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Modeling of the single electron source

To compare experiments and theory, we use the simplified 1D model of a Quantum Dot
coupled to the 2D lead by a QPC transmitting one channel. When considering the linear
response of the current to a small amplitude high frequency voltage applied the top gate, the
system is a quantum R-C circuit. It was studied and described in ref.[1]. When a square
wave voltage of high amplitude is applied, the system becomes a Single Electron Source and
a source of quantized ac current.

From ref.[2], it is found that the Coulomb blockade effect can be neglected in a first
approximation. To model the dot spectrum we use a constant energy level spacing ∆ which
is a good approximation in the edge state regime. Denoting r and t the amplitude reflection
and transmission coefficients of the QPC (r2 = 1 − D, t =

√
D), we first calculate the

scattering amplitude of the RC circuit at energy ε:

s(ε) = r − t2eiϕ
∞∑

n=0

(reiϕ)n =
r − eiϕ

1− reiϕ

where ϕ = 2πε/∆ is the phase accumulated for a single turn in the quantum dot. Then, the
dot density of states is given by:

N(ε) =
1

2iπ
s+ ∂s

∂ε
=

1
∆

1− r2

1− 2r cos 2π ε
∆ + r2

To model the transmission D dependence on the voltage VG applied on the QPC gate, we
use a Fermi-Dirac like function [3]:

D(VG) =
1

1 + e−
VG−V0

∆V

Screening effects may lead to slight changes of the above formula, but practically we have not
seen any obvious modifications. VG also controls dot potential by capacitive coupling which is
modeled here by a linear shift of the dot energy spectrum. This model was successfully used
to describe the linear response of quantum RC circuits [1] using the appropriate expressions
of the admittance in the case eVexc << ~ω [4]. Figure 1 shows that it accounts very well for
phase resolved measurements of the linear-regime admittance. Here the model is compared
with data taken on the sample used in the present paper. The agreement is very good using a
unique set of parameters (∆, V0, ∆V and geometric capacitance) for a wide frequency range
(0.18-1.5 GHz). From this comparison, we thus know accurately the transmission of the QPC
as a function of VG (V0 = −896mV and ∆V = 2.9 mV ) as well as the charging energy of the
dot (∼ 2.5K) and the geometrical capacitance (C ≥ 3fF , which corresponds to 0.6 K).

In the present paper, the same model is used to describe the non linear response of our
circuit, using equation (1) below. As discussed in the main text (see fig.4), full agreement with
experiment is achieved taking as only parameters the one extracted from the linear response.
In figure 2, we present more experimental data supporting this quantitative agreement for
the full range of dot potential.

Calculation of the charge injection:

We calculate the current in the circuit in response to a high-amplitude periodic square ex-
citation (eVexc >> ~ω where 2Vexc is the peak to peak amplitude). Our calculations are a
direct extension of the work of Büttiker et al.[4], which was devoted to the case of a small
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Figure 1: Complex conductance G of our sample as a function of the gate voltage VG at T =
200 mK for f = 0.18, 0.515 and 1.5 GHz : Experimental results (black lines) and simulations
(red lines). For clarity, we have plotted Im(G) > 0 and −Re(G) < 0.

amplitude sine excitation (eVexc << ~ω). In our calculations [5], the effect of the geometri-
cal dot capacitance is neglected (e2/C << ∆) which is justified by the experimental values
(C ≈ 4e2/∆). We calculate the low frequency expansion of the (2k + 1)th harmonic of the
current:

I(2k+1)ω =
i2Vexc

π(2k + 1)

∫
dε

[
− i(2k + 1)ωe2N(ε) +

h

2e2
[e2N(ε)(2k + 1)ω]2

] f(ε− 2eVexc)− f(ε)
2eVexc

(1)

where i2Vexc/π(2k + 1) is the (2k + 1)th harmonic of the excitation voltage and N(ε) is the
dot density of states. The above equation shows that, in the non-linear regime, our circuit is
still equivalent to an RC circuit with Vexc-dependent capacitance and resistance given by:

C̃q = e2

∫
dεN(ε)

f(ε− 2eVexc)− f(ε)
2eVexc

R̃q =
h

2e2

∫
dεN(ε)2 f(ε−2eVexc)−f(ε)

2eVexc

[
∫

dεN(ε)f(ε−2eVexc)−f(ε)
2eVexc

]2
.

In the time domain, this correspond to an exponientally decaying current :

I(t) =
q

τ
e−t/τ

q = C̃q × 2Vexc

τ = R̃qC̃q
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Figure 2: |Iω| as a function of 2eVexc/∆ for different dot potentials at D ≈ 0.2 (left) and
D ≈ 0.9 (right). Points correspond to experimental values and lines to theoretical predictions.
Insets: schematic representation of the dot density of states N(ε)
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[2] J. Gabelli, PhD thesis, Université Pierre et Marie Curie, Paris, 2006. On line access at
http://tel.archives-ouvertes.fr/tel-00011619
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