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We report on spin-dependent transport measurements in carbon nanotubes based multiterminal circuits. We
observe a gate-controlled spin signal in nonlocal voltages and an anomalous conductance spin signal, which
reveal that both the spin and the orbital phase can be conserved along carbon nanotubes with multiple ferro-
magnetic contacts. This paves the way for spintronics devices exploiting both these quantum-mechanical
degrees of freedom on the same footing.
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I. INTRODUCTION

The scattering imbalance between up and down spins at
the interface between a nonmagnetic metal and a ferromag-
netic metal is at the heart of the principle of the magnetic
tunnel junctions or multilayers celebrated in the field of
spintronics.1,2 Although these devices use the quantum-
mechanical spin degree of freedom and electron tunneling,
they do not exploit a crucial degree of freedom involved in
quantum mechanics: the phase of the electronic wave func-
tion. In most of the devices studied so far, this aspect has not
been developed owing to the classical-like motion of charge
carriers in the conductors used.3

Quantum wires or molecules have emerged recently as a
promising means to convey spin information.4–11 In these
systems, the electronic gas is confined in two or three direc-
tions in space, making quantum effects a priori prominent.
In this context, most of the studies have been carried out in
two terminal devices, i.e., with two ferromagnetic contacts.
The need for integration and more complex architectures for
manipulating spin information12–16 brings on the question of
what happens when a spin active nanoscale conductor is con-
nected to more than two reservoirs. Multiterminal transport
has been central in �spin-independent� mesoscopic physics,
in particular with the observation of nonlocal electric signals
due to the delocalization of electronic wave functions.17–19

Can this quantum-mechanical nonlocality survive and ulti-
mately be exploited in spintronics devices combining nano-
scale conductors and ferromagnets?

In this paper, we address this question through multiter-
minal spin-dependent transport measurements in single wall
carbon nanotubes �SWNTs� with ferromagnetic and nonmag-
netic contacts. Nonlocal voltage and conductance measure-
ments reveal that the spin as well as the orbital phase are
conserved along the whole active part of our SWNTs. We
observe a nonlocal spin-field effect transistorlike action
which is a natural consequence of quantum interference in a
few channel conductor. In spite of the inherent complexity of
the spectrum of our devices, we can account well for our
findings using a simple theory based on a scattering ap-
proach. These results bridge between mesoscopic physics

and spintronics. They open an avenue for nanospintronics
devices exploiting both the spin and the orbital phase degrees
of freedom, which could provide new means to manipulate
the electronic spin, because the orbital phase of the carriers
can easily be coupled to the local electric field in nanoscale
conductors.

The principle of nonlocal transport measurements is to
use a multiterminal structure with two terminals playing the
roles of source and drain and the others the role of nonlocal
voltage probes. Since the pioneering work by Johnson and
Silsbee in metals,20 nonlocal spin-dependent voltages have
been studied in various multichannel diffusive circuits based
on semiconducting heterostructures,21 metallic islands,22 and
graphene.23 These signals are well captured using a classical
bipartite resistors network, with two branches corresponding
to opposite spin directions.24 The nonlocal spin signal stems
from the imbalance between the up spin and down spin
branches of the network, which reflects the imbalances be-
tween, e.g., the two spin populations. Importantly, this inter-
pretation is valid only when one can neglect quantum-
mechanical nonlocal signals which arise from the
delocalization of the carrier’s wave function.

Coherence effects induce only corrections to transport at
low temperatures in metals or semiconducting heterostruc-
tures which involve many conducting channels.25 In contrast,
coherence becomes essential in understanding transport in
molecules or quantum wires where quantum mechanics pri-
marily controls conduction. The studies of nonlocal spin
transport in the coherent regime have been elusive so far.
Here, we use the high versatility of SWNTs to achieve the
required devices and to explore these phenomena. We ob-
serve a gate-controlled spin signal in nonlocal voltages and
an anomalous spin conductance which are specific to the
coherent regime.

II. EXPERIMENTAL SETUP

We use the measurement scheme represented on Fig. 1�a�.
Our devices are made out of a SWNT connected to four
electrodes labeled 1, 2, 3, and 4 from the left to the right,
with two and three ferromagnetic NiPd electrodes and one
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and four nonmagnetic Pd electrodes. In addition, the device
is capacitively coupled to a backgate electrode with voltage
VBG and two side gate electrodes with respective voltages
VSG1 and VSG2, acting mainly on sections 12 and 34 of the
nanotube, respectively. Throughout the paper, the tempera-
ture is set to 4.2 K.

A SEM picture of a typical device is shown in Fig. 2�a�.
We use chemical vapor deposition with a standard methane
process to fabricate our SWNTs on a Si substrate. We local-
ize the SWNTs with respect to Au alignment markers by
scanning electron microscopy �SEM� or atomic force micros-
copy �AFM�. We fabricate the contacts and gates using stan-
dard e-beam lithography and thin-film deposition techniques.
We deposit the normal and the ferromagnetic contacts in one
fabrication step using shadow evaporation techniques. The
central ferromagnetic electrodes consist of a 30-nm-thick
Ni0.75Pd0.25 layer below a 70-nm-thick Pd layer. The normal
contacts consist of 70 nm of Pd. Such a method allows us to
achieve two probe resistances as low as 30 k� between the
normal and the ferromagnetic reservoirs. In addition to the
highly doped Si substrate with 500 nm SiO2 which is used as
a global backgate, we fabricate two side gates whose volt-
ages VSG1 and VSG2 are used to modulate transport in our
devices. Each nanotube section defined in this manner has a
length ranging from 300 nm to about 600 nm.

Our measurements are carried out applying an ac bias
voltage Vsd of about 200–300 �V between the normal elec-
trode 1 and the ferromagnetic electrode 2 at a typical fre-
quency of 77.7 Hz. This generates a finite nonlocal voltage
V34 between the ferromagnetic electrode 3 and the normal
electrode 4. We also measure simultaneously the conduc-
tance G=dI12 /dVsd. Note that a finite V34 has already been

observed in similar but nonmagnetic devices due to coherent
propagation of electrons in the SWNT and lifting of the
K /K� degeneracy.19 Here, we focus on the specific effects
due to ferromagnetic leads. A spin contrast is obtained by
comparing the electric signals in the parallel �P� configura-
tion �magnetizations of electrodes 2 and 3 pointing in the
same direction� and in the antiparallel �AP� configuration
�magnetizations pointing in opposite directions�. A finite
magnetic field is applied in plane parallel to the easy axis of
the ferromagnetic electrodes �for samples I and III�, which is
transverse as shown by MFM characterization carried out at
room temperature �see Fig. 2�b��. The observed magnetic
contrast shows the presence of large transverse domains of a
typical size of 1 �m. Due to the different widths of, respec-
tively, 150 and 250 nm, the coercive fields of the two ferro-
magnetic electrodes are different. Generally, this leads to a
sharp switching at about 50 mT for one of the electrodes. For
the lower field switching, it turns out to be more difficult to
obtain systematically switchings as sharp as those of sample
I. The P and AP configuration can be obtained selectively
by sweeping the external magnetic field. We determine
MV=V34

P −V34
AP and MG=100�1−GAP /GP�.

III. GATE CONTROLLED NONLOCAL SPIN SIGNAL

The magnetic field dependence of the nonlocal voltage
V34 of sample I is shown in Fig. 1�b�. Upon increase and
decrease in the external magnetic field H, the characteristic
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FIG. 1. �Color online� �a� Schematics diagram of the devices
studied in the article. �b� Nonlocal voltage V34 for sample I as a
function of the external magnetic field H for side gate voltages
VSG1=−8.76 V, VSG2=−6.00 V, and a back gate voltage
VBG=−11.772 V.
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FIG. 2. �Color online� �a� SEM picture of sample I. The NiPd
electrodes are highlighted in blue and the Pd stripes are highlighted
in yellow. The SWNT is highlighted in purple. The orange scale bar
is 1 �m. �b� MFM characterization of the NiPd electrodes at room
temperature on a test device similar to sample I without the SWNT.
The black scale bar is 1 �m.
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hysteretic switching of a spin valve is observed. We observe
sharp switchings which show that the external field is well
aligned with the magnetic anisotropy of both electrodes in
this case. Upon increasing H �see red line in Fig. 1�b��, we
obtain the AP configuration for H� �10 mT;50 mT�, and
the P configuration otherwise. For the particular gate voltage
set used in Fig. 1�b�, V34 changes from V34

P =−0.12 �V to
V34

AP=−0.25 �V upon switching from the P to the AP con-
figuration, leading to a finite MV. Unlike the majority of our
samples, this spin signal is superimposed to an intrinsic
background here �see discussion in Sec. IV�. A finite MV has
already reported in multichannel incoherent diffusive
conductors.21,22,26 One of the main results of the present
work is the observation of a gate control of MV, as a conse-
quence of quantum interferences, which contrasts with these
previous works. Such a fact not only sheds light on the pe-
culiar nature of spin injection in coherent few channel con-
ductors but also allows to rule out nonspin injection effects
related to stray fields for example as we will see in Sec. IV.

As soon as a metallic electrode is deposited on the top of
a SWNT, a scattering region is created below the contact,
which partially decouples the two sides of the nanotube de-
fined by the electrode. The multidot nature of our devices
appears on Fig. 3�a�, where V34

P is represented in a grayscale
plot as a function of VSG1 and VSG2 for sample I. We observe
white horizontal and vertical stripes rather regularly spaced,
which correspond to negative antiresonances in V34

P . Such a
“tartan” pattern is very much alike the stability diagram of a
double quantum dot in the electrostatically decoupled
regime.27 The stripes correspond to discrete energy levels
“engineered” by defining the three different sections of the
nanotube with the four electrodes. The fact that horizontal as
well as vertical stripes are observed shows that the side gate
electrodes control essentially independently different parts of
the device, which carry different energy levels. Our devices
can be seen as a series of three Fabry-Perot electronic inter-
ferometers with local gate control. The nature of the coupling
between these interferometers is a crucial question for the
development of orbitally phase coherent spintronics.

One can measure the spin signals by placing the system in
the remanent state of magnetization either in the P or in the
AP configuration �for samples with a sufficiently high stabil-
ity�. This is done by imposing to the device a “minor loop”
which is represented in Fig. 3�b�. In such a cycle, the mag-
netic field is swept in such a way as to reverse selectively
one magnetization without reversing the other. Depending on
how the external field is swept back to zero, one can reach
either the P or the AP configuration. Then, for each of these
configurations, we measure in a single shot the gate depen-
dence of V34. This method has been used to obtain MV in
Fig. 2�c�. The existence of quasi bound-states inside the
nanotube induces variations in both V34 and MV as a func-
tion of the gate voltages. This effect can be observed when
VSG2 is swept, VSG1 being kept constant, for example �see
Fig. 3�c��. The interference fringes observed correspond to
the “tartan” pattern of Fig. 3�a�. For VSG1=−8.76 V and
VBG=−11.772 V, V34

P and V34
AP evolve almost in parallel as a

function of VSG2. This results in a weakly gate dependent MV
with a constant positive sign as shown in Fig. 3�c�. We find
that V34

P and V34
AP can be of opposite sign, as well as of the

same sign depending on the values of VSG2 and VSG1. In
carbon nanotubes, this phenomenon originates both from
transverse and longitudinal size quantization.

In the spectroscopy of our devices, Coulomb blockade
effects are generally absent �see, e.g., Fig. 6�b��. This moti-
vates a comparison between our data and the noninteracting
scattering model of Ref. 32 �see Appendix for details�. This
model uses four scattering channels to account for the up or
down spins and the K and K� orbitals of carbon nanotubes.
For simplicity, we assume that the spin and K /K� degrees of
freedom are conserved along the whole device. Between two
consecutive contacts i� �1,2 ,3� and j= i+1, electrons ac-
quire a “winding” quantum-mechanical phase �ij. The effect
of each metal/nanotube contact is described with a scattering
matrix which depends on the contact transmission probabil-
ity. In the case of a ferromagnetic contact, we also take into
account the spin polarization of the transmission probabili-
ties and the spin dependence of interfacial phase shifts
�SDIPSs�.28,29 This scattering model is fully coherent, i.e.,
the phase of the electronic wave function is conserved even
when electrons pass in the nanotube sections below the fer-
romagnetic contacts 2 and 3. The results of the scattering
theory of Ref. 32, shown in magenta in Fig. 3�c�, are in
qualitative agreement with our data. The variations in V34

P are
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FIG. 3. �Color online� �a� Grayscale plot showing the tartan
pattern of the non local voltage V34

P of sample I in the P
configuration. �b� “Minor hysteresis loop” for the nonlocal voltage
V34 of sample I for VSG1=−8.76 V, VSG2=−6.00 V, and
VBG=−11.772 V. �c� V34

P and MV as a function of VSG2. In purple,
the prediction from the multiterminal scattering theory of Ref. 32
with the parameters described in the Appendix.

CONSERVED SPIN AND ORBITAL PHASE ALONG CARBON… PHYSICAL REVIEW B 81, 115414 �2010�

115414-3



well accounted for as well as the sign and the order of mag-
nitude of MV. Importantly, the coherent model of Ref. 32
involves resonance loops which are extended on several sec-
tions of the nanotube, e.g., between leads 1 and 3.

The gate modulations of V34
P as well as the gate depen-

dence of MV is a natural consequence of delocalization of
the electronic wave function in our devices. Similarly to op-
tics, the multiple reflections at the contacts give rise to �elec-
tronic� interference which lead to gate modulations of the
physical signals. It is important to note that the origin of this
gate modulation is not related to the spin-orbit interaction
which lead to energy splittings of the order of 0.4 meV in
SWNTs.30 This fact will become even clearer in Sec. V
where we identify the energy scale responsible of the modu-
lations as the single particle level spacing of one of the NT
section �namely, section 12�. Finally, it is important to note
that here, contrary to the multichannel diffusive case, coher-
ence naturally couples the spin and the charge of carriers.
Therefore, a nonlocal measurement does not “separate spin
and charge transport” as is often stated11 in the coherent few
channel case. Rather, it gives a new path for manipulating
spin information with electric fields at low temperature.

IV. BACKGROUND MAGNETORESISTANCE AND STRAY
FIELD EFFECTS

As one can see in Fig. 1�b�, there is a finite background
for the nonlocal voltage as a function of the magnetic field,
superimposed to the hysteresis. This might question the ef-
fect of the stray fields on the observed signals. Note, how-
ever, that no background is observed in Figs. 5�a� and 5�c�, a
behavior which is common to the majority of our samples.
This makes the device essentially insensitive to stray fields
for the majority of samples studied. In order to rule out the
stray field effects for sample I, we present in Fig. 4 hysteresis
loops for two of the different gate voltages, namely,
VSG2=−6.0 V and VSG2=−2.65 V. The curves for
VSG2=−2.65 V have been shifted up to make them coincide
with those for VSG2=−6.0 V at zero field. As one can see on

this figure, while the backgrounds are almost exactly the
same �up to small gate shifts�, the MVs clearly differ. There-
fore, the observed gate dependence of the MV for sample I
cannot be attributed to stray field effects.

V. ANOMALOUS NONLOCAL MAGNETORESISTANCE

In the multichannel diffusive incoherent regime, a hyster-
etic nonlocal voltage can arise, but one can show that the
intrinsic locality of charge transport makes it very difficult
for the conductance G=dI12 /dVsd to depend on the relative
magnetic configuration of the ferromagnetic electrodes.3,31

This contrasts with our devices as shown in Figs. 5�b� and
5�d�, where MG�0 is obtained. In order to show that the
spin signals observed in G and V34 arise from a property of
the device as a whole, it is crucial to measure G and V34
simultaneously. In Figs. 5�a� and 5�b� �respectively, 5c and
5d�, the magnetic field dependences of the nonlocal voltage
and the conductance of sample II �respectively, III� are
shown for different gate voltages. A hysteresis is observed
simultaneously for both quantities upon cycling the magnetic
field. For the measurements of Figs. 5�a� and 5�b�, contrarily
to the two other samples presented in this article, the external
magnetic field has been applied in plane, perpendicular to
the magnetic anisotropy of the ferromagnetic electrodes. In
such a situation, the motion of the magnetic domains often
displays a complex behavior which is revealed by the com-
plex switching features of both V34 and G in Figs. 5�a� and
5�b�. Because of their complexity, these features show that
the hysteretic behaviors of V34 and G have strong correla-
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FIG. 4. �Color online� Nonlocal voltage V34 for sample I as a
function of the external magnetic field H for VSG2=−6.0 V and
−2.65 V. The curves for VSG2=−2.65 V has been shifted up to
make them coincide with those for VSG2=−6.0 V at zero field.

FIG. 5. �Color online� �a� Nonlocal voltage V34 for sample II as
a function of the external magnetic field H for VSG1=0.00 V,
VSG2=0.00 V, and VBG=4.04 V or VBG=3.23 V. �b� Similar plot
for G of sample II. �c� Nonlocal voltage V34 for sample III as a
function of H for VSG1=−5.00 V, VBG=−5.455 V, and
VSG2=−9.4 V or VSG2=−0.8 V. �d� Similar plot for G of sample
III for VSG1=−5.00 V, VBG=−5.455 V, and VSG2=4.8 V or
VSG2=−0.8 V.
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tions. As expected, we obtain more regular switchings if the
magnetic field is applied along the easy axis anisotropy, as
shown in Figs. 1�b�, 5�c�, and 5�d�. As highlighted by the
vertical dashed green lines, both the shape and the sign of the
spin signals are again strongly correlated, which confirms
that they have the same physical origin, i.e., the change in
the relative magnetic configuration of the two ferromagnetic
contacts. Due to quantum interferences, MG naturally de-
pends on VSG2 �see Figs. 5�b� and 5�d��.32 Therefore, we
observe a spin-field effect transistor action which is nonlocal
with respect to the position of both the ferromagnetic elec-
trodes and the gates. Note that in Figs. 5�a� and 5�c�, we
observe a negative MV. This behavior is specific to the co-
herent regime and can be reproduced with the model of
Ref. 32.

The dependence of G and its hysteretic part
MG=100�1−GAP /GP� on the side gate voltages further re-
veals how the spin signals are affected by nonlocal quantum
interferences. Figure 6�a� displays the colorscale plot of G as
a function of VSG1 and VSG2 for sample III. As indicated by
the tilted red stripes, interference fringes are observed in the
conductance. The modulations in G are controlled essentially
by a single winding phase, namely, �12, which can be tuned
via VSG2 or VSG1. As shown in Fig. 6�b�, the colorscale plot
of the normalized G as a function of Vsd and VSG2 displays
the characteristic Fabry-Perot pattern with a level spacing of
about 5 meV, consistent with the lithographically defined
length L12 of about 300 nm and a Fermi velocity of
8�105 m /s. The simultaneous measurement of G and MG
as a function of VSG2 is shown in Fig. 6�c�. Here, we have

measured MG versus VSG2 by recording a full hysteresis
cycle for each set of gate voltages. As shown on the bottom
panel, GP oscillates from 0.008 to 0.017�e2 /h when VSG2 is
swept. Oscillations of about 30% are also found in MG. The
solid magenta lines correspond to the result of the scattering
theory at T=4.2 K. We find a very good agreement with our
experimental findings. From the theoretical fit of Fig. 6�c�,
we conclude that MG varies due to changes in �34 but also
�23 and �12. First, the gate electrode 2, which is nearby sec-
tion 34 of the device, also acts on �12 and �23 thanks to the
long range nature of Coulomb interaction �an effect de-
scribed, e.g., by �12�0 in the Appendix�. Second, the MG
signal is also affected by VSG2 due to the spatial extension of
the carriers wave function over the whole device. The non-
local transistorlike action shown in Fig. 6�c� is therefore non-
local electrostatically and quantum mechanically. Impor-
tantly, in Fig. 6�c�, the position of the maxima in GP do not
coincide with those of MG as highlighted by the vertical
orange dashed lines. This reveals that GAP oscillates in a
similar fashion as GP but with a different phase. The phase
shift between GP and GAP clearly illustrates that the phase of
the carriers is conserved upon scattering below the ferromag-
netic contact 2. Indeed, this effect can only be explained by
invoking coherent electronic wave functions which extend
from contact 1 to 3 at least, and give rise to spin-dependent
resonance effects sensitive to the magnetic configuration of
both leads 2 and 3. The theoretical curve of Fig. 6�c�
reproduces accurately this effect. We conclude that, in our
devices, both the spin and the orbital phase are conserved
over the whole active part of the nanotube even below the
ferromagnetic contacts.

VI. CONCLUSION

In this work, we have studied various non-local transport
phenomena in single wall carbon nanotubes connected to
two ferromagnetic and two normal electrodes. These multi-
terminal spintronics devices exploit actively both the spin
and the orbital phase degrees of freedom on the same foot-
ing, in spite of the use of ferromagnetic elements. These
findings could have interesting implications for the manipu-
lation of the electronic spin in nanoscale conductors.
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APPENDIX: MODELING OF OUR DEVICES

Throughout the paper, we use the theory of
Ref. 32 to explain our experimental findings.
Each of our device is characterized by the
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FIG. 6. �Color online� �a� Colorscale plot of GP as a function of
VSG1 and VSG2 for sample III. �b� Colorscale plot of the normalized
G of sample III as a function of Vsd and VSG2. �c� Simultaneous
variations of MG and GP as a function of VSG2 for sample III.
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set �T1K ,T1K� ,T2 , P2 ,�2
R ,��2

R ,�2
T ,��2

T ,T3 , P3 ,�3
R ,��3

R ,
�3

T ,��3
T ,T4K ,T4K� ,CQ12,CQ23,CQ34�, where T1�4�K�K�� is the

transmission probability from the normal electrode 1�4� to
the nanotube for the K�K�� orbital, T2�3� is the transmission
probability between the two nanotube sections adjacent to
contact 2�3�, P2�3� is the corresponding tunnel spin polariza-
tion, �2,�3�

T�R� is the spin averaged scattering phase for an elec-
tron transmission below the contact 2�3� �an electron reflec-
tion against 2�3��, and ��2,�3�

R ,��2,�3�
T are the SDIPSs at

contact 2�3� �see Ref. 32�. Due to the unitarity of the contact
scattering matrices, the transmission from lead 2�3� to the
nanotube is set by the above parameters. The results of the
scattering theory at T=4.2 K shown in magenta correspond
to the set �0.25,0.85,0.002,0.4,	 ,0 ,0 ,0 ,0.45,0.4,
	 ,0 ,0 ,0 ,0.29,0.9,11,2.2,18.0� in Fig. 3�c� and to the
set �0.89,0.89,0.000035,0.8,	 ,0.3	 ,0.295	 ,0.7	 ,0.3,
0.8,	 ,0.3	 ,0.175	 ,0 ,0.95,0.95,31,0.12,5.0� in Fig. 6�c�.
The capacitances are in aF units. For the second case, con-
trarily to the case of sample I, we had to include a finite
SDIPS at the ferromagnetic contacts to enhance the ampli-
tude of the oscillations in MG.28,29

We emphasize that the above parameters are subject to
several constraints which minimize substantially the allowed
phase space for our fitting procedure. The capacitances can
be estimated from the resonance patterns in the G and V34
grayscale plots �see Sec. V�. The transmission probabilities
can be estimated from the measurement of the two probe
conductance of each section of the device at room tempera-
ture. The values of G, MG, V34, and MV measured at low-
temperature constraint further the transmission probabilities
but also the scattering phases and the tunnel spin polariza-
tions. Note that for sample III, we find a very small value of
T2 combined with a high value of P2,3 and ��2,�3�

T . These
parameters are necessary to obtain the high MG and very
low GP observed in Fig. 6�c�. The observed zero bias
anomaly in G is a possible signature of electron-electron

interactions. This effect is compensated in Fig. 4�b� by nor-
malizing G by its average Vsd dependence over all the gate
voltages presented in the figure.

To describe the influence of the gate voltages on
the circuit, we introduce the relation �ij
=	CQij�
ijVSG1+�ijVSG2� /e, e being the elementary charge,
CQij =2e2Lij /hvF being the quantum capacitances of each
nanotube section, and the dimensionless couplings 
ij and
�ij being determined by the full electrostatic problem of our
devices.

In determining the gate dependence of the theoretically
expected signals, it is important to supplement the scattering
theory with a self-consistent determination of the electro-
static potential of the circuit. We use a coarse-grained ver-
sion of the Poisson equation which we solve self-consistently
in order to determine the different side gate actions. Our
calculation proceeds along the lines of Ref. 33. We start with
the full electrostatic matrix capacitance of our devices which
can be derived from the electrostatic diagram of Fig. 7. We
use a nearest-neighbor scheme. The total capacitance matrix
CTOT reads as

CTOT =�
CL 0 0 0 0 0 − CL 0 0

0 CR 0 0 0 0 0 0 − CR

0 0 2CFL
0 0 0 − CFL

− CFL
0

0 0 0 2CFR
0 0 0 − CFR

− CFR

0 0 0 0 CG1
0 − CG1

0 0

0 0 0 0 0 CG2
0 0 − CG2

− CL 0 − CFL
0 − CG1

0 C�1
− Cm1

0

0 0 − CFL
− CFR

0 0 − Cm1
C�2

− Cm2

0 − CR 0 − CFR
0 − CG2

0 − Cm2
C�3

� , �A1�

with C�1
=CL+CFL

+Cm1
+CG1

, C�2
=Cm1

+CFR
+CFL

+Cm2
, C�3

=CR+CFR
+Cm2

+CG2
.

In principle, we should determine self-consistently the electrostatic potentials on each section of the nanotube using the full
scattering matrix of the problem. This would go beyond the scope of this work. For the sake of simplicity, we assign a constant
value for the electrochemical capacitance of each section. This assumption is reasonable in our case because the high coupling
of the SWNT to the normal electrodes reduces the energy dependence of the electrochemical capacitance. The self-consistent
equation for the electrostatic potential of each NT section reads as

FIG. 7. �Color online� Electrostatic diagram of our devices. We
assume here only nearest-neighbor electrostatic coupling.
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	�C�1
+ 2CQ12

��UNT12 − Cm1�UNT23 = CG1
�VSG1

− Cm1�UNT12 + �C�2
+ 2CQ23

��UNT23 − Cm2�UNT34 = 0

− Cm2�UNT23 + �C�3
+ 2CQ34

��UNT34 = CG2
�VSG2.


 �A2�

Finally, we get

�
12 �12


23 �23


34 �34
� =�

�C�2
C�3

− Cm2

2 �CG1

C�1
C�2

C�3
− C�3

Cm1

2 − C�1
Cm2

2

Cm1
Cm2

CG2

C�1
C�2

C�3
− C�3

Cm1

2 − C�1
Cm2

2

C�3
Cm1

CG1

C�1
C�2

C�3
− C�3

Cm1

2 − C�1
Cm2

2

C�1
Cm2

CG2

C�1
C�2

C�3
− C�3

Cm1

2 − C�1
Cm2

2

Cm1
Cm2

CG1

C�1
C�2

C�3
− C�3

Cm1

2 − C�1
Cm2

2

�C�2
C�1

− Cm2

2 �CG2

C�1
C�2

C�3
− C�3

Cm1

2 − C�1
Cm2

2

� . �A3�

For a realistic set of capacitances �CL ,CFL
,CR ,CFR

,Cm1
,Cm2

,CG1 ,CG2 ,CQ12,CQ23,CQ34� of about
�10aF ,10aF ,10aF ,10aF ,100aF ,100aF ,1aF ,1aF ,30aF ,1aF ,10aF�, we find 
s and �s which are in good agreement with
the observed slopes in the different tartan patterns. For example, for the above parameters, we get the following coupling
matrix:

�0.00837 0.00311

0.00441 0.00502

0.00328 0.01131
� . �A4�

For each fitting procedure, one has to adjust the values of the 
s and the �s in order to account for the gate dependence of the
observed signals. We use values which are consistent with the above determination. Note that we have omitted the influence
of the back gate voltage here since it is set to a constant value in our measurements.
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