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Critical currents in the anisotropic superconductor 2H -NbSe2:
Evidence for an upper bound of the surface critical-current density
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According to the Mathieu-Simon continuum theory of the vortex state, a large nondissipative supercurrent
can flow over a small depth from a rough surface, up to an easily estimated critical valueKc(A/m) of the
surface current density. It is shown thatKc must saturate at high fields in an anisotropic crystal when the
surface roughness is increased, and the corresponding upper bound only depends on fundamental parameters of
the material. Measurements in 2H-NbSe2 crystals confirm this saturation effect quantitatively, as well as the
proposed idea that, in a large class of soft samples, the critical current should be entirely accounted for by
surfaceKc currents.
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I. INTRODUCTION

Some years ago, Mathieu and Simon~MS! developed a
continuum theory of the mixed state.1,2 The MS theory shed-
ded light on dc and ac transport properties of type-II sup
conductors. Basic questions have been reexamined, be
ning with the mere equilibrium of a perfect body~see Fig. 2
of Ref. 2!, where diamagnetic currents are treated on
same footing as nondissipative transport currents.2 Further
intricate and unsolved problems involving flux flow and d
sipation have been explained successfully, as, for exam
the mechanism of flux-flow noise,3 and the frequency depen
dence of the surface impedance across the so-called d
ning transition.4 Furthermore, surprising effects can be pr
dicted such as those discussed in this paper.

The MS theory has given rise to some controversy ab
the location of critical currents, as well as the underlyi
physics. In this paper we present additional arguments, b
experimental and theoretical, concerning the very nature
critical currents. Postponing theoretical details~Sec. II!, let
us first point out some qualitative conclusions of the M
model for critical currents.

A sample where all thermodynamic local paramet
would be slowly varying functions of position, and the su
face of which would be smooth on the scale of the vor
distance, could be regarded as perfect with zero hysteres
critical currents. Of course, such an ideal sample cannot
ist, merely because any surface exhibits unavoidable irre
larities on a scale comparable to or smaller than the vo
spacing. Attention should be paid to these kinds of defe
In fact, the surface roughness introduces disorder in
boundary conditions, giving rise to many possible metasta
states of equilibrium corresponding to many ways for vo
ces to terminate at the sample surface.1,2 Now, according to
the MS equations for vortex equilibrium@Eqs. ~4! and ~5!
below#, this circumstance just causes the ability of the s
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face to carry nondissipative surface currentsK ~A/m! distrib-
uted over a small depthlV<l ~the London penetration
depth!.2,5 The limiting valueKc of the surface current densit
in general increases with increasing roughness. Then,
chief point is that expected values ofKc fully account for
both the order of magnitude and the field and tempera
dependence of critical currents, such as those observed
large class of soft samples. We naturally exclude the cas
~hard! samples crossed by interfaces or large bulk inhom
geneities, which can transport bulk nondissipative curre
~multifilaments in industrial wires, twin boundaries in
YBaCuO ~YBCO! crystal, sintered powders, etc!.

Critical-current densities associated in this way with t
surface roughness are readily estimated, so that one ma
least infer thatKc currents represent in any case a large c
tribution to the whole critical current. Moreover, as discuss
in previous papers,1–4 there are experimental grounds for b
lieving that critical currents in many standard samples,
cluding NbSe2 crystals used in this work, are nothing but M
superficial currentsKc . In such samples, any deviation of th
ideal electromagnetic response should be entirely gover
by the state of the surface.

In this respect, recent measurements of the surface im
ance in thick slabs of conventional materials, either polycr
tals or single crystals~PbIn, Nb, and V!, are particularly
convincing.4 The detailed frequency spectrum of the line
ac response has been quantitatively explained by a t
modes skin effect in accordance with the MS theory. T
excellent agreement between experiment and theory pro
that bulk vortices do respond freely; the least bulk pinni
would affect the penetrating mode significantly, and cou
not escape notice.4

Another naive observation may provide a clue, althoug
is not a conclusive argument. Critical currents are gener
expressed in terms of critical-current densitiesJc (A/m2),
taking for granted that nondissipative transport currents
©2002 The American Physical Society18-1
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uniformly distributed over the cross section. However, wh
data are taken in a series of films or foils of variable thic
nesst, Jc ~defined asI c /Wt, whereW is the foil width! is
generally observed to increase with decreasingt. More pre-
cisely, Joiner and Kuhl6 reported an exact linear dependen
Jc vs 1/t in PbBi foils. A similar behavior is retrieved in
YBCO films, when the thickness is larger than about 2lab ,7

for example,Jct;10 A/cm in the low-field limit at 70 K.8

The fact thatJct5const in samples otherwise prepared in t
same way could be immediately and most simply interpre
by stating thatKc5I c/2W5const.

The following objection has been raised. While nobo
denies that surface pinning may play an important role,
idea that in the same sample bulk pinning could be ineff
tive offends common sense. In this connection, we stress
the ability of the surface to carry a nondissipative transp
current owing to the disorder of the boundary conditionsis
not a mechanism of pinning in the proper sense. It is not
effect of local variations of the free energy in the vicinity
pinning centers that causes some locations of a vortex t
favored over others. So the goal here is not to compare
relative weight of surface to bulk pinning, but to kno
whether the MS currentsKc do or do not provide an alterna
tive relevant mechanism. It should also be noted that we
unable to get pinning parameters of an actual sample, suc
the density of pins and the magnitude of the pinning for
allowing us to calculate related values ofJc to be compared
with experiment. Therefore, no quantitative estimate can
cide for or against the importance of bulk pinning. On t
contrary, in the exceptional case of strongly roughened
faces of anisotropic crystals, absolute values ofKc can be
calculated exactly as a function of well-known paramete
We thus expect the comparison in this case between the
ical Kc and measuredI c to be very instructive.

II. THEORY OF THE CRITICAL-CURRENT DENSITY Kc

IN AN ANISOTROPIC SUPERCONDUCTOR

A. The continuum equations for vortex equilibrium

In this section, we briefly recall the basic MS equatio
with regard only to nondissipative states. The mean fr
energy density of a vortex continuum can be expresse
terms of a reduced set of macroscopic variables; ‘‘mac
scopic’’ here means averaged on a scale larger than the
tex spacing. Then, the macroscopic thermodynamic iden
such as that derived by averaging the Ginzburg-Landau~GL!
free energy, reads2,9

dF̄52sdT1
1

m0
B•dB2

m

e
Js•dVs1«•dv. ~1!

B5b̄, Js5 j̄ s, and Vs5 v̄s are the macroscopic magnet
field, supercurrent density, and velocity, respectively. T
vortex fieldv5nw0n describes both the local densityn and
directionn of the vortex array~w0 is the flux quantum!. Two
simple results have come out:]F̄/]B5B/m0 , andJs is the
conjugate variable ofVs. Otherwise, explicit calculations
and/or approximations are required to obtain the fundame
equations of stateJs(T,v,Vs) and«(T,v,Vs).
06451
n
-

d

e
-
at
rt

e

be
he

re
as
,

e-

r-

.
et-

s
-

in
-

or-
y,

e

al

One essential point in the MS formalism is the imperat
distinction to be made from the outset betweenv andB. On
multiplying nn by w0 , v and «, defined as]F̄/]v, have
been conveniently but artificially expressed in tesla and A
respectively~rationalized units!. Yet the expression ‘‘vortex
induction’’ for v, sometimes used in the literature, is mi
leading. Local vortex currentsj s, whetherJs50 or not, do
not contribute to the local macroscopic magnetic fieldB.
Irrespective of the local vortex ordering, the fieldB at a
given point is set up by currentsJs flowing everywhere else
in the sample, and also as by external currentsJ0 ~sources of
the applied fieldB0!. Therefore, one may expect that,
some points,v andB have different values; in other words
there may be regions where magnetic-field lines do not
incide with vortex lines.

By using only the parameterv to describe the vortex
lattice, MS theory deliberately disregards very small diffe
ences in energy associated with distortions of the unit
and related shear stresses. Consequently, the MS interp
tion of the critical currents will hold for a ‘‘vortex liquid’’ as
well. This is a marked difference with classical theories
pinning where the shear elastic constantc66, however small,
plays a leading part.

The second and third terms in Eq.~1! stand for the mac-
roscopic magnetic and kinetic energies. At high fields~say,
B>0.5Bc2!, B2/2m0 represents typically more than 90% o
the free-energy density. The last term derives from sm
positive corrections in the free energy arising from ‘‘micr
scopic’’ oscillations of fields on the scale of the vortex spa
ing ~on averaging quadratic termsb̄2.B2, etc.!. AlthoughB,
v, andVs ~or Js! must be regarded locally as three indepe
dent thermodynamic variables, it remains that their spa
variations are subject to constraints, viz, Ampere’s law a
the macroscopic London equation:

curlB5m0Js, ~2!

B2
m

e
curlVs5v. ~3!

Equation~3! follows from a proper average of curlps ~the
momentum of the supercurrent!:2 curl ps50 everywhere ex-
cept on the vortex lines, and the line integral ofps around a
closed path encirclingN vortices is Nh. It reduces to the
usual London equation in the absence of vortices (v50). In
regions where the vortex lattice is perfectly regular, there
no macroscopic currents~Js[0 andVs[0!, and Eq.~3! re-
duces to the familiar equalityv5B (B5nw0).

Minimizing the magnetic free enthalpy against sm
variations ofB, Js, andv, subject to constraints~2! and~3!,
leads to the following equilibrium conditions, which als
govern nondissipative states:2

Js1curl«50, ~4!

«3n50, ~5!

where n is the outward normal unit vector at the samp
surface. As required by a continuum description, in deriv
8-2
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CRITICAL CURRENTS IN THE ANISOTROPIC . . . PHYSICAL REVIEW B 65 064518
Eq. ~5!, the surface has been supposed to be ideal, tha
smooth on the scale of a few vortex spacings. We shall re
later to rough surfaces.

In the isotropiccase, for instance,« is directed along vor-
tices, and Eq.~5! states that vortex lines must terminate p
pendicular to the sample surface. This is consistent with
‘‘microscopic’’ GL boundary condition]r/]n50 for the or-
der parameterC (r5uCu), which requires a vortex core lin
C50 to end normal to the surface. Taking the cross prod
of Eq. ~4! with w0n, this may be read as the balance of
Lorentz force,Js3w0n and a restoring force, curl«3w0n,
resulting from vortex curvature with a line tension«w0 .

The equilibrium of a simpleperfectbody ~sphere, cylin-
der, slab, etc.! of rather large size, immersed in an extern
field B0 , is determined by the above set of Eqs.~2!–~5!.2

Vortices are uniformly distributed in the bulk (v15B1
5const!, but they curve in near the surface over a sm
depth lV , so as to fulfill the boundary condition~5!. On
inserting the second equation of stateJs(T,v,Vs) into Eqs.
~2!–~4!, explicit expressions forlV can be derived.2,5 Cur-
rentsJs flowing in this surface layer to ensure the equili
rium of bent vortices are nothing but Meissner-like diama
netic currents. The resultingreversiblemagnetic moment of
the body is2

M5E 1
2 r3Jsd

3r5E 2«d3r'2«1V, ~6!

whereV is the volume of the body, and«1(T,v1) is the bulk
constant value of«. The second integral expression forM
in Eq. ~6! is a strict consequence of Eqs.~4! and ~5!. It
provides a formal interpretation of the vortex potential«1 as
an equivalent mean magnetization2M/V, and thereby a
way to measure« through a reversible magnetization curv

In the MS model~Sec. II C!, nondissipative transport cur
rents and diamagnetic currents obey the same Eq.~4!, so that
the parameter«(T,v,Vs) also governs amplitudes of th
critical-current densitiesKc ~given a state of the surface!. For
a given material, at a given temperature,« essentially de-
pends of the vortex fieldv. As discussed elsewhere,2,5,9 the
Vs dependence of« may be ignored in most practical case
so that the local value of« at any point of a distorted lattice
will be approximated by that of a uniform lattice of the sam
density and orientation. Note that, according to the form~1!
of the thermodynamic identity,« is not directly dependent on
B. We stress that2« does not have the primary physic
meaning of a local magnetizationM . As discussed in Ref. 2
the introduction of local fieldsM andH in the mixed state,
even as substituting notations for2« and B/m01«, is un-
necessary and misleading. As explained below, supercurr
Js52curl « may contribute to transport currents, contrary
equivalent magnetization currentsJM in a magnetic material
which are defined as curlM . Also, we can no longer identify
curl H as the transport current.2

B. The vortex potential of an uniaxial crystal

In the phenomenological GL theory, a material is char
terized~at a given temperature! by two parameters, say, th
GL parameterk and the thermodynamic critical fieldBc , and
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then, when dealing with an anisotropic crystal, by the pr
cipal valuesm1 , m2 , andm3 , of the reduced mass tensorm
~defined so thatm1m2m351, andmik5d ik in the isotropic
case!.10

Here we consider only layered uniaxial crystals, li
NbSe2, for which m15m2,m3 , wherem3 is the principal
value ofm in the directionz of the c axis. Thus the anisot-
ropy is described by one parameter, for instance, theanisot-
ropy factor:

g5~m3 /m1!1/2 ~m15m25g22/3, m35g4/3!. ~7!

From theoretical calculations of the reversible equival
magnetization,10,11 we infer that« lies along the vectorm"n
~or « i5miknk!.

10,11More explicitly, if vortices are inclined to
thez or c axis by an angleu, say, in thexzplanes~see Fig. 1!,
« also lies in thexzplanes but makes a smaller anglea with
the c axis, withu anda being simply related by

tanu5g2 tana. ~8!

Equation~8! states that« tends to keep aligned with thec
axis, or at least lags considerably, whenu is increased. Tak-
ing g53, as corresponds to NbSe2, a520° whenu has ex-
ceeded 70°. Stated in another way, vortex currentsj s, which
flow in planes normal to«, 10,11 tend to stay in theab planes
when vortices are inclined to thec axis.

FIG. 1. Schematic of a possible equilibrium configuration of t
vortex array near anab face of an uniaxial crystal, immersed i
normal fieldB0 . Owing to surface irregularities on the scale of th
vortex spacing, many such configurations may arise near the
face. Vortex distortions take place over a small healing depthlV

<lab , while vortices remain straight and uniformly distributed
the bulk. The vortex fieldv represents both the vortex densityv/w0

and direction of vortex lines. The vortex potential«(v), defined in
Sec. II A, is the local thermodynamic parameter that governs
existence of macroscopic currentsJs . Whenv is inclined to thec
axis by an angleu, « makes a smaller anglea with the c axis. The
left inset shows theu dependence of the upper critical field.
vortices are bent in thexz planes as shown in this figure, curren
Js52curl «, ensuring vortex equilibrium flow systematically in th
y direction. These supercurrents may appear on the scale o
sample either as nondissipative transport currents or hysteretic
magnetic currents. Note that vortex bending is of relatively low c
in free energy, as long as the magnetic field itself is not very d
torted. In the perturbed layer, magnetic-field lines are not vor
lines, and they are slightly deviated in the opposite direction
anglesw;m0K/B0;1023.
8-3
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Again, the MS boundary condition~5! is consistent with
the GL boundary condition for the order parameter. In
anisotropic crystal, the latter reads

m ik

]r

]xi
nk50, ~9!

reducing to]r/]n50 in the isotropic case. Herem ik5mik
21

is the inverse mass tensor. Equation~9! requires that vortex
lines enter the sample along the directionm iknk , or equiva-
lently, that the vectormiknk must be normal to the surface
That is just what is required by the condition~5!.

The amplitude« of the vortex potential decreases wh
the vortex densityv is increased, and« vanishes whenv
5Bc2(u), an upper critical field depending on the vorte
orientation as~Fig. 1!:

Bc2~u!

Bc&
5k̃~u!5k'@g22 sin2 u1cos2 u#21/2, ~10!

wherek'5k(0)5km1 , so thatk i5k(p/2)5gk' . The an-
isotropy factor is currently estimated from the upper critic
fields ratioBc2(p/2)/Bc2(0).

Near Bc2 , the components of« decrease linearly asBc2
2v. For v(v sinu,0,v cosu) we have10

«x5
Bc2~u!2v

2m0bA

sinu

k i
2 , ~11!

«z5
Bc2~u!2v

2m0bA

cosu

k'
2 , ~12!

wherebA51.16 for a triangular lattice. In Eqs.~11! and~12!
we have ignored terms smaller than unity in the denomina
which can be fully neglected with respect to the quan
2k2bA whenk@1. The above expressions of«x and«z have
been derived under the assumption thatBc22v!Bc2 .10

Their range of validity, however, is much larger than e
pected. Following a numerical procedure proposed
Brandt,12 a precise solution of the GL equations can be co
puted for a regular vortex lattice,arbitrary fieldsv5B, and
vortex orientation. In this way, we have calculated the c
stitutive relations«x(v) and«z(v) for several values ofu, in
NbSe2 at 4.2 K ~k'520, g53; see, for instance, Fig. 2!. It
turns out that expressions~11! and~12! may be used down to
v;0.3Bc2 with an accuracy better than 5%.

As expressions~11! and ~12! have been established for
uniform lattice wherev5B, they are usually expressed a
functions ofBc22B, instead ofBc22v. Moreover, by virtue
of Eq. ~6!, 2«152«(v15B1) is directly written as giving
the equivalent reversible magnetizationM5M/V of any
simple shaped body as a function of theinternal field B1
5v1 . Nevertheless, that is a restricted physical meaning
«. As we will discuss further below, we shall have to es
mate nondissipative currents, such as given by Eq.~4!, at
points where the vortex fieldv of a distorted array may be
very different fromB: there, the local vortex potential« must
be expressed as a function ofv and notB. Thus, the ‘‘vortex
density’’ v may well reach the critical valueBc2 , while the
06451
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line tension« has fallen to zero, even though the local ma
netic field B itself is far belowBc2 . Notwithstanding the
expression ‘‘critical field’’ for Bc or Bc2 , neither the local
condition B5Bc or Bc2 , in a type-I or -II sample, nor the
conditionB05Bc or Bc2 for the applied field, implies a tran
sition to the normal state. We known that thin type-I film
remain superconducting in parallel fields much larger th
Bc . In the present case, as explained in Sec. II C, a nor
layer may arise at a rough surface in normal fieldsB0
,Bc2' .

C. Rough surfaces and nondissipative transport currents

The best samples are hardly free from surface irregul
ties. If the surface is rough on a scale comparable to
smaller than the vortex spacing,n is a highly variable vector,
and, as pointed out above, the boundary condition~5! does
not make sense in a continuum theory of the mixed st
Nevertheless, the set of continuum Eqs.~2!–~4! can be main-
tained, while assuming ideal smoothed surfaces, provi
that the condition~5! is released. MS theory suggested
replace it by an inequality similar to a friction angle cond
tion in mechanics:

u«̂3Nu,sinam , ~13!

where «̂5«/« is a unit vector, andN now stands for the
normal unit to the idealized mean surface. The physi
meaning of Eq.~13! is clear. Consider, for example, the iso
tropic case where«̂5n: the vortex array may undergo
collective~macroscopic! bending near the sample surface
as to be inclined by an anglea to the mean normalN. If a is
not too large, each vortex line, at the cost of very sm

FIG. 2. The vortex potential« of NbSe2 ~at 4.2 K! as a function
of the vortex densityv, when the vortices are parallel to thec axis
~u, a50; triangular lattice!. The full line results from a numerica
calculation of an exact solution of the GL equations. The das
line is the linear approximation such as given by Eq.~12! with u
50; in reduced units«̃5 «̃z5(12b)/2bAk' . Replacing« by 2M,
andv by B0 , this curve can be interpreted, more familiarly, as t
reversible magnetization of a slab in normal field. However, it m
be borne in mind that2« does not have the primary physical mea
ing of a local magnetization.
8-4
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CRITICAL CURRENTS IN THE ANISOTROPIC . . . PHYSICAL REVIEW B 65 064518
displacements, may still terminate normal to the actual
regular surface as required by the GL boundary conditio

Equations~2!–~4!, completed by condition~13!, lead to
an infinity of nondissipative metastable solutions. The m
netic moment of a body may strongly differ from the ide
value ~6!. Not only may diamagnetic currents change, ca
ing hysteresis, but also nondissipative transport currents
sibly occur. All these currents obey the same equations,
therefore, they flow near the surface over the same depthlV .

Now, we confine ourselves to the standard geometry
vestigated in Sec. III. A slab~thicknessDz5t, width Dx
5W! is immersed in a normal applied fieldB0(0,0,B0). The
slab is an uniaxial single crystal, the thickness of which
perpendicular to theab planes~xy planes!. Vortex lines are
regularly distributed in the bulk with a vortex densityv1
5B1 , the internal magnetic field~Fig. 1!. Magnetizing ef-
fects are negligible so thatB15B0 . The bulk vortex poten-
tial «1(0,0,«1) is a decreasing function of thereduced field,

b5
v1

Bc2
' 5

B0

Bc2
' , ~14!

as shown in Fig. 2.
Whereas the vortex density and orientation have unifo

and well-determined values in the bulk, undetermined st
distortions of the vortex array may settle over a depthlV
from the surface. Suppose, for example, that vortices b
uniformly in thexzplanes as sketched in Fig. 1, and inters
the ~mean! surface with an angle of incidenceu. As stated by
Eq. ~8!, « makes a smaller anglea~u! with the normalN. If
a(u),am , the vortex lines may fit the rough surface on
‘‘microscopic’’ scale. According to Eq.~4!, the currentsJs
that balance this vortex bending must flow in they direction.

It should be emphasized that, in such a distorted la
vortex lines and magnetic-field lines bend in opposite dir
tions ~Fig. 1!. Otherwise, the Lorentz force and the restori
force would act in the same direction and could not coun
balance each other. Therefore, this kind of equilibrium co
not be conceived, as long as the vortex lines and magn
field lines were confused. The equilibrium of bent vortic
immersed in diamagnetic currents near the faces of a~per-
fect! slab inclined to the applied field is quite similar. Wit
this difference, in the latter case, currents on both face
the slab are in opposite directions and cancel out. Inst
currents on both faces of a rough slab may flow in the sa
direction, giving rise to a net transport current.

On integratingJsy over their penetration depth, we fin
the surface current density

Ky52«x~v!, ~15!

where v is the vortex fieldat the surface. In magnitude
~A/m!,

K5u«x~v,u!u5«~v,u!sina. ~16!

The vortex densityv at the surface is larger than the bu
densityv1 , in accordance with the law of conservation
the number of vortex lines~or div v50!. As easily seen,
06451
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v5
v1

cosu
5

bBc2
'

cosu
. ~17!

Let us return to theisotropic case momentarily. Asu5a
seldom exceeds 20°, we may disregard, as a first approx
tion, the variation of the vortex density near the surfa
Thus, assumingv5v1 and «5«1 , Eq. ~17! reduces toK
5«1 sina. To a maximum,K5Kc , the MS critical-current
density is

Kc5«1 sinam , ~ isotropic slab!. ~18!

Collecting I c data in slabs or foils of conventionalisotro-
pic and soft materials~lead alloys and pure metals! and let-
ting Kc5I c/2W, Mathieuet al. extracted empirical values o
am within the range 0.5°–25°.1,2,13 Note that sinam, al-
though it is an adjustable parameter, was always found to
reasonably less than the unity, as it should be. Furtherm
the temperature dependence of«1 well accounts for theT
dependence of critical currents.13 The limiting angleam is a
statistical and geometrical property of a rough surface, fo
given density (n15v1 /w0) of intersecting points betwee
vortex lines and the surface. Clearlyam increases with in-
creasing roughness. It also increases when the vortex de
n1 is decreased at low fields. In the absence of any treatm
to make the surface very smooth or very rugged,am is typi-
cally of the order of a few degrees. In this case,v5v1
within better than 1%, and the approximated formula~18! is
quite justified in the whole field range.

Conclusions are quite different for ananisotropicmate-
rial. While am should sweep the same range of values,
can no longer ignore the increase in the vortex density
companying the strong vortex bending. To be explicit, letg
53 (NbSe2), B05v150.7Bc2

' (b50.7), and suppose tha
a520° as allowed by an enhanced roughness. Accordin
Eqs.~8! and~10!, vortices intersect the mean surface with
angle of incidence ofu573°, for which the upper critical
field Bc2(u573°) is larger thanBc2

' by a factor of 2.3. Now,
as required by Eq.~17!, the vortex densityv at the surface
should be as large as 3.4v152.4Bc2

' .Bc2(u). This means
that forb50.7,« and the current densityK(a) have fallen to
zero before 20°~as shown in Fig. 3!, andK(a) is amaximum
at some intermediate valuea0 . As pointed out above, wha
becomes critical here is the vortex density, whereas the m
netic field remains practically uniform throughout the sl
including where the vortex lattice is distorted.

Making use of Eqs.~8!, ~10!, and~11!, and substitutinga
and the reduced fieldb as independent variables forv andu
in Eq. ~16!, we obtain

K~a!5
Bc2

'

2m0bAk'
2 tana@~11g2 tan2 a!21/22b#. ~19!

At a given applied fieldb, the nondissipative current densit
K is a maximum for some anglea0 :

a05tan21~g21Ab22/321!. ~20!

On substitutinga0 for a in Eq. ~19!, we find
8-5
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K0~b!5K~b,a0!5
Bc2

'

2m0bAgk'
2 ~12b2/3!3/2. ~21!

Equation~21! represents an upper bound for the nondissi
tive MS current for a given applied field.As far as vortices
can fit the rough surface freely, and the surface is roug
enough so thatam.a0 , the expected critical-current densi
is Kc5K0 . If am,a0 , Kc5K(am) such as given by Eq
~19!, andKc,K0 .

As a conclusion, we predict that critical currents of
uniaxial slab become saturated, when the roughness o
faces is increased. Moreover, the saturation critical curren
expressible in terms of the fundamental parameters of
material@Eq. ~21!#, without any adjustable parameter.

In theory, the above equations hold in the isotropic ca
However, the condition for observing the saturationam
.a0 (b,g51) cannot be achieved except in a too restric
field range nearBc2 . For example, takingb50.5 in Eq.~20!,

FIG. 3. An equilibrium configuration of the vortex array, lik
that sketched in Fig. 1, where vortices are bent in thexz planes, is
kept balanced by supercurrents flowing in they direction. For a
given value of the bulk vortex densityv15B05bBc2

' , such a con-
figuration is uniquely determined by the anglea, at the surface,
between the vector« and the normal to the mean smoothed surfa
The total surface current densityK, obtained by integratingJsy over
z, is plotted in this figure as a function ofa, for a few values of the
reduced fieldb. Full lines are calculated from Eq.~19! by taking
g53, k'520, andBc2

' 52 T, i.e., the relevant parameters of NbS2

at 4.2 K. Dashed lines are obtained by merely substitutingg51 for
g53. The maximum ofK(a) for relatively low values ofa is a
characteristic feature of the anisotropy. This maximum explains
critical currents become saturated when the surface roughne
increased.

TABLE I. The residual resistivity ratio and dimensions of th
NbSe2 slabs referred to in Figs. 4 and 5. Samples S5a and S5b h
been detached from the same ampoule.

RRR Width ~mm! Thickness~mm! Length ~mm!

S4 54 2.2 0.12 8.1
S5a 44 1.5 0.17 11.5
S5b 1.5 0.14 5.4
06451
-

he
is
e

e.

d

we obtaina0514° for g53, but a0537° for g51. The
former is readily accessible, but the latter exceeds the lim
ing angles of the roughest surfaces.

III. EXPERIMENTAL RESULTS

Single crystals of NbSe2 have been grown from prere
acted polycrystalline powder by a standard method of che
cal vapor transport using iodine as a gas vector in a th
zone thermal profile.14,15The crystal structure was confirme
to be in the 2H phase by x-ray diffraction. Crystals obtaine
by this method appeared in the form of thin faceted plate
with a mirrorlike surface perpendicular to thec axis. Rectan-
gular slabs were cut out of large-sized crystals~see Table I!.
Transition temperatures, as determined by low-field magn
susceptibility, were close to 7.15 K. The residual resistiv
ratio ~RRR! defined as the ratioR(300 K)/R(7.5 K) is
around 40–50. These values of RRR andTc agree with those
previously published,14,15 and attest to the good quality o
our crystals.

All measurements reported in this paper were carried
at the temperature 4.2 K. Experimental data in Figs. 4 an
refer to the three samples described in Table I. Critical c
rentsI c were measured in perpendicular fieldB0'ab, in the
range 0.2,b,1. We used a standard four-lead arrangeme
copper wires being attached to the crystal with silver pa
ThenKc5I c/2W is compared with theory~Fig. 5!.

The magnetization of some of the slabs was studied
perpendicular and parallel fields, with a commercial sup
conducting quantum interference magnetometer~Quantum
Design, model MPMS!. From the reversible part of the mag
netization curvesM'(B0) andM i(B0), we could extract the
three parameters involved in equations of Sec. II, wh
characterize the uniaxial crystal, namely,Bc2

' , k' , andg. A
fit of the linear part ofM'(B0) to Eq. ~12!, assumingM'

52«z(v5B0 ,u50), gives Bc2
' 52.0 T andk'520 ~Fig.

4!. Note that the demagnetizing effects are completely n

.

at
is

FIG. 4. The magnetization of the sample S5b in normal fie
Open and full circles correspond to increasing and decreasing fie
respectively. These data have been corrected for a small para
netic contribution mainly due to the sample holder. Straight lin
are fits to the linear expression~12!, letting M52«z(u50,v
5B0). So we obtaink'52061, andBc2

' 52.060.1 T. The absence
of a ‘‘peak effect’’ in magnetization curves made the fit easier.

ve
8-6
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ligible. The demagnetizing factorD of a slab such as the
sample S5b~Table I! is about 0.9, and in writingM'5
2« (v5B0) we disregard a small correcting term of th
order (12D)/2k'

2 bA'1024. Finally, the anisotropy facto
g53 was obtained as the ratio of the upper critical fieldsBc2

i

andBc2
' .

As-grown crystals have very low critical currents~lower
curve in Fig. 5!. When interpreted as MS surface curren
through Eq.~19!, they correspond to a limiting angle as lo
asam;1°. As explained in Sec. II, such values ofam have
been found to be typical of the best polished surfaces
variety of conventional materials. In order to appreciate
effect of increasing roughness on the critical current, b
faces of the slabs were roughened by moderate and gra
sandblasting. For this purpose, we used a commercial sy
~Sandmaster GF 1-93! operated with 9-mm alumina powder,
and low gas pressure~1.5 bar!. We still had to adjust the
distanced between the nozzle and the sample, and the timt
of exposure; typically,d;5 – 10 cm, andt&1 min. Sand-
blasting must be gentle enough to preserve the sample th
ness, while yet achieving large roughness anglesam*20°.
The state of the sandblasted surface was controlled by ato
force microscopy. Maximum rms standard deviations of
surface profile were about 50–60 nm.

The fact that the critical currentI c of a slab increases
when its surface is sandblasted is in itself not surprisi
Independently of any theoretical interpretation, the rou
ness dependence of critical currents becomes more sig
cant and simply stated, when expressed in terms of the
face critical-current density defined asKc5I c/2W. First,
slabs of different dimensions, subject to the same surf
treatment by sandblasting, acquire the same critical-cur
densityKc . Then, while increasing roughness,Kc seems to
reach a reproducible saturation valueK0(b). Figure 5 shows

FIG. 5. The surface critical-current density, defined asKc

5I c/2W, as a function of the reduced magnetic fieldb, before and
after two successive sandblasting processes. In the first proces
nozzle-sample distanced was 8 cm, and the time of exposuret
51 min. In the second process,d54 cm, andt520 s. The full line
K0(b) is the upper bound ofKc(b) such as predicted by the theor
of Sec. II C. HereK0(b) has been calculated by lettingg53, k'

520, andBc2
' 52 T in Eq. ~21!. The dashed area stands for th

experimental uncertainty in these parameters~mainly in k'!.
06451
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how this saturation value is attained after two success
sandblasting processes. If we confine ourselves to th
qualitative features, however, we cannot decide on any
ticular mechanism, even though surface defects are cle
involved. Nor do we know whetherK0(b) represents some
practical limiting value, or a fundamental upper bound
Kc(b).

The striking and conclusive result here, is that the o
served saturation currentK0(b) is close to the theoretica
maximum of the MS nondissipative current in an uniax
crystal, also denoted asK0(b) in Sec. II @Eq. ~21! and the
full line in Fig. 5#. The quantitative agreement betwee
theory and experiment is as satisfactory as we could hope
because of the experimental errors and underlying appr
mations:~i! The usual accuracy in measuringI c andW, ~ii !
the uncertainty in the fundamental parameters, in particu
k' ~k'52061; see Figs. 4 and 5!, and ~iii ! the use of ap-
proximated expressions for«. Also by takingbA51.16, we
have deliberately ignored a small increase in the Abrikos
parameterbA associated with the deformation of the bas
cell of the vortex lattice in the vicinity of the surface.~iv! In
addition, the approximation inherent in a continuum descr
tion of the vortex state, especially as the depthlV , is not
much larger than the maximum standard deviation of
surface profile. These remarks should not obscure the m
outcome of this work: we are able to predict the absol
value of the critical currents of a rough crystal of NbSe2,
without any adjustable parameter.

IV. DISCUSSION

The fitting of the vortex lattice to the disordered bounda
conditions of a rough surface offers the possibility of qu
sisuperficial nondissipative transport currents. We str
again that this mechanism is not one of vortex pinning in
proper sense. Measurements of critical currents in Nb2
uniaxial crystals, at intermediate and high fields, prov
strong support for the correctness of the MS interpretati
and reinforce the idea that MS currents account for the wh
critical current in many soft samples. However, we can
exclude that, in some samples, vortex pinning or some o
mechanism comes into play, giving rise to an addition
source of critical currents. In any case, the contribution of
MS currents should be taken into account.

In this connection, let us refer to an incidental observ
tion. While working out the growth method, the analysis
the first crystals obtained revealed a lack of stoichiome
and the presence of crystallized phases of iodoselenides
the same time, these samples exhibited a strong ‘‘peak
fect’’ near Hc2(0.8&b,1), including those in the magneti
zation curves. In theKc(b) curves, the peak effect appeare
as a superimposed contribution insensitive to an increas
the surface roughness. These chemical defects were rem
by a more careful preparation of the prereacted powder;
relatively, peak effects disappear, except perhaps for a s
residual effect in theKc(b) curve ~see Fig. 5!, which does
not affect our conclusions. We suggest that the enhancem
of critical currents in the ‘‘peak effect’’ might be due thi

the
8-7
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time to a very strong pinning effect, which becomes effect
nearHc2 .

Theoretical considerations of Sec. II should apply
YBaCuO. The order of magnitude of critical currents in t
low-field limit, as quoted in Sec. I, are well explained by th
MS model.16 Clearly, however, the saturation effect is n
observed. In particular, critical currents vanish in the s
called vortex liquid phase above the irreversibility line. No
as pointed out in Sec. II A, the MS model works for a vort
liquid as well. On account of the usual roughness of epita
YBaCuO,7 critical current ought to exist up toHc2 . The
question thus arises as to why the NbSe2 scenario is not
recurring in YBaCuO. In Sec. II C, an essential condition
observing the saturation effect has been stated: vortices m
fit the surfacefreely, in order to achieve the configuratio
that maximizes the current density. We think that this con
tion possibly fails in YBaCuO, for reasons that need to
elucidated. In an attempt to explain the irreversibility line
the frame of the MS model, Simon, Plac¸ais, and Mathieu
made the assumption that collective distortions of the vor
Sp
C

v.

o,

ld

06451
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r
ust
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e

x

array, randomly directed, preexist along the surface.16 Such
distortions should be hysteretic or metastable states dep
ing on the past history of the sample. They prevent the s
ration current from being observed, while accounting for
vanishing of the critical currents at high fields.16 The exis-
tence of frozen deformations implies free-energy barriers.
the vortex line tension«w0 falls off for strong bending, it is
plausible that strong deformations be paradoxically of l
free energy than weak deformations, giving rise to fre
energy barriers. If we were able to prepare a vortex st
free from large surface distortions, in the region of the ph
diagram usually assigned to the vortex liquid, we should
trieve a nonzero critical current at the first onset of a
current. An experiment is planned to verify this assumpti
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