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The dc and ac response of the ideal type-II superconductor in the mixed state is analyzed in the frame of a
continuum electrodynamics, in which all fields are averaged on a scale exceeding the intervortex distance. The
results of previous calculations are brought together and compared, while paying special attention to the role of
the vortex line tension and the normal current. The electromagnetic response is studied in the whole range of
magnetic fields and frequencies. The possible effect of the normal current on vortex motion is discussed. We
argue in this respect that existing theories, where the Lorentz force involves the normal current, are not
consistent with Onsager relations. Due to vortex line tension the external fields penetrate into a superconductor
as a superposition of two modes with different complex wave numbers~the two-mode electrodynamics!.
Obtained expressions for the surface impedance should permit one to determine the parameters of the theory
from the experiment and to discriminate different models of vortex motion.@S0163-1829~96!02134-0#

I. INTRODUCTION

Observation of the dc and ac responses of superconduct-
ors to the external electromagnetic fields is a powerful
method of their experimental investigation. Therefore, a lot
of work has been done to analyze and calculate this
response.1–9 This analysis can be done within the frame of
the continuum approach which deals with the macroscopic
fields averaged on a large scale compared with the vortex
line ~VL ! spacinga. However, there is a problem to write
equations of continuum electrodynamics properly, i.e., not to
forget some relevant terms or forces.

In principle, one can derive these equations on averaging
from a more basic theory for smaller scales, like the London
or Ginzburg-Landau~GL! theories. This yields not only the
structure of equations, but also the magnitudes of all param-
eters which enter the continuum theory. However, in this
case, one is restricted to some simple situations or vortex
configurations, which are not always adequate to the variety
of experimental objects. The second way is to derive the
continuum electrodynamics from the general conservation
laws and symmetry arguments. This method has been suc-
cessfully exploited for derivation of continuum hydrodynam-
ics of rotating He II~a counterpart of the continuum electro-
dynamics for neutral superfluids!.10 For superconductors
such a theory has been initiated by Abrikosov, Kemoklidze,
and Khalatnikov11 and later developed in an essentially more
general form by Mathieu and Simon~MS!.12,13

First works on the a.c. response3,4 usually neglected nor-
mal currents and the VL tension. Neglecting line tension
amounts to only retaining that part,B2/2m0, of the elastic
energy which is associated with the macroscopic average
field BW . The theory was reduced to that for the normal non-
magnetic conductor, but with the flux-flow resistivityr f . For
the first time, the VL tension has been taken into account

properly in the ac response calculation in Ref. 9. The most
important outcome of this work was that the external elec-
tromagnetic field penetrates the superconductor in the form
of the superposition of two modes~two-mode electrodynam-
ics!: one has a long penetration depth equal to the skin depth
determined byr f and is common for any conductor. The
second mode is related to the vortex line degree of freedom
and penetrates to a much shorter distance slightly more than
the intervortex spacing. Earlier this distance, which we shall
call the vortex lengthlV , appeared in the vortex dynamics
for rotating superfluids14,15 and for superconductors in Ref.
12. It was shown that the second mode is crucial for incor-
porating the surface pinning into the theory. However, the
normal currents have been neglected in Ref. 9, that restricts
validity of the theory to low magnetic fields.

The normal currents have been taken into account by Cof-
fey and Clem~CC!.7,8 They included also vortex bulk pin-
ning and creep into their theory, but neglected the VL ten-
sion assuming that the latter would yield only small
correction to magnetization. In order to introduce the normal
currents into the theory, one should decide if there is any
force of the normal currentJWn on a vortex. CC assumed that
this force was like that of the supercurrentJW s , so that they
wrote the Lorentz force with the total currentJW5JW s1JWn .
However, as will be shown in the present paper, the intro-
duction of any force from the normal current on a vortex
implies that there is also a reciprocal force driving the nor-
mal current. The latter is required by Onsager symmetry.
This force was ignored by CC. Thus the effect of the normal
currents also needs to be revised.

This paper has two objects:~i! to extend the continuum-
electrodynamics theory of the linear response in the mixed
state over the whole field range~from 0 toBc2), by introduc-
ing a normal componentJWn and retaining line tension effects;
~ii ! to bring out and discuss the common features and dis-
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crepancies in the basic equations for vortex motion given by
different authors, which lead to different dispersion equa-
tions.

Moreover it will be instructive to discuss the role and the
place of the vortex elasticity in continuum electrodynamics.
A widely used approach is to present the electrodynamical
equations in terms of the only vortex displacementsuW (rW,t);
following Brandt16 this compels to introduce nonlocal
k-dependent elastic moduli. In a sense this procedure is
against the spirit of the elasticity theory which is supposed to
be alocal theory presented in terms of differential equations
only. Furthermore, as will be shown below, when normal
currents are involved, the nonlocal moduli should depend not
only on wave number, but also on frequency, i.e., they are
nonlocal in space and time. But it is possible to connect
elastic moduli only with the vortex line energy, while treat-
ing the energy of the macroscopic magnetic field and the
transport currents separately. This leads tok-independent
elastic moduli as introduced in Ref. 9. This procedure is
analogous to what is usually done with the long-range Cou-
lomb interaction in the elasticity theory of atomic crystals.
One introduces the electrical mean field and the correspond-
ing electrostatic energy which depends on the atomic dis-
placements over the whole crystal. After that, the additional
deformation energy may be given in terms of local elastic
moduli. In fact, the local elastic moduli were already in-
volved in the general phenomenological theory of MS, but in
different terms and notations.

In the MS theory, the local vortex structure is described
by the vectorvW 5nw0nW gathering the flux quantumw0, the
vortex densityn ~the vortex number per unit area in a plane
normal to vortices or, in other terms, the length of VL per
unit volume!, and the directionnW of the vortex lines; simi-
larly, in the Bekarevich-Khalatnikov~BK! theory of the He
II, vW 5nknW wherek is the quantum of circulation.10 By us-
ing the only parametervW to describe the vortex lattice, dif-
ferences in free energy between different lattices of same
density ~triangular or square for example! are deliberately
ignored in the BK and MS theories. Thus the shear rigidity
given by the minute shear modulusC66 is ignored.

17 Other-
wise, the MS equations account for all elastic effects associ-
ated with line-tension and compression of vortices.

In most of this paper we shall restrict our discussion to
isotropic materials and perfect homogeneous samples, free
from all surface or volume defects. In particular, this means
that the sample surface is assumed to be ideally smooth.
Indeed, the basic problems of vortex dynamics discussed in
the present paper are independent of pinning problems, and it
is worth first considering the behavior of an ideal sample.
However, there is no doubt that defects play a dominant role
in determining the ac response of an actual sample, and the
main purpose of the CC theory, in this respect, was precisely
to include pinning effects in the vortex equations of motion.
Therefore these effects are discussed in the present paper
also, with the emphasis on the surface pinning which can be
incorporated into the theory only in the two-mode electrody-
namics.

To be more explicit in our predictions, we shall refer to
the followingstandard conditions: in the usual geometry of a
slab~or an half-space! in normal applied fieldBW (0,0,B), we

shall consider~steady or oscillatory! one-dimensionnal vor-
tex motions (]/]x5]/]y50). Furthermore, we assume low
to moderate currents~and/or exciting fields!, so that the
sample is quasi-isothermal and the vortex array only under-
goes slight deformations with respect to the uniform array of
straight vortices parallel toz, with the equilibrium density
n51/pa25B/f0.

The plan of the paper is the following. In Sec. II, the MS
formalism is presented and dependences of different param-
eters on the magnetic field are discussed. Section III is de-
voted to the dc response in the flux-flow regime. In Sec. IV,
the dc response is reconsidered so as to account for a pos-
sibleJn component of the Lorentz force; this requires one to
introduce a crossterm into the linear dynamical laws (g term
in the text!. The effect of such a cross-term in the ac re-
sponse is discussed in the Appendix in the frame of the one-
mode electrodynamics ignoring the line tension effect. It is
shown that the analysis of Coffey and Clem7 does not satisfy
the Onsager relations and their results concerning the ac re-
sponse are revised.

In Sec. V, we analyze the ac response including the vortex
line tension, which results in the two-mode electrodynamics.
The two-mode effects are especially important at low mag-
netic fields and low frequencies. In the end of this section the
relation of our theory to different concepts of the elastic
moduli is discussed. Section VI extends the presented theory
to include vortex pinning. Other effects relevant for real su-
perconductors are also discussed. Finally, Sec. VII contains
the resume of theory and conclusions.

II. THE MS FORMALISM

Neglecting space charge and electrostatic effects on a
macroscopic scale, and assuming that the superfluid density,
ns5r2(rW,t), satisfies rigidly its equilibrium conditions, as if
it relaxed instantaneously, the free-energy densityF̄ can be
expressed in terms of a reduced number of local macroscopic
variables, namely the magnetic fieldBW , the supercurrent den-
sity JW s ~or the superfluid velocity fieldVW s), the vortex field
vW and the temperatureT. HereBW ,JW s ,VW s stand for the mac-
roscopic averages of the corresponding ‘‘microscopic’’ mag-
netic field bW , supercurrentjWs and superfluid velocityvW s ;
vW s , jWs are defined from the order parameterc5reiu by

pW s5\¹W u52mvW s22eaW , ~1!

jWs522er2vW s , ~2!

wherepW s is the momentum field of the supercurrent,m and
2e are the electronic mass and charge, andaW is the vector
potential. Equation~2! holds in isotropic materials.

In the mixed state~in rotating He II! curlpW s[0 ~curl

vW s[0) everywhere except at the vortex cores. Averaging
and taking account of the core singularities gives13

BW 2
m

e
curlVW s5vW , ~3!

@curlVW s5vW in rotating He II ~Ref. 10!#. The macroscopic
London equation~3! states the crucial distinction to be made
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in general between vortex lines and field lines.12,13 Thus the
vortex fieldvW and the magnetic fieldBW must be regarded as
two independent variables, when writing a local thermody-
namic identity, as in Eq.~4! below. We note that the vortex
field vW was called ‘‘vortex induction’’ in Ref. 18 and ‘‘local
vortex magnetic induction’’ in Refs. 7 and 8. Here we con-
sider the simple term ‘‘vortex field’’ as more suitable. Equa-
tion ~3! together with Maxwell equations intervene as con-
straints limiting the possible spatial variations of currents
and fields.

In the presence of a vortex lattice, the macroscopic ther-
modynamics identity for the free-energy densityF̄ reads13

dF̄52s̄dT1
1

m0
BW •dBW 2

m

e
JW s•dVW s1«W •dvW . ~4!

Two simple results have come out:~i! ]F̄/]BW 5BW /m0, and
~ii ! JW s is the conjugate variable ofVW s . Otherwise, explicit
calculations ofF̄ and/or approximations are required to ob-
tain both equations of stateJW s(T,vW ,VW s) and «W (T,vW ,VW s).
Several expressions forF̄ are available in the litera-
ture, in the special case of an uniform regular array
where VW s[0, JW s[0, vW [BW [constW: in isotropic mater-
ials, F̄(T,BW ,VW s50,vW 5BW )5w(T,B),«W 5«nW is directed along
vortices and«(T,v5B)5]w/]B2B/m0. This quantity is
usually referred to~except for the sign! as the magnetization,
«W 52MW , by a formal analogy with ferromagnetics. However,
one should be careful with this analogy as explained in Ref.
13. Therefore it is more advisable to call«W thevortex poten-
tial. All the same, it will be convenient to introduce, as a
short notation, an auxiliary vectorhW , defined asvW /m01«W ,
which is neither more nor less artificial than theHW field in
magnetism.

In a homogeneous sample the macroscopic chemical po-
tential of the electronsm̄ may be assumed to be uniform, and
the equations for equilibrium~or nondissipative currents!
are13

EW 85EW 1
¹m̄

e
.EW 50, ~5!

CW 5JW s1curl«W 50. ~6!

These equations should be complemented by the boundary
condition for the ideal surface:

«W 3NW 50, ~7!

whereNW is the normal unit vector: taking«W 5«nW ~isotropic
materials and lowVW s), Eq. ~7! requires that vortex lines ter-
minate perpendicular to the sample surface. Equation~6!
states, on a macroscopic scale, that the local supercurrent
j sW at the vortex cores, which includes the contribution in-
duced by vortices themselves if they are curved, is zero.13

As we are possibly concerned with very high frequency
vortex motion, we must pay some attention to the hypothesis
thatns should relax instantaneously to its equilibrium values
as assumed in our theory. Strictlyr5r0f (r0

2 is the zero-
field equilibrium value of the superfluid density, andf is the

reduced order parameter! obeys some time-dependent
Ginzgurg-Landau~GL! equation, such as that considered by
Schmid:19

] f

]t
5

L

2tR
5

1

2tR
F f2 f 32 f j2S ¹W u1

2e

\
aW D 21j2D f G , ~8!

whereL is the left-hand side of the first GL equation, acting
as a generalized force, andtR a relaxation time, which does
not exceed 10212 sec at temperatures not too close toTc . We
may consider thatf hardly departs from equilibrium, as far
asL! f , or, otherwise stated,L.0 within an accuracyL/ f .
If vW L is the vortex line velocity,

L;tRḟ;tR
vL
j
f ,

so thatL/ f<1024 in standard conditions of dc flux flow. For
small vortex displacementsue2 iVt the condition L/ f!1
reads

L

f
;VtR

u

j
!1, ~9!

which turns out to be a limitation on linearity rather than
frequency. TakingtR;10212 sec,j;100 Å, and vortex dis-
placements typically less than 1 Å, condition~9! is still ful-
filled at V/2p;10 GHz (L/ f,1023). In contrast, but con-
sistently, the contribution of time relaxation effects to
dissipation remains significant~see Sec. III!. We also assume
that, at any time,r satisfies the equilibrium GL boundary
conditionNW •¹W r50. This is consistent with the fact that vor-
tex lines~lines r50) must end perpendicular to the sample
surface@condition ~7!#.

Figure 1 shows the general shape of«(v) for a uniform
vortex array in an isotropic material.20In the low field limit
(v!Bc1), w.vHc1 so that«5Hc12v/m0. HereHc1 and
Hc2 merely stand for Bc1 /m0 and Bc2 /m0, where
m054p31027.

At high fields,« decreases linearly whenv approaches to
Bc2 ~the Abrikosov line!:21

«5
Hc22v/m0

bA~2k221!11
.
Hc22v/m0

2k2bA
~k@1!, ~10!

wherebA51.16 for a triangular lattice. In an extended Lon-
don model (v@Bc1):

«5
w0

4pm0l
2 ln

a

j*
, ~11!

wherel5l0( f
2)21/2 is the field-dependent London penetra-

tion depth (m0l
25m/2nse

2);22 l0(T) is the zero-field pen-
etration depth; andj*>j is an effective core radius. The
field-dependent London penetration depthl tends tol0 at
v50, and diverges atv→Bc2. Following this ‘‘mean-field’’
approximation we shall employ the London-like equation of
state:

JW s522eNs~T,v,Vs
2!VW s , ~12!

whereNs5r2 is the mean superfluid density; Eq.~12! fol-
lows at once from Eq. ~2! if it is assumed that
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( f 2vW s)5 f 2VW s . Inserting Eq.~12! in the thermodynamic iden-
tity suggests a quadraticVs dependence of the vortex poten-
tial, according to]«/]Vs

25m]Ns /]v. However, in the lin-
earized equations describing small standard vortex motions,
such as defined in the Introduction,Vs

2 terms in« or Ns ,
being of second order, may be systematically ignored.

Equation~12! can be rewritten as

2
m

e
VW s5m0l

2JW s . ~13!

One can use Eq.~13! with the approximate linear law
f 2512v/Bc2. A better approximation in the high field
range, using Abrikosov’s results, is22

l25
l0

2

f 2
5

l0
2bA

12v/Bc2
, ~high v limit, k@1! ~14!

and, in the low field range

l25
l0

2

12~v/Bc2!lnk*
, ~ low v limit, v!Bc2!,

~15!

where lnk*5 lnk10.5252k2(Bc1 /Bc2).
Under dissipative conditions, vortices are moving,EW Þ0,

CW Þ0 ~dissipative part of the supercurrent density!, and
JW5JW s1JWn , whereJWn is the normal current density. Dissipa-
tion is governed by the constitutive equations13

JWn5sWW •EW 5sEW'1s8EW i , ~16!

EW 1
m

e

]VW s

]t
5wW 5bvCW ' , ~17!

and the dissipative functionR5Tṡ is

R5JWn•EW 1wW •CW . ~18!

HereEW i , EW' , andCW '5(nW 3CW )3nW denote components par-
allel or normal to vortices;s is the normal fluid conductiv-
ity, andb is a kinetic coefficient which is the analog of the
mutual friction coefficientB in rotating He II, and2wW is a
‘‘friction force’’ field, which is the analog of the mutual
friction force.

Electric fieldseW and nomal currentsjWn are induced by
vortex motion inside and around the vortex core, which con-
tribute to dissipation. However, as all fields in our continuum
approach,JWn is a current averaged over the vortex-array cell.
Thus JWn•EW in Eq. ~18! does not involve all the dissipation
associated with normal currents. So it is worth noting that a
significant part of this dissipation, i.e.,^ jWn•eW &2JWn•EW , comes
within the second term, throughb @except nearHc2, see Eq.
~26! below#, as has been already demonstrated in the
Bardeen-Stephen model.2

In Eq. ~17! the absence of any significant Hall effect has
been assumed. Also, cross terms in the above linear dynami-
cal laws between fluxes (JWn ,wW ) and associated affinities
(EW , CW ) have been left out deliberately. The possible occur-
rence of such cross terms is discussed in Sec. IV, in connec-
tion with the expression of the Lorentz force.

Collecting Eqs.~3!, ~13!, ~16!, ~17!, and Maxwell equa-
tions, we obtain a complete set of equations for the
f our unknown f ields EW , BW , vW , JW s :

~ I! curlEW 52
]BW

]t
,

~ II ! curl
BW

m0
5JW s1sWW •EW ,

~ III ! vW 5BW 1curlm0l
2JW s ,

~ IV ! EW 5
]m0l

2JW s
]t

1bvCW ' . ~19!

From Eqs.~19! ~I!, ~III !, and~IV !, we find

]vW

]t
52curl~bvCW '!

which has to be identified with the transport equation for
vortices ]vW /]t5curl(vW L3vW ), with the line velocity vW L .
Whence

~V! vW L52bnW 3CW ~wW 5bvCW '5vW 3vW L!. ~20!

This equation can be rewritten as a force equation in the
form

FIG. 1. The local vortex potential« defined in Eq.~4! as the
local thermodynamic variable conjugate of the vortex field, for a
uniform vortex array (v5B). «(v,T) is the fundamental equation
of state, from which reversible magnetization curves of simply
shaped samples can be deduced. In particular,«(v5B5B0) coin-
cides, except for the sign, with the magnetization curve of a slab in
a normal fieldB0. An interpolating formula has been used to join
the Abrikosov line~10! and the low-field line«5Hc12v/m0 ~Ref.
38!. It is convenient to introduce anh field defined in the text as
h5v/m01«. The ‘‘permeability’’m defined in Eq.~40! as the ratio
v/h is directly calculated from the upper curve.
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~V! hvW L5
w0

b
vW L5CW 3w0nW

5JW s3w0nW 1curl«W 3w0nW . ~21!

It may be interpreted as the balance of forces per unit
length: a Lorentz force JW s3w0nW , a restoring force
curl«W 3w0nW resulting from a line tension«w0, and a viscous
drag force2hvW L .

Let us now consider the standard conditions such as de-
fined in the Introduction. Quantities relating to the equilib-
rium reference state are written without indices:EW 50,
BW (0,0,B), vW 5vnW (0,0,v5B), JW s50, JWn50, CW 50,
«W 5«nW @0,0,«(v)#. Small changes in the fields are labeled 1.
Keeping terms of first order in one-indexed fields in Eqs.
~19!~I!–~IV ! and ~21!~V!, gives the following set of linear-
ized equations:

~I! curlEW 152
]BW 1

]t
,

~ II ! curl
BW 1

m0
5JW s11sWW •EW 1 ,

~ III ! vW 15BW 11m0l
2curlJW s1 ,

~ IV ! EW 15m0l
2
]JW s1
]t

1bvCW 1' ,

~V! vW L152bnW 3CW 1' , ~22!

whereCW 1'5(nW 3CW 1)3nW is normal to thez axis.
Moreover we restrict our attention to one-dimensional

~1D! vortex motions (]/]x5]/]y[0). The varying fields
EW 1, BW 1, vW 15vnW 1, JW s1(z,t) have noz component, neither
have «W 15«nW 1 and CW 15JW s11«curlnW 1. As easily seen, two
linearly polarized motions (Ey ,Bx ,n1x ,Jsy ,vLx) and (Ex ,
By ,n1y ,Jsx ,vLy) can be considered separately and equiva-
lently. For definiteness, we shall use the former, and drop
indicesx, y, 1, if there is no ambiguity.

Thus we obtain :

~ I!
]E

]z
5

]B

]t
,

~ II !
1

m0

]B

]z
5Js1sE,

~ III ! vnx52m0l
2
]Js
]z

1Bx ,

~ IV ! E5m0l
2
]Js
]t

1bvS Js1«
]nx
]z D ,

~V! vL5bS Js1«
]nx
]z D . ~23!

Later on we shall consider small vortex displacements
uW @u(z,t),0,0# from the reference equilibrium state. In this
case nx5]u/]z, and w0@Js1«(]2u/]z2)# in Eq. ~23!~V!

stands for the thermodynamic forceCW 3w0nW per unit length
of vortex line. If vW and BW are not distinguished, and
if the normal current in Eq.~23!~II ! is ignored, Js
5(v/m0)(]

2u/]z2), so that the forcen(CW 3w0nW )5CW 3vW
per unit volume becomes identical with the classical elastic
forceC44(]

2u/]z2), whereC445hv ~or HB) is the Labusch
tilt modulus. As a matter of fact, the introduction of
renormalized9 or wavelength-dependent16 elastic moduli
amounts to making allowance for the macroscopic London
equation~23!~III ! ~see also the discussion at the end of Sec.
V!.

Concluding this section we discuss what conditions re-
strict application of our theory. First of all, this is a condition
for using the phenomenological approach, both in the Meiss-
ner state and in the mixed state: the frequency should be less
than the microscopic frequencies like the inverse of the qua-
siparticle relaxation time, or the superconducting gap. This
condition restricts the validity of the theory at very high
frequencies. Another limitation is that the spatial scales de-
rived from the theory should not be small compared with the
intervortex distance since the theory deals with variables av-
eraged over the vortex-array cell. We shall return back to this
restriction in Sec. V after these relevant spatial scales were
obtained. Our approach does not require the London theory
to be valid: close to the upper critical field where the latter
does not hold one can use the Ginzburg-Landau theory to
derive the parameters of the theory, or take them from the
experiment. Since we do not consider effects of shear rigid-
ity which discriminate the vortex crystal and the vortex liq-
uid, we can apply our theory only if shear rigidity is not
essential, like in the perpendicular geometry considered
throughout the present paper~the standard conditions defined
in Sec. I!. But in this case our theory addresses both the solid
and the liquid state of the vortex array.

III. THE dc RESPONSE

Let us consider the dc flux flow in a perfect slab normal to
the applied fieldBW (0,0,B). When a low to moderate dc
current is applied in they direction~Fig. 2!, Eqs.~23! apply
~with ]/]t50 andv5B). The electric field andJWn are uni-
form. On integrating Eq.~23!~IV ! over the thicknessd of the
slab, the supercurrenti s per unit length alongOx is found to
be i s5Ed/bv. Note that this simple result is obtained re-
gardless of the detailed current distributionJs(z) and defor-
mations of the vortex array: the line tension term«dnx /dz in
Eq.~23!~IV ! vanishes by integration, thanks to the boundary
condition nW 3NW 50 (nx50). Then, as the normal current
i n5sEd, the measured flux-flow conductivitys f5 i /(Ed),
wherei5 i s1 i n , is given by

s f5s1
1

bv
5s1

1

bB
. ~24!

Figure 3 shows the behavior of the flux-flow resistivity
r f(v5B) such as commonly observed in an alloy.1,23 Let
r be the reduced slope of the resistivity curve,
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r5
]r f /rn
]B/Bc2

,

wherern is the resistivity of the normal state. At low fields,
r f(B) approximately follows a linear law withr5r 0&1.
The limiting sloper 1 at Bc2 is observed to be larger than
unity,23 with r 1(T50)51.7 andr 1(Tc)52.5 in good agree-
ment with theory.24

Since s&sn , Eq. ~24! reduces to s f.1/bv, or
r f.bv, at the zero-field limit. Experimental results~Fig. 3!
suggest that

b5
r 0

snBc2
&

1

snBc2
~zero-field limit!. ~25!

The corresponding viscous-drag coefficienth5w0 /b is
nothing but that introduced in the Bardeen-Stephen model at
T50.2 A time-dependent GL model nearTc , such as that
developed by Schmid,19 yields r 050.64 in the dirty limit. As
pointed out above, dissipation from both relaxation effects
and eddy normal currents around the vortex core contribute
to b.

As s→sn atBc2, Eq. ~24! implies thatb diverges in the
high field limit. As a matter of fact, Schmid’s expression for
s f nearHc2 ~and T→Tc) is of the general form~24! by
taking

s5sn5const, b5
j2

2tR«
~Hc2limit !, ~26!

wheretR and« have been introduced in Eqs.~8! and~10!, so
thatb21→0 asBc22B.

At t5T/Tc,1, let us adopt this relationship between the
kinetic coefficientb and the relaxation timetR , while ac-
counting for the field and temperature dependence of the
normal fluid conductivity s through the two-fluid
expression7

s5sn@12 f 2~12t4!#. ~27!

Whence we find

r 1~ t !52F]s f /sn

]B/Bc2
G
Bc2

5
1

bA
FtRt j 2~12t4!G , ~k@1!, ~28!

where t j5m0snl0
2. From the measured sloper 1 ~see

inset of Fig. 3! we thus obtain an experimental estimation
of the relaxation timetR;10213210212 sec ~for t4!1),
consistent with Schmid’s expression for tR
5(p/16)(\/kTc)[1/(12t)]. 19

The above estimated values ofs andb ~see Fig. 4! will
be useful when discussing the importance of various terms in
the dispersion equation~Sec. VI!. Now, one may hope to
obtain, from accurate measurements of surface impedance,
more precise information about the relative weight of the
normal and superconducting channels ins f , as well as the
need for introducing~or not! a third transport coefficientg as
discused in Sec. IV and the Appendix.

IV. ON A NORMAL CURRENT CONTRIBUTION TO THE
LORENTZ FORCE

It is possible to regain some normal-current vortex inter-
action in the MS formalism, on the condition that cross terms
in the linear dynamical equations~16! and~17! are taken into
account. Equations~16! and~17! can be rewritten in the fol-
lowing generalized form, in accordance with the Onsager
symmetry:25

FIG. 2. A sketch of the moving vortex lattice in an ideal slab
perpendicular to the applied field. When driven by a low dc current,
the configuration of the vortex and field lines,nx(z) and Bx(z),
together with the supercurrent distributionJsy(z), are governed by
the linearized set of equations ~23!~II !–~IV !, where
Jn5sE5const. Beyond a small healing lengthlV defined in the
text @see Eq.~39! and Fig. 5# the vortex curvature andJs are uni-
form, and vortex lines coincide with field lines. The total current
i5 i n1 i s is obtained on integratingJs and Jn over the thickness
d, and the experimental flux-flow conductivity, defined as the ratio
i /(Ed) is given by Eq.~24!.

FIG. 3. The field dependence of the flux-flow resistivity. Full
circles are experimental data taken with a lead-indium alloy
Pb0.83In0.17 at t5T/Tc50.265: k53.5, k1(t)54.7, Bc254800G,
rn51.0431027 V m. The inset shows data nearHc2 in magnified
scales. On fitting these data, we find the reduced slopesr 050.96
and r 151.7. As explained in the text, from the measured slope
r 1, and using Eq.~28!, we obtain an estimation of the relaxation
time of the order parametertR55.5310213 sec.
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JWn5sEW'1s8EW i2gCW ' , ~29!

EW 1
m

e

]VW s

]t
5wW 5vW 3vW L5gEW'1bvCW ' , ~30!

whereg is a dimensionless coefficient. Note thatg does not
enter the dissipative function~18! directly, but it influences,
nevertheless, the rate of dissipation via the currents and af-
finities in the dissipative function.

From Eqs.~29! and ~30! we then obtain the generalized
force equation

w0sv

bsv1g2vW L5CW 3w0nW 1
g

bsv1g2JWn3w0nW

5~CW 1aJWn!3w0nW . ~31!

Equation~21! corresponds tog50. If gÞ0, the linearized
equations~23! become

~ I!
]E

]z
5

]B

]t
,

~ II !
1

m0

]B

]z
5~12g!Js1sE2g«

]nx
]z

,

~ III ! vnx52m0l
2
]Js
]z

1Bx , ~32!

~ IV ! ~12g!E5m0l
2
]Js
]t

1bvS Js1«
]nx
]z D ,

~V! vL5bS Js1«
]nx
]z D1

g

v
E.

On applying the dc response, and following the same pro-
cedure as in Sec. III, we find

Jn5sS 12
g~12g!

bsv DE, ~33!

Js1«
]nx
]z

5
12g

bv
E, ~34!

s f5s1
~12g!2

bv
. ~35!

Equation~35! is a general expression for the flux-flow con-
ductivity assuming arbitrary normal-current contribution to
the Lorentz force. The latter could be specified either from
the experiment, or from the microscopical theory.

Coffey and Clem write down the two-fluid equation
JW5JW s1JWn , as also the macroscopic London equation, in the
form ~19!~III !. But the CC equation of vortex motion is dif-
ferent from Eq.~21!; in the absence of pinning, this reads

hCCvW L5JW3w0nW , ~36!

where JW is the total current density and the viscous-drag
coefficienthCC is directly related to the experimental flux-
flow conductivityhCC5w0s fv. In contrast, the force equa-
tion ~21! only involves the supercurrent through
CW 5JW s1curl«W . In order to restore the Lorentz forceJW3w0nW
in the equation of vortex motion~the CC model!, one should
assume thata5g/(bsv1g2)51 in Eq. ~31!. But strong
discrepancy between CC results and ours still remains: they
neglected the term}g in the right-hand side of Eq.~29!.
Therefore the CC equations violate the Onsager symmetry.
This affects both the dc response and the ac response. In the
Appendix the latter is analyzed in the frame of a one-mode
electrodynamics (« terms neglected! to compare with the CC
results.

Now if the condition a51, or g5g21bsv, is pre-
scribed, so as to restore the Lorentz forceJW3w0nW in the
equation of vortex motion~the CC model is revised to satisfy
the Onsager symmetry!, Eq. ~33! turns back toJn[0, and
Eq. ~35! reduces tos f5s/g. The latter result and the dis-
continuity implied atHc2 look rather difficult to believe.
Thus we are led to the conclusion that the naive concept of a
Lorentz forceJW3w0nW driving the vortices involving the total
current hardly holds. In the following sectiong will be as-
sumed to be zero.

V. THE ac RESPONSE AND THE PENETRATION OF
EXTERNAL FIELDS: THE TWO-MODE

ELECTRODYNAMICS

Here we consider small vortex displacements
uW @u(z,t),0,0# from the reference equilibrium state. We are
looking for solutions of Eqs.~23! in the formeikze2 iVt; e,
b, j s , nx , u denoting complex amplitudes. Equations~I!,
~II !, ~III !, and ~V! from Eq. ~23! become a set of homoge-
neous and linearly independent equations fore, b, j s ,
nx5 iku @vL52 iVu52(V/k)nx#:

FIG. 4. The field-dependence of the normal fluid conductivity
s and of the kinetic coefficientb, here displayed as dimensionless
quantities. According to Eq.~24!, s and 1/bv represent the normal
and superfluid components of the flux-flow conductivity. Referring
to data of Fig. 3 (t50.265,t4!1), s(v) is a plot of the two-fluid
expresion~27!. NearTc , s would be of the order ofsn over the
whole field range. Thenb is calculated froms f2s, by using the
fitting line of Fig. 3
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~ I! ke52Vb,

~ II ! se1 j s5 ik
b

m0
,

~ III ! ikm0l
2 j s1vnx5b,

~V! j s1 ik«nx1
V

bk
nx50. ~37!

Note that one would obtain an equivalent system from equa-
tions ~I!, ~II !, ~III !, and~IV !. Indeed, the Euler equation~IV !
can be obtained here as a linear combination of equations~I!,
~III !, and~V!.

On stating that the set~37! of homogeneous equations has
nonzero solutions, we obtain the following biquadratic dis-
persion equation which connects the frequencyV and the
wave numberk. It is clear that the termik« is responsible for
the existence of a second mode (k4 term! :

lV
2k41~12 iVm0slV

22 iVtV!k2

2 iVms f2V2m0stV50, ~38!

wheres f is the flux-flow conductivity@Eq. ~24!#, and

lV
25

l2«

h
, S h5

v

m0
1« D , ~39!

m5
v

h
, ~40!

tV5
l2

bh
5

lV
2

b«
. ~41!

The lengthlV , labeledd in Ref. 13 andl E in Ref. 26, is
nothing but the mixed state penetration depth for diamag-
netic and nondissipative dc currents (JW s2CW 52curl«W ) such
as first introduced in Ref. 12. The lengthlV is a monotonic
decreasing function ofv from l0 to j/A2 ~Fig. 5!. It should

be noted thatlV , in contrast tol ~see Eq.~14!!, does not
diverge atHc2 ~Fig. 5!. The expression forlV in an extended
London model (m0«!v or a!l0),

lV5A 1

4pn
ln
a

j! ~42!

coincides with that of the characteristic healing length for
distortions of the vortex array in rotating He II. Such distor-
tions occur in collective Kelvin waves,14 or, at equilibrium,
near a wall inclined to the axis of rotation.15 WhereaslV in
superconductors is always smaller thanl0;100 nm,lV in
He II is only limited by the size of the rotating vessel. Ac-
curate second sound measurements at angular velocities
V;1sec21 (lV;0.1 mm! have proved the correctness of
Eq. ~42!.15 The ratiom5v/h is an equilibrium property di-
rectly deduced from the equation of state«(v) ~Fig. 1!. It
was first introduced by Soninet al.9 as a permeability ac-
counting for the diamagnetism of the mixed state.

According to Eqs.~25! and ~26! for b, the high and low
field limits of the short timetV are, respectively,tV5tR ~at
v5Bc2), and tV.t j (Bc2 /Bc1)5m0snl0

2(Bc2 /Bc1)
(v→0). Figure 6 shows thev dependence oftR in an alloy,
such as deduced from those of«,b andlV ~Figs. 1, 4, and
5!; this relates to the dirty limit wheretR52.89t j ~Ref. 19!
andtR@t, the electronic relaxation time (sn5ne2t/m). Ex-
cepting a small temperature interval close toTc , in the pure
limit tR!t and t j;t, so thattV<t. Then the condition
VtV!1 holds in the whole frequency range where Ohm’s
law itself is valid (Vt!1). In contrast, in the dirty limit the
condition Vt!1 holds at rather high frequencies where
1&VtV , and one can apply our dispersion relation up to
V/2p;102100 GHz.

The dispersion equation~38! can be rewritten as

~k2lV
2112 iVtV!~k22 im0sV!2 iV~ms f2m0s!50.

~43!

When comparing different terms of Eqs.~38! or ~43! it is
worth noting the inequalities

m0s<m0sn<ms f<
tV
lV
2 , m0s!

tV
lV
2 , ~44!

FIG. 5. The field-dependent London ‘‘penetration depth’’
l5l0( f

2)21/2 according to the Clem ‘‘mean-field’’ approximation.
An interpolating formula has been used to join the low and high-
field expressions off 2 @see Eqs.~14! and~15!#. While being useful
in various extensions of the London model,l should not be re-
garded as any screening length. According to the MS model, the
actual penetration depth for nondissipative supercurrents is that
lV given by Eq. ~39!. Note thatl diverges atHc2 whereaslV

decreases toj/A2.

FIG. 6. The small field-dependent characteristic timetV , de-
fined in Eq.~41!, which governs the frequency dependence of the ac
response. It is to be compared with the relaxation time of the order
parameter,tR;10212 sec.
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as confirmed by a numerical calculation. From Eq.~43! it is
clear that, atHc2 wheres f5s5sn andm5m0, a second
evanescent modek2 appears besides the damped modek1
commonly observed in any conductor :

k1
25 im0snV5

2i

dn
2 ,

k2
252

1

lV
2 ~12 iVtV!52

2

j2
~12 iVtR!~at Hc2! ~45!

These two modes can be followed continuously down to
v50 ~Fig. 7!.

In the zero-field limit we have

k1
25 iV

tV
l0
2 5 lim

v→0
~ iVms f !,

k2
252

1

l0
2 1 im0sV, ~v→0! ~46!

The k22mode atv50 is nothing but the one mode emerg-
ing from the classical electrodynamics of the Meissner
state,27 whereas now, the damped, normal-like,k1-mode re-
sults from the onset of the mixed state~in the absence of
pinning!.

Let us considerlow to moderate frequenciessuch that
VtV!1. It should be noted that the conditionVtV!1 is not
so restrictive as it is satisfied in most practical conditions:
VtV&1022 for V/2p&1GHz in alloys. Taking into account
inequalities~44!, simplified expressions fork1 and k2 then
follow immediately

k156
11 i

d f
,

k256
i

lV
~VtV!1! ~47!

where

d f5A 2

ms fV
,dn ~48!

is the skin depth related to the flux-flow conductivity that
incorporates the permeabilitym. In so far asAVtV!1 Eq.
~46! implies thatd f→l0A2/VtV.dnABc1 /Bc2@l0, so that
lV,l0!d f ~or k1!k2). We retain that, under practical con-
ditions, thek1mode can penetrate into a sample a relatively
large depthd f whereas thek2 mode dies off over the small
depthlV .

Let us consider a half spacez,0 subject to a small ex-
citing field Bx5b(0)e2 iVt. From the first three equations
~37! the vortex profileu(z) can be calculated for each mode
@including thekCC mode; see Eq.~57! below# as function of
the field amplitude~Fig. 8!:

FIG. 7. Full lines represent, in the complex plane, typical varia-
tions of the wave vectork for each of the two modes, as function of
the frequencyV/2p at a given field (v@Bc1 upper curve;
v&Bc1 lower curve!. In this figure, the frequency is increased, in
the direction of the arrow, fromVtV51022 toVtV5102. Full dots
indicate the values atVtV51. Dashed lines represent the limiting
dispersion curves atv5Bc2 and v50. Concerning the low fre-
quency range (VtV!1), it is more convenient to refer to simplified
and explicit expressions fork1 andk2, Eq. ~47!.

FIG. 8. Small vortex motions inxz planes near a surfacez50
perpendicular to the applied dc field~superconducting half-space
z,0). The exciting fieldb(0)cos(Vt) is along thex direction. The
full line, labeledk* , represents the vortex profileux(z,t50) such
as calculated for an ideal surface from Eqs.~50! and ~54!, taking
v.2Bc1, VtV5102. The full line labeledk1 (k2) represents the
profile, which would be obtained for a purek1 mode (k2 mode!
only satisfying the continuity ofBx @but nx(0)Þ0#. For clarity, x
components of displacements and fields have been magnified by a
factor of 1000. The low vortex density has been chosen so as to
illustrate the weighting effect of the factorm,m0 in Eq. ~54!.
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iku5nx5
b

v
~11k2l22 im0sVl2!. ~49!

Using simplified expressions~47! for k1 andk2 (VtV!1),
we obtain

n1x5
b1
v
, n2x5

2b2
v

v

m0«
,

u15
b1
v

d f

12 i
, u25

2b2
v

vlV

m0«
~VtV!1!. ~50!

The new length scalelS5vlV /m0« in the k2 mode is rel-
evant for surface pinning~see Sec. VI!. In determining the
amplitude of the displacement in thek2 mode, this scale
plays the same role asd f for the k1 mode.

In the k2 mode, field lines and vortex lines incurve in
opposite directions~Fig. 8!. In the wide frequency range con-
cerned (VtV!1), the k2 mode has a quasistatic behavior,
while the k1 mode is spatially uniform over the depthlV
(u1.const, if lV!d f). None of them fulfils the boundary
condition ~7! for an ideal surfacez50, i.e., nx50. There-
fore, we have to combine both modes,
Bx5(b1e

ik1z1b2e
ik2z)e2 iVt, while requiringb11b25b(0)

andnx5n1x1n2x50. We thus obtain

b2
b1

52
11k1

2l22 im0sVl2

11k2
2l22 im0sVl2 ~nx50!. ~51!

Note in this respect that a one-mode theory cannot satisfy the
boundary conditionnx50.

A quantity of interest in the ac response is the surface
impedance, usually expressed in terms of a complex effec-
tive penetration depthl*51/ik*5l81 il9:

Z5
m0e~0!

b~0!
5

m0~e11e2!

b11b2

5
b1
b~0!

m0e1
b1

1
b2
b~0!

m0e2
b2

52
m0V

k*
52 im0Vl*

52 im0V~l81 il9!. ~52!

It appears, from the second line, thatZ is the mean of the
surface impedances for purek1 andk2 modes weighted with
their respective contributionb1 /b(0) and b2 /b(0) to the
screening.

Using Eqs.~37!~I! and ~51!, we have

Z52
m0V

k1
S 11

b2
b1

k1
k2

D S 11
b2
b1

D 21

52
m0V

k1

12 im0sVl21l2~k2
21k2k11k1

2!

l2k2~k21k1!
. ~53!

In the low frequency limit the above formulas become
simplified. For a purek2 mode,Z would be purely inductive
(l85lV ,l950). For a purek1 mode,l85l95d f /2. From
the right combination of modes,

b15b~0!
m

m0
, b25b~0!S 12

m

m0
D ~VtV!1!,

~54!

we infer the effective complex penetration depth of an ideal
surface

l*5
1

ik*
5S 12

m

m0
DlV1

m

m0
~11 i !

d f

2

.lV1
m

m0
~11 i !

d f

2
~VtV!1! ~55!

or equivalently, neglecting the smalllV term, the surface
impedance:

Z.A2 iVm

s f
. ~56!

This is an expression for the surface impedance of a conduc-
tor with the conductivitys f and the magnetic permeability
m well known from electrodynamics of continuous media.28

At higher frequencies (VtV.1022), we have to use
rather cumbersome expressions fork* , which are not worth
writing. Figure 9 shows an example of the high-frequency
behavior of k*51/il* at intermediate to large fields
(v@Bc1), such thatm.m0 ~say to better than 5%; see Fig.
1!. Numerical calculations confirm thatk*.k1 ~and
l8.l9 in this range!, within the same precision, as it is
evident on the ‘‘low frequency’’ expression~54!.

Let us compare our results with the traditional one-mode
theory.6–8 In the one-mode theory the effective penetration
depthl*5 i /k* is directly connected with the complex wave
numberk* of the only mode penetrating into the sample
from the surface. In contrast, the two-mode effective penetra-
tion depth given by Eq.~56! does not relate directly to the
actual field penetration, this being described in the two-
modes electrodynamics bytwo penetration depths 1/uk1u and
1/uk2u. In the one-mode theory of Clem and Coffey

FIG. 9. Typical high frequency graph of the effective wave vec-
tor k* for an ideal surface, such as resulting from the right combi-
nation of the two modes. The frequency has been increased, in the
direction of the arrow, fromVtV51022 to VtV5102; the full dot
corresponds toVtV51. Numerical calculations show that the
Coffey-Clem wave vectorkCC, in the absence of pinning~dashed
line!, is close tok* , at fields such thatm.m0 (v@Bc1).
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k* 25kCC
2 5 im0s fV

12 im0sVl2

12 im0s fVl2 . ~57!

At v50, ass f→`, kCC
2 tends to the same limit ask2

2 @Eq.
~46!#. At v5Bc2, asl2→`, kCC

2 tends to the same limit as
k1
2 @Eq. ~45!#. We emphasize that the flux-flow skin depth
defined in the CC paper asd0 f5A2/m0s fV differs from that
given by Eq.~48! by the factorAm/m0. Whereas the former
vanishes atv→0, the latter remains generally large com-
pared withl0.

Effects of low ‘‘permeability’’ m are most important at
low vortex densities (v!Bc1),

9 whenk* deviates from both
k1 and kCC significantly ~Fig. 10!. Measurements ofl9(v)
have been performed by Berezinet al.,29 where a low pin-
ning Pb-In sample exhibits, atV.109 rd/sec, a linear depen-
dencel9}v ~to be compared withl9}Av in the one-mode
electrodynamics!. This result may corroborate the two-mode
response, in so far as the sample may be regarded as an ideal
one.

It is worth discussing now the conditions restricting ap-
plication of our theory. It is accurate enough until the spatial
scales~the penetration depths of the two modes! exceed the
intervortex distance, since the latter plays a role of a ‘‘mi-
croscopical’’ scale for our continuum approach. From Eq.
~42! it appears thatlV may be of the same order as the
vortex spacinga. Then our theory may not describe the field
variation in thek2 mode accurately. But, in many experimen-
tal situations, the amplitude of such a mode is more impor-
tant than the details of its spacial variation. The same situa-
tion arises with the Debye screening theory for metals in

which the amplitude of the jump in the electrical field is
enough to obtain a reliable electrostatic solution, despite that
the Debye radius may be of the same order or even less than
the interatomic distance.

Concluding this section, we discuss the relation of the
presented analysis with the traditional approach in terms of
the nonlocal elastic moduli.16 Following this approach, we
reduce the set of equations~37! to one equation for the vor-
tex displacementux (nx5 ikux , vL52 iVux):

2h
v

w0
vL5C44k

2ux . ~58!

This equation expresses the balance between the viscous fric-
tion force onv/w0 vortices per unit volume and the elastic
force determined by the tilt elastic modulus

C445
v2

m0

12 iVm0s/k
2

12 iVm0sl21l2k2
1v«. ~59!

One can see that the elastic modulus isk andV dependent,
i.e., nonlocal not only in space, but also in time. However,
the nonlocal contribution is due to the energy of the average
magnetic fieldB5v and the transport currents which has
nothing to do with the true vortex line tension proportional to
the vortex potential«. We prefer to relate the tilt modulus
with the vortex line tension only, rewriting Eq.~58! as

2h
v

w0
vL52v j s1C44* k

2ux . ~60!

HereC44* 5v« is the renormalized tilt modulus9 which does
not depend on eitherk or V, as one might expect for any
elastic modulus. The long-range intervortex interaction re-
sponsible for nonlocality is incorporated by the Lorentz force
@the first term on the right-hand side of Eq.~60!# proportional
to the supercurrentj s averaged over the vortex cell.

VI. TOWARDS REAL SUPERCONDUCTORS: BULK
AND SURFACE PINNING

Now our theoretical predictions for ideal samples may
appear as a somewhat academic discussion. Nevertheless, it
is an essential step before tackling the difficult and actual
problem of the ac response in the presence of pinning. As is
well known, the smallest critical currents alter the linear ac
response altogether: for instance, in a large low-frequency
domain below the so-called depinning frequency
(;102100 MHz!, the surface impedance is nearly induc-
tive, l8.const, l9.0, where typicallyl8;10 mm. Re-
member that, in this range, the response of an ideal surface
corresponds to a classical skin effect with a much larger skin
depth.

In order to account for such a radical change in the sur-
face impedance, the classical way, initiated by Campbell,4

consists in introducing a bulk pinning force2Ku in the
force equation~36! for small vortex motions. This means
that one should replace the friction coefficienthCC in this
equation, as well as in all following equations, by
hCC2K/ iV, or, in other terms, to replace the flux-flow con-
ductivity s f by s f21/iVm0lC

2 , wherelC5Avw0 /m0K is
the Campbell length directly related toK. As a result, there is

FIG. 10. The field dependence of the complex penetration depth
l*5l81 il9. l8 (l9) corresponds to the inductive~resistive! part
of the surface impedance. Upper curves show the low frequency
(VtV,102) behavior ofl9 in three cases:~i! k* , combination of
two modes for an ideal surface;~ii ! purek1 mode;~iii ! kCC, one-
mode Coffey-Clem theory, in the absence of pinning. AtHc2,
l9→dn/2 wheredn is the normal skin depth. It is worth noting that
the finite limit atv50 of l9 for the k1 mode, corresponds, in our
model to a large flux-flow skin depth (d f&dn) in contrast with the
vanishing CC skin depth. The lower figure magnifies, at 45 GHz,
the low field dependence ofl* , for comparison with the CC theory.
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still one mode, but its penetration depth is strongly reduced
down tolC .

The same substitutionh→h2K/ iV, or s f→s f21/
iVm0lC

2 in our final expressions incorporates the Campbell
approach into the two-mode theory. In particular, the skin
depthd f entering Eq.~47! has to be replaced bydv using the
expression

k1
25

2i

dv
2 5

2i

d f
2 2

m

m0lC
2 . ~61!

Note that the incorporation of the permeabilitym again pre-
vents for the divergence of the second term at vanishing
vortex density (m0lC

2 /m→ w0Hc1/K as v→0), so that
dv@lV and Eq.~54! for ideal boundary conditions holds. As
a result, according to Eq.~55! ~with dv instead ofd f), the
effective penetration depth is linear in the vortex density at
low field l*.lV1vAw0 /Bc1K.

Another way is offered by a new interpretation of vortex
pinning, that follows rather naturally from the MS theory as
explained in Refs. 12 and 13. According to this MS model of
the critical state, which relies on a number of
experiments,13,30–33critical currents of soft samples~in fact,
of most standard samples! are well accounted for by only
considering the surface roughness. In spite of unavoidable
surface irregularities on a scale comparable to or smaller
than the vortex spacing, MS have suggested that the con-
tinuum description can be maintained, provided that the
boundary condition~7! be released and replaced by a new
empirical surface condition. The new boundary condition
should lead to another combination of the two modes, en-
hancing thek2 mode. This must change the frequency depen-
dence of the surface impedanceZ.9,34

An explicit form of this boundary condition must depend
on actual properties of the surface, and, as illustration of the
effect on the ac response, we restrict ourselves here to the
case of extreme surface pinning when the ends of vortices
are literally pinned to defects so that they cannot move along
the surface at all, i.e.,u11u250. Then, according to Eq.
~49!, the ratio of the two-mode amplitude is@c.f. Eq. ~51!#:

b2
b1

52
k2
k1

11k1
2l22 im0sVl2

11k2
2l22 im0sVl2 . ~62!

Surface impedance is given by, instead of Eq.~53!,

Z5m0V
l2~k21k1!

12 im0sVl22l2k1k2
. ~63!

In the low-frequency limit, (m0sVl2,VtV)!1, the effec-
tive complex penetration depth reads

l*5~lS1lV!S 11A22i
lS

d f
D 21

. ~64!

Here lS , introduced after Eq.~50!, plays the role of the
Campbell length. The low frequency expansion of Eq.~64!,
l*'(lS1lV)@11 i (lS /d f)#, yields the surface resistance
ReZ}V3/2 different from that for an ideal sample (}AV) or
for the pinning case in the frame of the Campbell approach
(}V2). This might be used to discern between the bulk and
surface pinning.9 Also there may be some noticeable differ-

ences concerning the size effects. Experiments are now in
progress, in the Laboratoire de Physique de la Matie`re Con-
denśee, which ought to decide between the two approaches
for some superconducting materials.

There are also other effects crucial for description of real
superconductors, especially high-Tc materials.

~i! Flux creep. This may be incorporated into the theory
simply by using a proper expression for the conductivity
s f as done by Clem and Coffey.7,8 Thens f is not the flux-
flow conductivity anymore, but thethermal activated flux-
flow ~TAFF! conductivity. This does not change structure
and qualitive conclusions of our theory, but can modify
quantitative results which should be discussed for any mate-
rial separately.

~ii ! Hall effect. In the classical superconductors the Hall
effect is usually very weak, but it becomes strong in super-
clean high-Tc superconductors as recent experiments have
revealed.35 The Hall effect has been incorporated into the
two-mode theory in Ref. 36 in order to explain magnetore-
sistance resonances observed in the superclean Bi
compounds.37

~iii ! Anisotropy, thin-film applications. It is another im-
portant extension of our theory. The two-mode theory for the
anisotropic thin films has been developed in Ref. 36 men-
tioned a few lines above.

VII. CONCLUSION

The continuum electrodynamics of the mixed state of
type-II superconductors has been presented on the basis of
the MS equations of vortex motion.12 This has yielded the
two-mode electrodynamics advanced in Ref. 9, while extend-
ing it in the whole field range and including normal currents.
In this generalized form, our theory of the ac linear response
can be compared with the previous one-mode theories
~Campbell,4 Brandt,6 Coffey and Clem,7,8! by first consider-
ing the simpler case of ideal samples. The main difference is
that, in the two-mode electrodynamics, the external fields
penetrate into the superconductor as a superposition of two
modes which satisfies the boundary condition~7! for the
ideal surface, whereas it is ignored in the one-mode theories.
Thereby the latters are not able to discriminate the ideal and
the rough surface, which is crucial for the analysis of the
effects of the surface pinning.

Concerning the effects of the normal current on the dc and
ac responses, the main differences with Clem and Coffey,7,8

when writing the equations vortex motion, are the following:
~i! while assuming the existence of a the Lorentz force from
the normal current on the vortex, Clem and Coffey ignored
the force from the vortex on the normal fluid, as required by
the Onsager relations;~ii ! the assumption of a Lorentz force
involving the total current seems to be questionable, as ar-
gued in Sec. IV. However, the final decision on this question
should be given by the microscopical theory or by the careful
observation of the field dependence of the ac response at
different frequencies, as discussed in the Appendix.
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APPENDIX: THE ac RESPONSE AND THE PENETRATION
OF EXTERNAL FIELDS: THE ONE-MODE

ELECTRODYNAMICS

In this appendix, in order to simplify the analysis of the
effect of the normal current on the ac response, and then to
compare with the analysis of CC,7,8 we shall neglect the
vortex-line tension systematically. The effects of the vortex-
line tension are represented in the equations by the terms
involving the vortex potential«. We thus study the ac re-
sponse in the frame of a one-mode electrodynamics.

We refer to the set of equations~32!, while taking«50
andgÞ0, so that Eqs.~37! are replaced by

~ I! ke52Vb,

~ II ! se1~12g! j s5 ik
b

m0
,

~ III ! ikm0l
2 j s1vnx5b,

~V!
g

bv
e1 j s1

V

bk
nx50. ~A1!

Then, using the same notations as in Sec. V, the dispersion
equation now reads

~12 iVtV!k22 iVm0s f2V2m0stV50, ~A2!

wheres f is given by Eq.~35!. Solving Eq.~66! with respect
to k, we can find the complex effective penetration depth
l*51/ik,

l* 25
L21

i

2
d0 f
2

122iL2/d2
, ~A3!

in terms of the three lengths:~i! the CC flux-flow penetration
depth d0 f5(2/m0Vs f)

1/2, ~ii ! the normal-fluid penetration
depthd5(2/m0Vs)1/2, and~iii ! a new real lengthL:

L25
tV

m0s f
5

l2

~12g!2
s f2s

s f
. ~A4!

Taking L5l, expression~A3! for l* coincides with that
given by Clem and Coffey in the absence of pinning: see Eq.
~4! in Ref. 7 at the infinite Campbell lengthlC . However,
L differs from the London penetration depthl. So, as far as
one-mode electrodynamics is concerned, it is seen that vari-
ous models of vortex motion lead to the same general form
of the surface impedance. Discrepancies between them will
only result from different relations betweenL andl. Let us
discuss them.

In the Clem-Coffey theory,7,8 the Lorentz force is as-
sumed to be proportional to the total current. As discussed in
Sec. IV, this assumption implies the relationship
g5g21bsv. Using Eq. ~35!, this condition reads
g5s/s f , and Eq.~68! reduces to

L25l2
s f

s f2s
. ~A5!

Expression~A5! for L, at variance with the CC result
L5l, should properly reflect the assumption that the normal
current and the supercurrent enter the Lorentz force sym-
metrically. This disagreement is due to the fact that the CC
analysis, assuming a Lorentz force from the normal current
on a vortex, did not take into account the force from the
vortex on the normal component, such as required by the
Onsager symmetry.

It is to be noted that, irrespective ofL, Eq. ~A3! leads to
the same limiting expressions forl* at both low and high
frequencies: in the low-frequency limit,l* 25 id0 f

2 /2; in the
high-frequency limit,l* 25 id2/2; that is an usual skin effect
described by the flux-flow conductivitys f and by the
normal-fluid conductivitys, respectively. Therefore, in order
to discriminate between different models by experiment, one
should investigate the intermediate range of frequencies
~typically VtV;102221). Furthermore, the difference be-
tween the CC result (L5l) and expression~A5! becomes
especially important at high magnetic fields approaching
Bc2. In this limit, l2}1/(Bc22v) @see Eq.~14!#, whereas
s f2s}(Bc22v). Thus the divergence of the lengthL
}1/(Bc22v) at Bc2 is stronger than that forl itself, l
}1/ABc22v. On the other hand, the simple assumption
g50 , adopted in Secs. II, III and V, which neglects the
interaction between the normal current and the vortex, yields
no divergence ofL atv→Bc2 at all. Thus the observation of
the field dependence of the surface impedance at different
frequencies should define the role of the normal current in
the vortex dynamics.
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