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Abstract

The quantum resistance and capacitance of a mesoscopic RC-circuit made of a small dot connected to a lead by a QPC

realized in a 2DEG are measured for the first time. Contrary to what can be naively expected, in the coherent regime the

resistance is not given by the Landauer formula but is nearly constant and is found to be close to half the resistance according

to Buttiker’s ac quantum scattering theory.
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We present measurements of the a.c. conductance

of a mesoscopic RC circuit. The capacitor is made of

a macroscopic metallic electrode on top of a 2DEG

sub-micrometer dot defining the second electrode. The

resistor is a Quantum Point Contact (QPC) connect-

ing the dot to a wide 2DEG macroscopic reservoir, as

schematically shown in Fig. 1(a). We address the meso-

scopic regime where electrons emitted from the reser-

voir to the dot are backscattered without loss of coher-

ence. In this new regime, we have checked for the first

time the counter-intuitive prediction made in Ref.[1]

that the resistance, also called charge relaxation resis-

tance, is no longer given by the Landauer formula but

remains constant and ideally equal to h/2e2 when the

QPC transmission is varied .

According to [1], in the coherent regime and when a

single mode is transmitted, the mesoscopic capacitor is
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Fig. 1. Mesoscopic capacitor connected to a 2D lead by a
QPC and coherent and incoherent regime equivalent circuit.

represented by the equivalent circuit of Fig. 1(b). The

electrical capacitance C is in series with the quantum

admittance gq(ω) relating the ac current flowing to the

QPC to the ac internal potential of the dot:

gq(ω) =
1

h
2e2 + 1

−iωCq

(1)
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It represents the series addition of the quantum ca-

pacitance Cq = e2 dN
dε

associated with the local density

of state dN
dε

of the mode propagating in the dot with a

constant contact resistance h/2e2. The striking effect

of phase coherence is that the transmission probability

D only affects the quantum capacitance but not the

resistance. Indeed, an electron emitted from the reser-

voir returns with unit probability in the same (unique)

reservoir. In the incoherent regime, Fig 1(c), both re-

sistance and quantum capacitance vary with transmis-

sion. The dot forms a second reservoir and the elec-

trochemical capacitance Cµ =
CCq

C+Cq
is in series with

QPC resistance whose conductance is now given by the

Landauer formula.

Several samples have been measured at low tem-

perature, down to 30mK, which show similar features.

We present here measurements on two samples made

with 2D electron gas defined in the same high mobility

GaAsAl/GaAs heterojunction, with nominal density

ns = 1.7 × 1015m−2 and mobility µ = 260V.m−2s−1.

Their geometry is similar to that of Fig. 1(a). A pair

of QPC gates, d.c. voltage VG1 , controls the trans-

mission and a gate G2 defines the counter-electrode,

capacitance C0, to apply both microwave voltage Vac

and dc voltage VG2 . The dots are patterned by shal-

low etching. Their targeted lithographic size is about

1000nm (1500nm) long for sample I and II respectively

and 1000nm wide. To estimate the real size one has

however to subtract about 300nm to each dimensions

to take into account edge depletion. The coupling ca-

pacitor C0, part of the total electrical capacitance dot

C, overlaps partly the dot over an area ' 0.5µm2. C0

being in the sub-fF range, GHz frequencies are used

such that 1/C0ω is about ten times h/2e2. Higher fre-

quencies are not suitable for ~ω, ' 50mK at 1 GHz,

would become much larger than kBT and comparable

to other energy scales, complicating the analysis. To

perform measurements of the complex mesoscopic ca-

pacitor admittance the rf source of a monochromatic

radio-frequency synthesizer is attenuated by 80dB and

sent to G2. The current induced in the mesoscopic ca-

pacitor is detected by measuring the ac voltage on a

50 Ohms characteristic impedance coaxial line in series

with the ohmic contact to which the electron reservoir

is connected. The signal is sent to an ultra low noise

cryogenic amplifier followed by room temperature am-

plifiers. Two mixers using the reference source signal

and a 90◦ phase shifter allow to simultaneously detect

real Re(G) and imaginary Im(G) parts of the admit-

tance G = −iωC
−iωC+gq(ω)

[2]. In the limit of small resis-

tance compared to 1/Cµω:

G ' −iωCµ + Rq(ωCµ)2 + ... (2)

The imaginary part measures the electrochemical ca-

pacitance and the real part contains information on the

charge relaxation resistance Rq expected constant and

' h/2e2 for one orbital mode in the coherent regime at

T = 0. Finally, the detection bandwidth is 1-2 GHz and

the '12K amplifier noise temperature allows to detect

'4pA in one second. The ac current range never ex-

ceeds '80pA such that the linear response is ensured.

To protect the sample from electromagnetic environ-

ment noise the attenuators are placed at low temper-

ature and two cryogenic rf circulators in series, one at

the lowest temperature, are inserted before the first

amplifier.
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Fig. 2. imaginary (a) and real (b) admittance versus QPC
voltage measured in sample II. Only, the last orbital mode
before pinch-off is probed here. Im(G) is normalized to 1
at full transmission. In (c) and (d): admittance calculated
for a non-interacting 1D model. (d) dashed curve: QPC
transmission used for the calculation.
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We now present the experimental results. We em-

phasize that the present approach differs from pre-

vious capacitance measurements where, for spectro-

scopic purpose, the dot-reservoir coupling was weak

and the regime was incoherent [3]. Also, in these exper-

iments, the charge relaxation resistance was not mea-

sured. Fig. 2(a)-(b) display Im(G) and Re(G) versus

the QPC gate voltage obtained for sample II at 35mK,

B ' 0T and 1.3GHz. From left to right we can distin-

guish two regimes. Starting from the pinch-off regime

fast growing peaks in both Im(G) and Re(G) are ob-

served. Then Im(G) reaches a maximum and a sec-

ond regime occurs where Im(G) oscillates nearly sym-

metrically around a plateau and the oscillation am-

plitudes decrease smoothly. Simultaneously peaks in

Re(G) quickly disappear to vanish in the noise. To get

better insight, it is interesting to compare with the re-

sults expected from [1] for a simplified 1D model with

one mode. The zero temperature quantum capacitance

is:

Cq =
e2

∆

1− r2

1− 2r cos 2π ε
∆

+ r2
(3)

where r, r2 = 1−D, is the reflection amplitude mod-

ulus, ∆ the energy level spacing and ε the energy. The

capacitance averaged over energy coincides with the

r = 0 value e2/∆ expected for the density of state in

1D. When reflection increases Cq shows growing oscil-

lations between two extrema e2

∆
1+r
1−r

and e2

∆
1−r
1+r

. For

strong reflection it displays resonant Lorenzian peaks
e2

∆
1+r
1−r

1
1+(2δε/~Γ)2

, with ~Γ = D∆ and δε = ε − εres

denotes the energy departure from a resonant dot level

εres at the Fermi energy. At finite temperature, the

conductance gq(ω) formed by the contact resistance

h/2e2 and the quantum capacitance in series becomes:

gq(ω) =

∫
dε(−∂f

∂ε
)

1

h/2e2 + 1/(−iωCq)
(4)

In the large transmission regime (r → 0) capaci-

tance oscillations are reduced by the visibility factor

(2π2kBT/∆)/ sinh (2π2kBT/∆). In the weak transmis-

sion regime, when ~Γ ¿ kBT , the capacitance peaks

are thermally broaden with Cq ' e2

4kBT cosh(δε/2kBT )2

and the resistance is no longer constant. 1/Rq '
D e2

h
∆

4kBT cosh(δε/2kBT )2
is reminiscent of the thermally

broaden resonant tunneling conductance formula: the

Landauer formula is recovered. Figs. 2(c-d) show the

calculated Im(G), Re(G) with ∆ ¿ e2/C. VG1 is

assumed to vary both the 1D dot potential and the

transmission D (dashed line in Fig. 2(d)). The similar-

ity with the experimental conductance traces is strik-

ing. It is important to note that in a real system the

weak transmission regime is accompanied by Coulomb

blockade effects not taken into account in this simple

model. A T = 0 an elastic co-tunneling approach, valid

at weak transmission, shows no qualitative change

except in the energy scale which has to include the

charging energy ( ∆ replaced by e2/Cµ). At present,

for finite temperature and large transmission, no avail-

able model exists which could include both charge

relaxation resistance and quantum capacitance.

Low temperature conductance traces for an other

sample (sample I) at different frequency (1.085 GHz)

show similar features, Fig. 3(a). In Fig. 3(b) we have

numerically calculated the reciprocal of the admit-

tance to display the real and imaginary part of the

impedance to study the weak reflection regime. Ca-

pacitances and resistance being in series, one expects

that the charge relaxation resistance and the recipro-

cal of the electrochemical capacitance separate into

the real and imaginary part respectively. While the

capacitive part shows growing oscillations when the

transmission is reduced with QPC gate, we find a

large region ( VG1 > −0.76Volts) where the resis-

tance remains constant. For lower VG1 however both

resistance and capacitance strongly vary. The sepa-

ration between the two regimes is best depicted on

the Nyquist diagram where Im(G) is plotted against

Re(G). Constant resistance variations are expected to

follow a circle centered on the real axis while constant

capacitance variations follow a circle centered on the

imaginary axis. Data are shown in Fig. 3(c) and re-

sults of the previous calculation are shown in Fig. 3(d)

for qualitative comparison. The capacitance oscilla-

tions of the weak reflection regime follow the dashed

line circle demonstrating again a constant resistance

regime. On the other hand, at weak transmission, in

the thermally broaden regime, both capacitance and

resistance vary and their resonant peaks show a series

of lobes which fan out. At capacitance minima, as kBT

is lower than the energy separation, the thermal has

negligible effect and the loci of the minima are shown

to still follow the constant resistance line. This shows

that the constant resistance prediction is well verified

even in the regime of weak transmission.

Finally, it is interesting to estimate the absolute

value of the constant contact resistance Rq. Measuring
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Fig. 3. imaginary and real admittance observed in sam-
ple I (a) and (b) numerically calculated corresponding
impedance. The Nyquist representation (c) shows that ex-
cept for the first thermally broaden peaks, the admittance
variation follow a constant resistance circle. (d) Nyquist
plot of the 1D model. Dashed (dotted) curves correspond
to circle with constant resistance (capacitance) variations.

the absolute value of the admittance is a possibility.

However at GHz frequencies calibration of the whole

detection chain and of the coupling to the sample is dif-

ficult and accuracy is not better than 3dB. Comparing

real and imaginary part is another option. In the weak

reflection regime, the signal phase is ' 1/RqCµω. It

can be known within one degree accuracy. Thus it re-

mains to determine Cµ to estimate Rq. To do that we

choose the clean situation of high magnetic field where

edge states form. We concentrate on the last transmit-

ted ν = 1 edge channel while ν ' 4 in the 2D reservoir.
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Fig. 4. Impedance of sample I in the QHE regime. The inset
shows the visibility of the capacitance variations versus
temperature (closed circles). The dashed line fit allows to
extract Cµ so calibrating the impedance scale used.

Here spin degeneracy is lifted and Rq is expected to

be h/2e2. The 1D type density of state makes ∆ and

e2/C contributing nearly equally to the charging en-

ergy e2/Cµ. To determine e2/Cµ we used the temper-

ature dependence of the visibility of the capacitance

oscillations at large transmission which should vary

as (2π2kBT/∆∗)/sinh(2π2kBT/∆∗) (Fig. (4), inset).

Identifying ∆∗ ' 0.9K to e2/Cµ, we have plotted the

measured real and imaginary part of the impedance.

We estimate Rq = 10.5 ± 3kOhms. Probably, in the

weak reflection regime, ∆ < ∆∗ < e2/Cµ [4] and Rq

may be underestimated, but it is definitely lower than

h/e2. In conclusion we have shown for the first time

that the charge relaxation resistance remains constant

for a coherent mesoscopic capacitor when transmission

varies. Further data are needed to accurately identify

Rq to h/2e2.
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