This can be best understood by noting
that, in the strongly interacting regime, density fluctuations become
energetically costly and are therefore suppressed. In the extreme,
so-called ‘atomic limit’, where the kinetic energy vanishes, the
ground state of the system corresponds to a lattice gas with integer
filling per lattice site. How can this ratio be tuned in experiments?
As mentioned in the previous section, Feshbach resonances65 allow
one to tune the scattering length of the atoms directly and thereby
tune the on-sitematrix elementU (ref. 66). Another route to strong
interactions is to quench the kinetic energy of the atoms J→ 0 by
increasing the optical-lattice depth64. Both methods have been used
in experiments to drive the system into aMott insulating regime.

For an equal mixture of spin-1/2 fermions, density fluctuations
become suppressed in a similar way, owing to the strong
interactions between the particles, and a fermionic Mott insulator
is formed67,68. In this strong interaction regime (U/J � 1),
superexchange processes provide the basic mechanism for an
antiferromagnetic coupling between spins on neighbouring lattice
sites69,70. However, so far the overall entropies achieved in
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Box 2 | High-resolution imaging.

High-resolution fluorescence imaging has opened a new av-
enue for the investigation of ultracold quantum gases. How is
an atomic-resolution image taken in the experiment? Imagine
having prepared a many-body quantum phase in an optical
lattice. To observe the atoms in this phase, near-resonant light
is turned on, such that the atoms start fluorescing. As shown in
Fig. B2a, the laser-induced fluorescence is captured by a high-
resolution microscope objective and imaged onto a low-noise
CCD (charge-coupled device) camera. To achieve a good signal-
to-noise ratio — such that a single atom can be clearly discerned
from the background — a few thousand scattered photons per
atom must be detected on the camera. To achieve such high
scattering rates and simultaneously preserve the position of the
atom during imaging, the depth of the optical lattice is increased
during the imaging process by a factor of ×100, so that the
atoms remain confined to their original lattice sites. Laser cooling

during the imaging process helps keep the temperature of the
atoms well below the lattice depth. One can thereby avoid thermal
hopping of the atoms, a process which would hinder the faithful
reconstruction of the initial spatial atom distribution.

Detecting individual atoms with an optical resolution higher
than the lattice spacing amounts to a projective measurement of
the local occupation n̂i of different lattice sites. Such a projective
measurement begins as soon as the first photons are scattered from
the atoms. In the experiments, a further complication arises: if
two atoms are confined to within an optical wavelength λ of an
optical transition and near-resonant light of this wavelength is
shone onto the atoms, both atoms are rapidly expelled from the
trap, owing to light-induced collisions144. As shown in Fig. B2b,
because atoms are only lost pairwise in such a process, the
imaged occupation reflects the parity of the lattice occupation
ŝi= n̂i mod 2.
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Figure B2 | High-resolution imaging of ultracold atoms in an optical lattice. a, A high-resolution microscope images the laser-induced fluorescence
of atoms trapped in a single plane of an optical lattice. Panel reproduced from ref. 80. b, As a result of light-induced losses, atoms trapped in the
same well are lost in pairs, resulting in a parity detection of the atomic on-site occupancy.

experiments have not been low enough to observe such a many-
body quantumantiferromagnet that could form the basis for studies
related to high-Tc superconductivity within the Hubbard model58.
The higher spin entropy capacity of alkaline earth atoms, with their
N multiple internal spin states and SU (N ) symmetric interactions,
could facilitate the production of magnetically ordered phases71.
At the same time, such experiments could provide insight into the
nature of the magnetic ordering in these unconventional high-spin
states72, which remains a challenging problem for theory73. In the
large-N limit, these systems are expected to form a chiral spin
liquid with topological order and Abelian fractional statistics74.
Irrespective of the atomic species, one of themajor challenges in the
field is to devise novel cooling (or better entropy-removal) schemes.
In addition, a thorough understanding of technically induced
heating rates is needed75. Fortunately, a dramatic development on
the detection and manipulation side of ultracold quantum gases
might just hold the answer to howboth goals can be achieved.

During the past two years, a new way to image ultracold
quantum gases in situ and with highest optical resolution has
been established which holds the promise to revolutionize the
field of quantum simulations with ultracold atoms. In previous
experiments, one mainly used time-of-flight images after releasing

the quantum gases from the trapping potential. This provided
insight into the momentum distribution and coherence properties
of the many-body phases in the lattice46. Now, high-resolution
absorption76,77, fluorescence78–80 and electron microscope-based
images81 of the trapped density distribution of a quantum gas have
become available to experimentalists. As an example, we discuss
in more detail the case of high-resolution fluorescence imaging
(Box 2). Such images have provided access to single-atom resolved
distributions of particles on a lattice79,80. Taking a snapshot of
the quantum gas amounts to a projective measurement of the
many-body quantum system onto the parity of the local occupation
number ŝi = n̂i mod 2 (Box 2). Examples of such a measurement
of a BEC and atomic-limit Mott insulators are shown in Fig. 2.
One of the amazing aspects of this imaging technique is that it not
only allows us to capture the average particle-number distribution,
but also to reveal complex spatial correlations between the particles
by analysing as a set of single snapshots of the quantum gas.
One can thereby gain access to thermal and quantum fluctuations
of the system at the level of single excitations, enabling, for
example, thermometry in the lattice down to the 50 pK level80.
Furthermore, complex non-local quantum correlations and hidden
order parameters can be measured in this way. A recent example is
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Figure 2 | Single-atom resolved images of a BEC and Mott insulators. a, A weakly interacting BEC. b,c, Strongly interacting Mott insulators in the atomic
limit. The top row shows the raw-data fluorescence images. For higher atom numbers (c) a shell structure develops with a doubly occupied core in the
centre. Owing to light-induced losses, the parity of the occupation number is detected in experiments (Box 2). The bottom row shows the results of an
image-analysis algorithm through which the particle positions were reconstructed. Figure reproduced from ref. 80.

the observation of string order in one-dimensional Bose gases82,83.
By introducing longer-ranged interactions using Rydberg atoms84,85
or polar molecules86 one could thus hope to realize and detect novel
topological quantum phases, such as a Haldane insulator in one
dimension82,87, which exhibits a hidden antiferromagnetic ordering.

The high-resolution optics employed to image the quantum
gases can also be used for single-site-resolved spin control. Here,
a laser beam is focussed through the objective onto the atoms
and microwaves are used to coherently flip the spin of a single
atom at a predetermined lattice site88. Almost any possible spin
structure can thereby be prepared in the lattice (Fig. 3). In the
near future it is conceivable that arbitrary potential landscapes
and spin patterns will be created by projecting highly structured
light fields onto the atoms using spatial light modulators. These
might, in fact, be the enabling step required for a novel cooling
approach, where high-entropy regions are addressed and removed
or separated by potential barriers from a low-entropy core89,90.
A first step in this respect was recently achieved by making
use of an orbital interaction-blockade effect to remove entropy
from the gas91,92.

Another possibility to realize quantum magnetism with cold
atoms is to abandon superexchange interactions completely, thus
avoiding their lower energy scales, and work in a pseudo-spin
model, where spin components are implemented as different
occupations of lattice sites. In this way, for example, it was
possible to expose a unit-filling Mott insulator to a strong
field. At field strengths where the energy difference between
lattice sites matches the on-site interaction energy, atoms can
start to resonantly tunnel to neighbouring wells. However, the
tunnelling of one atom to the next well sets a constraint on how
the next neighbour atom can tunnel, which can be effectively

described by an antiferromagnetic Ising type interaction93. Using
this mapping, the quantum Ising model was recently simulated and
the resulting antiferromagnetic order in a one-dimensional chain
directly observed94,95 (Fig. 4). Extensions of this approach to higher
dimensions could lead to the generation of exotic quantum-liquid
states with no broken symmetry96.

Artificial gauge fields
We now turn to our last example, starting with the following
question: can one use atomic gases to simulate charged quantum
many-body systems, such as an electron fluid in an external
magnetic field? This looks, at first, to be demanding too much: as
orbital magnetism is absent for neutral particles, the simulation of
phenomena such as the quantum Hall effect seems to be out of
reach. However, this apparent impossibility can be circumvented.
For these gases, theoretical tools have been designed to emulate any
coupling between matter and gauge potentials, and one emerging
goal is now to address problems in quantum field theory.

Connecting cold atomic gases to quantumHall physics has been
the driving force in this emergent subject97. At the basis of the
quantum Hall effect, one finds the very specific structure of the
energy levels of a single electron confined in a plane in the presence
of a large transverse magnetic field98. These levels form flat bands
(Landau levels) with a macroscopic degeneracy and a non-trivial
topology, with both these ingredients playing a crucial role. The
flatness of the single-particle energy bands enhances the role of
interactions, which are thus determinant for the structure of the
many-body ground state in the case of fractional quantum Hall
effect99. The band topology is characterized by a non-zero Chern
index, which entails the quantization of the Hall conductance and
the existence of edge states100.
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Figure 3 | Coherent control of single spins in an optical lattice. a, By focussing an addressing laser onto single atoms, the energy splitting between two
spin states can be controlled. A microwave source, resonant only with this shifted transition frequency, allows single-site-resolved spin control. b,c, By
moving the addressing beam to different lattice sites, arbitrary spin patterns at the single-spin level can be prepared. Figure reproduced from ref. 88.
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Figure 4 | Realization of a quantum Ising model using a one-dimensional Mott insulator in a strong potential gradient. When exposing a unit-filling Mott
insulator to a potential gradient, neighbouring lattice sites are shifted in energy by1. For1<U, the Mott insulator corresponds to a paramagnetic phase
(a), whereas for1>U an antiferromagnetic phase is formed as the ground state of the system (c). A transition between both states occurs around
1≈U (b). The occupation of neighbouring sites represent pseudo-spins of the system (d). Lower row: direct single-site and single-atom resolved images
of the transition from a paramagnetic to an antiferromagnetic phase. Panel reproduced from ref. 94.

Conceptually, the simplest way to obtain a Landau-like
single-particle spectrum is to consider a bulk (continuous) gas
confined in an isotropic 2D harmonic well, and rotate it at a
frequency close to the trapping frequency. For superfluid atomic
gases in themean-field regime, this technique has already been used
to study vortex physics101,102. In the context of quantum simulation,
one must achieve a quasi-exact balance between trapping and
centrifugal forces. This provides the required massive degeneracy
of the single-particle ground state, with the remaining Coriolis force
taking the role of the Lorentz force on a charge. The Hamiltonian
of the atom gas is then formally identical to that of the electron
fluid of the quantumHall effect and one expects the ground state of
the many-body system to be strongly correlated97. Experimentally,
this route is well-adapted to small samples, say up to ten atoms,

for which the balance between trapping and centrifugal forces
can be performed with the required accuracy. The comparison
with exact diagonalization methods, which can be performed for
up to 10–15 particles, will be essential to validate the concept of
quantum simulation in this framework. It could be performed
for any density-correlation function that will be accessible using a
detection schemewith single atom resolution (Box 2).

Cooling a rotating gas to a very low temperature is only one of
the possible paths that have been proposed to reach a quantum
Hall-like ground state. For a rotating fluid, one can also use a
selective-dissipation process, such as atom loss due to three-body
recombination, to favour some strongly correlated states103. Still
another option is to smoothly vary an external parameter of the
rotating system and rely on the fact that the system remains in
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Box 3 | Implementing an artificial gauge field on a square optical lattice.

How can we realize a non-zero flux through the cells of a
two-dimensional square optical lattice117,145? We consider, for
simplicity, ‘two-level atoms’ with ground and excited states g and
e, and we assume that both states are infinitely long-lived, that is,
we neglect spontaneous emission processes. This approximation
is an excellent one when dealing with alkaline-earth species or
ytterbium atoms, which indeed possess in their spectrum excited
states whose radiative lifetime exceeds the typical duration of
a cold-gas experiment (∼1 s). For the alkali-metal species that
are more commonly used in experiments, the scheme can be
transposed to two sublevels of the electronic ground-state, using
optical Raman transitions117.

The starting point of the implementation of the gauge field is
the design of a state-dependent lattice potential (Fig. B3). Using
laser standing waves with well-chosen frequencies, one can design
the optical dipole potential such that the atom is trapped around
the points r(g )2n,m= ndxex+mdyey if it is in the internal state g , and
r(e)2n+1,m= (n+1/2)dxex+mdyey if it is in state e. This is achieved by
tuning the laser creating the standing waves along the y and x axes
to the so-called magic and anti-magic wavelengths, respectively.
The magic wavelength (760 nm for Yb) is such that the optical
dipole potential is the same for an atom in both states g and e,
whereas these potentials are opposite for a laser tuned to the anti-
magic wavelength (1,120 nm for Yb). The laser intensities are cho-
sen such that the lattice operates in the tight-binding regime.More
precisely, we suppose that the lattice periods dx and dy , which can
be varied by changing the angles of the laser beams with respect to
the z axis, are such that: the atommoves on the lattice along the y
direction [rn,m→ rn,m±1 ] by standard tunnelling between adjacent
sites; and themotion along x is frozen because of the large distance
dx between wells corresponding to the same internal state.

Suppose now that an additional laser beam, resonant with the
g–e transition, propagates along the y axis. It is assumed to be a
plane running wave e iφ with phase φ = ky . The atom initially in
state g at position r(g )2n,m can jump to state e at position r(e)2n±1,m by
absorbing a photon from this ‘coupling laser’ beam. On doing so,
the phase of the laser at this location, φ = kmdy , is added to the
phase of the atomic wavefunction (or subtracted in the reverse
process where the atom jumps from e to g by stimulated emission
of a photon). Consider, for example, the loop around the unit cell
represented in Fig. B3:

g ,r(g )2n,m
e ikmdy

−→ e,r(e)2n+1,m
1
−→ e,r(e)2n+1,m−1

e−ik(m−1)dy
−→ g ,r(g )2n,m−1

1
−→ g ,r(g )2n,m

where we indicate above each arrow the phase gained by the atom.
After travelling clockwise around this closed loop, we end up with
a global phase change φcell = kdy . The situation is then similar to
that of an electron moving on a square lattice, with a transverse
magnetic field such that B= h̄φcell/edxdy . In the present case the
wavenumber of the coupling laser k is of the order of 2π/dy and
it can be fine-tuned by varying the angle of the coupling beam
with respect to the z axis. The phase through the unit cell can
therefore be adjusted to any value between 0 and 2π , allowing
one to simulate arbitrarily large magnetic fields. Indeed, in this

tight-binding model, two phases differing by an integer multiple
of 2π lead to the same physical properties.

There is still one step left towards the simulation of orbital
magnetism of electrons on a square lattice. The scheme which
we outlined above actually leads to a staggered flux, with a phase
alternating between+kdy and−kdy from one column to the next.
Indeed, if we consider the cell next to that of Fig. B3 and also travel
clockwise around this cell, we find:

g ,r(g )2n,m
1
−→ g ,r(g )2n,m−1

e ik(m−1)dy
−→ e,r(e)2n−1,m−1

1
−→ e,r(e)2n−1,m

e−ikmdy

−→ g ,r(g )2n,m

corresponding to the global phase change −kdy . The staggered
geometry is, of course, interesting in its own right146,147 and
corresponds to the implementation reported in ref. 124. However,
the simulation of a uniform magnetic field with the same flux
on each cell requires rectifying this effective field. The procedure
for this is quite challenging in its practical implementation, but
relatively simple in its principle117,145. One needs to send at least
two coupling laser beams propagating in opposite directions along
the y axis, with phases φ=±ky . Using for instance the additional
potential created by a superlattice of period 2 dx , one lifts the
degeneracy between the two transitions g ,r(g )2n,m→ e,r(e)2n±1,m. One
of these transitions is resonant with the laser beam with φ = ky ,
and the other with the beam with φ =−ky . In this way, the flux
is the same on each cell (φcell= kdy), corresponding exactly to the
model introduced in the seminal work of Hofstadter122.

m + 1

m ¬ 1

m

x/dx

cellφ

n ¬ 1/2 n n + 1/2 n + 1

y/dy

Figure B3 | Simulation of orbital magnetism with neutral atoms on a
square optical lattice. The atoms are treated as two-level systems, with
two internal states g and e. The lattice potential is state-dependent, with
minima on the grey (or black) spots for an atom in state g (or e). Standard
tunnelling allows the atom to move along the y axis. Motion along the x
axis is possible by means of laser-assisted jumps, where the atom
absorbs or emits a photon of a coupling laser propagating along y. In an
absorption (or stimulated emission) process, the phase of the coupling
laser is added to (or subtracted from) the phase of the atomic wave
function. This leads to a non-zero phase φcell when the atom travels over
the closed loop around the elementary cell of the lattice.

its ground state during the evolution; for example, deforming the
trapping potential from a Mexican-hat shape into harmonic may
provide a robust way to reach some emblematic states of fractional
quantumHall physics, such as the Laughlinwavefunction104.

Atom–light interaction provides alternative routes to rotations
for the simulation of orbital magnetism. One of them is directly
inspired by the geometric Berry’s phase105, which appears when a

quantum particle with several internal states evolves slowly enough
to follow adiabatically one of these states106–109. Consider, for
example, a two-level atom with ground (g ) and excited (e) states
that are coupled by a laser beam. If the phase and the intensity
of the laser beam are spatially varying quantities, the eigenstates
of the atom–light interaction (the so-called dressed states) are
linear combinations of g and e that also vary in space. One can
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tailor their space dependence and adjust the corresponding Berry’s
phase to mimic the Aharonov–Bohm phase acquired by a charged
particle in a magnetic field. This method has recently led to the
observation of vortices in a gas in the mean-field regime110 and
was subsequently extended to generate a spin–orbit coupling111, a
first step towards the simulation of a topological insulator and/or
superconductor112,113 with cold gases114–116.

Atom–laser interactions are alsowell-suited for implementing an
artificial gauge field in an optical lattice117–120. Consider, for exam-
ple, a two-level atom moving on a two-dimensional square lattice
which is state-dependent; that is, the energy minima are located on
the columns with even (or odd) indices if the atom is in state g (or
e). By using laser beams to drive the g–e transition, one can induce
laser-assisted hopping between the odd and even sublattices121. By
writing the appropriate phases on these laser beams (Box 3), one can
reach a situation where a non-zero phase is accumulated by an atom
when it travels on a closed contour encircling an elementary cell of
the lattice117. This phase simulates a magnetic flux through the cell.
It can take, in practice, any value between 0 and 2π , corresponding
to arbitrarily large strengths of the effectivemagnetic field.

When the flux is the same through each plaquette of the lattice,
the single particle spectrum is predicted to have a remarkable fractal
structure, known as the Hofstadter butterfly122. Evidencing this
structure with cold atoms would be an important achievement.
Indeed, with real electrons on an Ångström-period lattice, the
achievable fluxes per cell are too low to observe the main features
of the butterfly, and its experimental observations so far have
been obtained with larger systems, such as superconducting regular
networks123. Very recently, a first step towards this goal was
achieved in the cold-atom context, with the realization of a
staggered flux which changes sign from one lattice cell to the
next124. Another promising recent development is the notion of
flux lattices125,126. There, one looks for a periodic configuration
of laser light that leads to a single-particle spectrum as close as
possible to the Landau spectrum, with a quasi-flat lowest band
characterized by a non-zero Chern index. In contrast to the schemes
aiming at observing the Hofstadter butterfly and operating in the
tight-binding regime, flux lattices work in the weak-binding regime
and require only low light intensity, thus reducing the spurious
heating effect of photon scattering by the atomic gas.

Both bulk and lattices geometries can be used to implement
richer gauge fields, including non-Abelian ones127,128: cold atom
gases thus have the possibility to emulate not only electromag-
netism, with quantum Hall-type phenomena, but also the more
complex gauge fields which appear in high-energy physics. To
simulate a non-Abelian gauge field, one can use a configuration
where several dressed states form a degenerate manifold at every
point in space. When the atom prepared in a state of this manifold
slowly moves along a closed trajectory, its final state belongs to the
manifold, but may differ from the initial state. The motional effect
is thus not described by a simple Aharonov–Bohm phase, but by a
matrix acting inside the manifold; two different closed paths may
lead to non-commuting matrices, hence the non-Abelian structure
of the gauge field129,130.

In the perspective of quantum simulation, an important
extension of these ideas is the realization of an artificial dynamical
gauge field whose temporal evolution is coupled to the gas. To
realize such a scheme one can think of replacing the beams causing
laser-assisted hopping between adjacent sites of a lattice by the
quantized modes of an optical cavity. The flux through a given cell
of the lattice then becomes a quantum-dynamical variable related to
the degrees of freedom of the cavity mode. This scheme can provide
proof-of-principle experiments with one or a few plaquettes, but it
is probably challenging to scale it to large systems, as the number of
required cavities grows as the number of plaquettes. A second route

is based on the coupling of the gas with other material particles131.
One can consider a scheme where one species of particles (A)
moves on the vertices of a lattice, while another species of particles
(B), with its own degrees of freedom, is located on the lattice
edges and controls the tunnelling matrix elements of the particles
of species A. With such a device at hand, one would be able to
perform analog quantum simulation of lattice gauge theories, a very
challenging task indeed.

In this review article we have presented a few topics that
illustrate the range of possibilities offered by cold atomic gases in
terms of quantum simulation, from engineering the single-particle
Hamiltonian to controlling interactions, in association with the
ability to resolve and address single atoms in an optical lattice.
Of course, these topics do not cover all the perspectives opened
by systems based on atomic gases. Among other topics that are
currently intensively studied, one should mention (1) the effect
of controlled disorder, in connection with Anderson localization
and spin glasses132–135, (2) controlled long-range interactions with
Rydberg atoms84,85 or polar molecules86 in an optical lattice, which
could form the basis an a priori scalable quantum computer,
and (3) controlled few-body collisions, which has recently led
to novel insights into the quantum few-body problem136. In all
cases the unprecedented precision in the control of cold atomic
and molecular gases is the key to obtaining insights into some
fundamental, still-pending questions on quantum matter. We
conclude by mentioning just one of these questions: calculating
exactly the time evolution of a strongly correlated system just after
a quench, for example, is a notoriously difficult (and in many cases
still intractable) task for numerical simulations137. Experiments
with atomic gases may play a key role in addressing this problem
and offer a unique chance of identifying as yet unknown universal
regimes in many-body dynamics138,139.
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