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Current noise spectrum of a single-particle emitter: Theory and experiment
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The controlled and accurate emission of coherent electronic wave packets is of prime importance for future
applications of nanoscale electronics. Here, we present a theoretical and experimental analysis of the finite-
frequency noise spectrum of a periodically driven single-electron emitter. The electron source consists of a
mesoscopic capacitor that emits single electrons and holes into a chiral edge state of a quantum Hall sample.
We compare experimental results with two complementary theoretical descriptions: on the one hand, the Floquet
scattering theory that leads to accurate numerical results for the noise spectrum under all relevant operating
conditions, and on the other hand, a semiclassical model that enables us to develop an analytic description of
the main sources of noise when the emitter is operated under optimal conditions. We find excellent agreement
between experiment and theory. Importantly, the noise spectrum provides us with an accurate description and
characterization of the mesoscopic capacitor when operated as a periodic single-electron emitter.
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I. INTRODUCTION

The development of on-demand single-electron emitters
opens a promising route toward novel nanoscale electronics
based on the coherent manipulation of only a single or a
few electronic wave packets. The chiral edge channels of the
integer quantum Hall effect (IQHE), obtained when a strong
perpendicular magnetic field is applied to a two-dimensional
electron gas, constitute an ideal experimental setup to test
these new concepts in the design of quantum electronic
circuits. It is now possible to fabricate micrometer-sized
electrical networks in which the propagation of electrons
is truly one dimensional, ballistic, and quantum coherent,
thus mimicking the propagation of photons in optical fibers.
Moreover, by depositing metallic split gates on top of the
electron gas, quantum point contacts acting as tunable electron
beam splitters can also be implemented. Using continuous
particle sources, single-electron interferences have already
been observed in electronic Mach-Zehnder interferometers1–3

as well as two-electron interferences in similar systems.4–6

However, for experiments or applications where the timing of
wave packets is important, e.g., for interference experiments
that require particles to arrive simultaneously at the scatterer,
continuous sources are not useful as one cannot control the
emission time of electrons into the conductor. Continuous
sources then need to be replaced by triggered emitters7–13 that
can produce single-particle states in a controllable and timed
manner.

A prime example of a single-electron emitter is the
periodically driven mesoscopic capacitor, consisting of a
submicrometer cavity coupled to an edge state. The device was
first theoretically proposed by Büttiker et al.14 who showed
that the relaxation resistance is quantized in units of h/2e2

independently of microscopic details.15–22 Experimentally, this
prediction was confirmed by Gabelli et al.23 In a subsequent
experiment, Fève et al. showed that the mesoscopic capacitor,
when subject to large periodic gate voltage modulations, can
absorb and re-emit single electrons at gigahertz frequencies,

generating a quantized ac current.7 Several proposals have
been made to coherently manipulate the single-electron states
emitted by such a source in order to observe two-electron
interferences24,25 or electron entanglement.26 The use of two-
particle exchange effects has also been suggested as a means to
visualize the single-electron states generated by the source in a
tomography protocol27,28 allowing for a direct characterization
of the interaction between a single electronic excitation and
its environment.29 Coherence properties of the single-electron
states emitted by the source can also be analyzed by injecting
particles into a Mach-Zehnder interferometer.30 However, in
order to facilitate these few-fermion experiments, it is neces-
sary first to accurately characterize and understand in detail
the single-electron emission process. The average current
measurements performed so far in Refs. 7 and 8 give access
to the average behavior of the source after a large number of
particle emissions, but are not designed to provide information
about the elementary processes involved in a single emission
event. For example, average current measurements cannot
distinguish between the deterministic emission of exactly one
electron followed by one hole during each period of the
external driving and a fluctuating number of emitted particles
from cycle to cycle that still results in the same number of
emitted charges after many periods. The statistical properties
of the source may be characterized by measuring the full
counting statistics31,32 of electron emissions, but in this case as
well, the short-time behavior of the emitter is not accessible.
In contrast, as recently suggested by some of us, the waiting
time distribution33 between individual charge events would
provide information about the short-time physics, but an actual
measurement of the waiting time distribution still remains an
open and experimentally challenging task.

To discuss physics beyond the long-time limit, we focus
in this work on the short-time current-current correlations
(or frequency-dependent noise34) as an experimental tool to
describe and characterize the elementary excitations generated
by the mesoscopic capacitor when operated as a periodic
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single-electron source. In two recent short papers, we have
separately presented measurements35 and theory36 of the
finite-frequency current noise of the mesoscopic capacitor. In
the present work, we expand significantly on the theoretical
calculations of the current noise and compare the recent
measurements of the high-frequency noise35 to two comple-
mentary theoretical descriptions: on the one hand, the full-
fledged Floquet scattering theory37–39 that naturally applies
to periodically driven systems and gives highly accurate
numerical results for the current noise, and on the other hand,
a conceptually simple semiclassical model,35,36 which shows
surprisingly good agreement with the experiment and addition-
ally provides us with a simple intuitive picture of the dynamical
emission processes. Based on the excellent agreement between
the measurements of the short time current-current correlations
and the two theoretical descriptions we provide a detailed
characterization of the single electron emitter. In particular,
we can identify parameter regimes for which nearly perfect
and deterministic single electron-hole emission is achieved
in every cycle. For details of the experiment, we refer the
interested reader to Ref. 35.

The paper is now organized as follows: in Sec. II, we intro-
duce the mesoscopic capacitor and describe the basic operating
principles that enable periodic emission of electron-hole pairs
into an edge state. Section III gives an elaborate account
of the Floquet scattering theory applied to the mesoscopic
capacitor and we discuss calculations of the average current
and the current noise both for a two- and a three-terminal
configuration. We employ a noninteracting model that allows
us to consider all possible parameter ranges and operating
conditions. Section IV compares theoretical predictions of
the Floquet scattering theory with experimental data of the
average current. In Sec. V, we present a semiclassical model
that describes the mesoscopic capacitor around the operating
conditions, where maximally one charge (electron or hole) is
emitted in each half cycle. The semiclassical model allows
us to account analytically for two important sources of noise:
when electron and hole emissions become rare, the current
fluctuations are shot-noise like and the noise spectrum is
white. In contrast, close to the optimal operating regime, where
exactly one electron-hole pair is emitted in each cycle, the
current fluctuations are dominated by the randomness of the
emission times within a period, giving rise to phase noise
with a Lorentzian-like spectrum. In Sec. VI, we exhaustively
compare measurements, Floquet scattering theory, and the
semiclassical model, focusing both on current and noise in
different parameter regimes including the shot noise and phase
noise dominated limits. We discuss the general properties of
the noise of the single electron emitter as well as the deviations
between the Floquet scattering theory and the semiclassical
model when the mesoscopic capacitor is operated away from
the optimal conditions. Finally, in Sec. VII, we present our
concluding remarks.

II. MESOSCOPIC CAPACITOR

The mesoscopic capacitor is depicted in Fig. 1. It consists
of a submicrometer-sized cavity (or quantum dot) coupled to a

(a)

(b)

(a)

(b)

FIG. 1. (Color online) The mesoscopic capacitor. (a) Schematic
representation of the mesoscopic capacitor. A quantum point contact
(with gate voltage Vg controlling the transparency D) couples the
edge channels (red arrows) in the capacitor and in the electron gas.
Electron/hole emission is triggered by the excitation drive Vexc(t)
applied to the capacitor top gate. (b) Principle of single charge
emission (in the nonadiabatic regime) using the mesoscopic capacitor.
At i© the capacitor is at equilibrium and the highest occupied level
(HOL) is resonant with the Fermi level of the electron gas εF (dashed
blue line). The level spacing is denoted as �. 1© is the electron
emission phase: the HOL is promoted far above the Fermi energy,
causing the capacitor to emit the electron through the quantum
point contact. 2© is the hole emission phase: the emptied level is
brought far below the Fermi energy of the external reservoir and
an electron is absorbed from the electron gas, i.e., a single hole is
emitted. A continuous repetition of the sequence 1©↔ 2© results in
periodic emission of a single electron followed by a single hole. This
corresponds to the optimal operating condition of the emitter.

two-dimensional electron gas through a quantum point contact
(QPC) whose transparency D is controlled by the gate voltage
Vg. A capacitively coupled metallic top-gate controls the static
offset potential in the dot V0 as well as the rapidly oscillating
component Vexc(t) generated by radio-frequency excitations.
A large perpendicular magnetic field is applied to the sample,
so that electrons propagate along the one-dimensional chiral
edge channels that form due to the IQHE. The system can,
in principle, be operated at an arbitrary integer value of the
filling factor ν in the electron gas (typically, ν = 4), but in
any case only the outer edge channel couples to the quantum
dot. Electrons propagating along the outer edge channel of
the quantum dot experience a discrete energy spectrum with
energy levels that are separated by a constant level spacing �,
see Fig. 1(b). The levels are broadened by the finite coupling
between the quantum dot and the electron gas, determined
by the QPC transmission D. Interaction effects within the
quantum dot were not experimentally observed7 and are thus
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FIG. 2. (Color online) Different operating conditions for the
mesoscopic capacitor. Only the HOL is shown; the curved arrow
represents the ac drive (with amplitude 2eVexc = �), which period-
ically and abruptly shifts the HOL above and below the Fermi level
εF (dashed blue line). The dotted arrow denotes the energy of the
emitted electron measured with respect to the Fermi level. (a) Optimal
operating condition: the energy of the HOL without driving field Vexc

equals the Fermi energy of the electron gas, ε0 = εF. With the driving
field applied, the electron (hole) is then emitted at �/2 above (below)
the Fermi level εF. (b) Intermediate case with ε0 = εF + �/4: the
electron (hole) is emitted at 3�/4 (�/4) above (below) the Fermi
level. (c) Nonoptimal operating condition with ε0 ≈ εF + �/2: the
electron is then emitted at ∼� above the Fermi level, while the hole
is emitted on resonance with εF. In this case, emissions of spurious
electron-hole pairs lead to unwanted electrical fluctuations.

neglected throughout this work (the absence of Coulomb
interactions may be due to the screening from the large metallic
top gate as well as the presence of the inner edge channels in
the quantum dot). Furthermore, the large coupling capacitance
makes it reasonable to assume that the oscillating potential in
the capacitor Vexc(t) is equal to the RF potential applied to the
top gate.7

Without the periodic driving Vexc(t) (corresponding to the
equilibrium situation denoted as i© in Fig. 1(b), the position of
the energy levels with respect to the Fermi energy is determined
by the constant voltage V0 applied to the top gate: this top-
gate voltage fixes the position of the highest occupied level
ε0 (HOL) with respect to the Fermi energy εF at equilibrium.
Adding next the pure ac excitation voltage Vexc(t) causes the
HOL to be periodically shifted up and down with respect to
its equilibrium position. We consider the situation realized
experimentally,7,35 where a square shape excitation is applied,
causing sudden shifts of the quantum dot energy spectrum.
The square shape excitation contains a broad range of Fourier
components and is thus a nonadiabatic excitation with respect
to all relevant time and energy scales. If the peak-to-peak
amplitude of the excitation drive 2eVexc is comparable to the
level spacing �, the HOL is promoted to an energy ε+ far above
the Fermi level in the first half period of the drive [labeled as
1© in Fig. 1(b)], where the electron occupying the level is then

emitted to the electron gas through the quantum point contact.
In the following half period (labeled as 2©), the emptied level is
next brought to an energy ε− far below the Fermi energy, where
an electron is absorbed from the electron gas (corresponding
to the emission of a hole as indicated in Fig. 1). Repeating

FIG. 3. (Color online) Schematic representation of the meso-
scopic capacitor as a time-dependent scatterer. Electrons in the
in-going edge channel are scattered on the quantum dot (red loop)
subject to the time-dependent potential Vexc(t).

the sequence 1©↔ 2© at a drive frequency of fd ≈ 1 GHz thus
gives rise to periodic emission of a single electron followed by
a single hole.

Obviously, the discussion above depends crucially on the
value of the static potential V0, which fixes the equilibrium
position ε0 of the HOL and thus the positions ε+ and ε− during
the electron emission ( 1©) and hole emission ( 2©) phases,
respectively. Indeed, as illustrated in Fig. 2, for certain values
of ε0, the HOL may be in resonance with the Fermi level
during one of the two phases. Such a situation is depicted
in Fig. 2(c), where ε0 ≈ εF + �/2 and 2eVexc = �, resulting
in ε+ ≈ εF + � and ε− ≈ εF. Thus, during the hole emission
phase, the HOL is resonant with the Fermi level, and several
charges can be absorbed and re-emitted during a single hole
emission phase (note that during the electron emission phase,
the second occupied level is also resonant with the Fermi
energy). As predicted in Ref. 40, such emissions of spurious
electron-hole pairs degrade the quality of the single-particle
source and lead to unwanted electrical fluctuations. In this
respect, the optimal operating conditions of the emitter are
obtained when the HOL is alternatively brought far above
and below the Fermi level εF during the emission cycle. Two
such cases are shown in Figs. 2(a) and 2(b). However, even
under these favorable conditions, a too large value of the QPC
transmission D may broaden the level so much that it starts
to overlap with the Fermi energy of the lead. The optimal
operating conditions are therefore determined by a subtle
interplay between the static potential V0, the amplitude of the
ac drive Vexc, and the transmission probability D of the QPC.

III. FLOQUET SCATTERING THEORY

We now describe the Floquet scattering matrix theory
used to calculate numerically the average current and the
finite-frequency noise of the periodically driven mesoscopic
capacitor. After a general presentation of the formalism, we
apply it to calculate the current and noise in the experimental
situations considered in this work.

A. Description of the system

We consider the schematic setup depicted in Fig. 3.
Electrons in the incoming edge channel can tunnel onto the
quantum dot with the amplitude

√
D = √

1 − r2, perform
several round-trips inside the mesoscopic capacitor, each
taking the finite time τo = l/vd , before finally tunneling back
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out into the out-going edge state. In these expressions, the
reflection amplitude r has for convenience been assumed
to be real and energy independent, while l and vd are the
circumference of the quantum dot and the drift velocity,
respectively. In this setup, the quantum dot acts as an electronic
analog of a Fabry-Pérot cavity.

We first consider the simple situation, where only a static
potential V0 is applied to the quantum dot. The creation b̂†(t)
and annihilation b̂(t) operators for an outgoing state at time
t are then related to the creation â†(t ′) and annihilation â(t ′)
operators for an incoming state at time t ′ through the Fabry-
Pérot phase acquired after scattering on the quantum dot

b̂(t) =
∫

dt ′U (t,t ′)â(t ′),

U (t,t ′) = rδ(t − t ′) − D

∞∑
q=1

rq−1δ(t − t ′ − qτo)e−ieV0qτo/h̄.

(1)

Here, eV0τo/h̄ is the phase acquired during a single round-
trip inside the quantum dot and e is the electron charge. In
the Fourier domain, the creation b̂†(ε) and annihilation b̂(ε)
operators for the outgoing states are related to the operators of
the incoming states â†(ε) and â(ε) at energy ε = h̄ω through
the stationary scattering matrix S(ε):

â(ε) =
∫

dt√
h

eiεt/h̄â(t),

b̂(ε) = S(ε)â(ε), (2)

S(ε) = r − eiτo(ε−ε0)/h̄

1 − reiτo(ε−ε0)/h̄
.

The density of states of the quantum dot41

ρ(ε) = 1

2πi
S∗(ε)

dS
dε

(3)

consists of a series of peaks corresponding to the discrete
energy levels of the quantum dot. The typical level spacing
� = h/τo is on the order of a few kelvins. The levels are
broadened by the coupling to the electron gas with the width
of the peaks given by D�/(2π ). The static potential ε0 =
eV0 shifts the position of the energy levels measured with
respect to the Fermi energy εF, which we thus freely can set
to zero, εF = 0, throughout the rest of the paper. The potential
shift can be written as a phase factor φ = ε0τo/h̄ entering
the expression for the stationary scattering matrix S(ε). This
allows us to describe the position of the levels in the quantum
dot at equilibrium independently of the level spacing �; in
particular, for φ = 0 (ε0 = 0), the highest occupied level is
resonant with the Fermi energy at equilibrium, whereas for
φ = π (ε0 = �/2), the Fermi energy lies midway in between
the highest occupied level and the lowest unoccupied level.

In order to induce a finite ac current in the out-going edge
channel, one must consider a time-dependent modulation of
the quantum dot potential. In addition to the static potential
V0, we therefore consider a periodic modulation Vexc(t) with
no dc component. The period of the modulations is T =
1/fd = 2π/�, which also defines the drive frequency fd .
The quantum dot can now be viewed as a time-dependent
periodic scatterer, which can be conveniently described using

the Floquet scattering matrix formalism.37 Between times
t − qτo and t , an electron inside the quantum dot performs q

round trips, during which it experiences the time-dependent
potential Vexc(t). The electron then acquires an additional
phase39 �φ = e

h̄

∫ t

t−qτo
Vexc(t ′)dt ′. Since the drive Vexc(t) is

periodic, we can express the acquired phase in terms of the
Fourier coefficients cn entering the Fourier series

e−i e
h̄

∫ t

0 Vexc(t ′)dt ′ =
∑

n

cne
−in�t . (4)

The annihilation operators b̂(ε) and â(ε′) then become related
as

b̂(ε) =
∫

dε′U (ε,ε′)â(ε′),

U (ε,ε′) =
∑
n,m

cnc
∗
n+mS(ε − nh̄�)δ(ε − ε′ + mh̄�)

=
∑
m

Um(ε)δ(ε − ε′ + mh̄�). (5)

The Floquet scattering theory clearly expresses how scattering
occurs through the emission or absorption of a quantized
number m of energy quanta h̄�.42 The scattering amplitude
associated with the transfer of m quanta is given by the Floquet
scattering matrix Um(ε),

b̂(ε) =
∑
m

Um(ε)â(εm),

(6)
Um(ε) =

∑
n

cnc
∗
n+mS(ε−n),

where the notation

ε±m = ε ± mh̄� (7)

has been introduced for convenience. We note that in the
absence of the excitation drive, only elastic processes can occur
and we recover Um(ε) = S(ε)δm,0 in agreement with Eq. (2).
Finally, from the unitarity of the time evolution operator U ,
the following relations can be deduced:∑

n

U ∗
n+p(ε−p)Un+p′ (ε−p′ ) = δp,p′ ,

(8)∑
n

U ∗
n+p(ε−n)Un+p′ (ε−n) = δp,p′ .

B. Experimental considerations

With the Floquet scattering matrices at hand we can now
proceed with calculations of the average current and the
finite-frequency noise. At this point, however, the experimental
details of the measurement setup must be carefully considered.
In Fig. 4, we show a two and a three-terminal experimental
setup. In the two-terminal geometry, Fig. 4(a), the incoming
and outgoing edge channels are connected to the same ohmic
contact with a fixed chemical potential taken as the zero-energy
reference μ = εF = 0. The top-gate of the quantum dot is
considered as the second terminal. The two-terminal setup
suffices for measurements of the average current.

However, for measurement of the current noise it is useful to
include an additional ohmic contact as shown in Fig. 4(b). The
additional ohmic contact is inserted between the measurement
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FIG. 4. (Color online) Experimental setups. (a) Two-terminal
geometry in which the incoming and outgoing edge channels (red
arrows) are both connected to the same ohmic contact, where the
current is measured. (b) Three-terminal geometry in which the
incoming and outgoing edge states (red arrows) are connected to
ohmic contacts 1 and 2, respectively. The current is measured in
contact 2.

contact and the quantum dot and is grounded. In this geometry,
the noise is measured on a constant impedance, given by
the edge channels flowing from the measurement contact to
the grounded contact.43 The impedance of the sample seen by
the detection circuit is therefore independent of the parameters
of the quantum dot and, in particular, of the QPC transmission
D. The environmental noise (noise of the amplifier or thermal
noise emitted by the detection circuit towards the sample)
is reflected on a constant impedance and is therefore easily
subtracted in order to extract the noise emitted by the source as
we discuss in detail below. Only the noise due to the capacitor
is then measured.

1. Two-terminal geometry

For the two-terminal geometry in Fig. 4(a), the operator for
the current emitted by the contact is given as

Î (t) = e[b̂†(t)b̂(t) − â†(t)â(t)],

= e

h

∫
dεdε′ei(ε−ε′)t/h̄[b̂†(ε)b̂(ε′) − â†(ε)â(ε′)]

= e

h

∫
dεdε′ei(ε−ε′)t/h̄

×
[ ∑

m,m′
U ∗

m(ε)Um′(ε′)a†(εm)a(ε′
m′) − a†(ε)a(ε′)

]
. (9)

Since the ohmic contact is in thermal equilibrium with
temperature Tel and chemical potential μ = 0, we have

〈â†(ε)â(ε′)〉 = f (ε)δ(ε − ε′), (10)

where f (ε) is the Fermi-Dirac distribution. The average
current 〈Î (t)〉 has the same T periodicity as the driving
potential Vexc(t) and can therefore be written in terms of its

Fourier components Ik as

〈Î (t)〉 =
∑

k

eik�t Ik, (11)

where

Ik = e

h

∑
�

∫
dεU ∗

� (ε)U�+k(ε−k)[f (ε�) − f (ε)] . (12)

In particular, the first harmonic I� = Ik=1 is given by

I� = e

h

∑
�

∫
dεU ∗

� (ε)U�+1(ε − h̄�)[f (ε + �h̄�) − f (ε)].

(13)

We consider next the noise emitted by the source in
the two-terminal geometry using the expressions for the
current operator Î (t) in Eq. (9). Since Î (t) corresponds to a
nonstationary current, the current-current correlation function

C(t,t ′) = 〈δÎ (t)δÎ (t + t ′)〉, (14)

with δÎ (t) = Î (t) − 〈Î (t)〉, depends explicitly both on the
absolute time t as well as the time difference t ′. The current-
current correlation function is T periodic in the absolute
time t , such that it can be expressed in terms of the Fourier
components Cl(t ′) as

C(t,t ′) =
∑

l

eil�tCl(t
′). (15)

Experimentally, the current noise spectrum is averaged over
the absolute time t , and only the Fourier component C0(t ′)
is measured. In the frequency domain, we have P0(ω) =∫

dt ′eiωt ′C0(t ′) with the mean power spectral density for ω > 0
defined as

S(ω) = 2
∫

dt ′〈δI (t)δI (t + t ′)〉t eiωt ′ = 2P0(ω). (16)

The symbol · · ·t denotes averaging over t . The noise for
the two-terminal geometry S2T (ω) contains a contribution
from the cross-correlations of the current flowing from
the contact, Îa(t) = eâ†(t)â(t), and the current flowing into
the contact, Îb(t) = eb̂†(t)b̂(t) as well as contributions from
the autocorrelations of Îa and Îb. The operators Îb and Îa are
related through the Floquet scattering matrix Um(ε), and after
some algebra, we arrive at

S2T (ω) = 2e2

h

∑
m

∫
dε

∣∣∣∣δm,0−
∑

n

U ∗
n (ε−n)Un+m(ε−n − h̄ω)

∣∣∣∣2

× f (ε)[1 − f (εm + h̄ω)]. (17)

Equations (11), (12), and (17) are useful for numerical
calculations of the average current and the finite-frequency
noise, respectively, for the two-terminal geometry.

2. Three-terminal geometry

We next consider the three-terminal geometry depicted in
Fig. 4(b). In this case, electronic wave packets incident on the
quantum dot have been emitted from contact 1, whereas the
electronic waves scattering off the quantum dot are collected
in contact 2. The total current Î (t) measured in contact 2 then
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reads

Î (t) = e[b̂†(t)b̂(t) − ĉ†(t)ĉ(t)]

= e

h

∫
dε dε′ei(ε−ε′)t/h̄[b̂†(ε)b̂(ε′) − ĉ†(ε)ĉ(ε′)], (18)

where ĉ† and ĉ are the creation and annihilation operators
for edge states between contacts 1 and 2, see Fig. 4(b). Both
contacts are in thermal equilibrium with temperature Tel and
chemical potentials μ1,2 = 0, such that

〈â†(ε)â(ε′)〉 = 〈ĉ†(ε)ĉ(ε′)〉 = f (ε)δ(ε − ε′). (19)

The average current flowing in contact 2 can now easily be
calculated and we find that it is exactly equal to the average
current obtained for the two-terminal geometry in Eqs. (11)
and (12).

The current noise, in contrast, is modified compared to the
two-terminal configuration. In the three-terminal geometry,
the operators for the currents flowing to and from contact
2, Îb(t) = eb̂†(t)b̂(t) and Îc(t) = eĉ†(t)ĉ(t), are independent,
such that their cross correlation vanishes. We then find

S3T (ω) = 2e2

h

∑
m

∫
dε

[
δm,0 +

∣∣∣∣∣ ∑
n

U ∗
n (ε−n)Un+m(ε−n − h̄ω)

∣∣∣∣∣
2]

f (ε)[1 − f (εm + h̄ω)]. (20)

This expression contains a contribution from the edge channel running from contact 2 to contact 1, which is independent of the
QPC transmission D. In order to remove this noise offset as well as any additional environmental contributions, and thus only
to measure the actual noise contribution from the source, we consider the difference �S3T (ω) = S3T (ω,D) − S3T (ω,D = 0)
between the noise at a given QPC transmission and the noise for D = 0, where the quantum dot is pinched off. This difference
reads

�S3T (ω) = 2e2

h

∑
m

∫
dε

∣∣∣∣∣ ∑
n

U ∗
n (ε−n)Un+m(ε−n − h̄ω)

∣∣∣∣∣
2

f (ε)[f (ε + h̄ω) − f (εm + h̄ω)] . (21)

By construction, �S3T (ω) vanishes at zero transmission,
D = 0. Interestingly, it also vanishes at unity transmission,
D = 1. In this case, we recover the noiseless flow of charges
along a perfectly transmitting channel.45–47 Moreover, using
Eq. (8) in Eq. (21), we find �S3T (ω = 0) = 0. The excess noise
generated by the source has no zero-frequency component
and is intrinsically of finite-frequency nature.39 Furthermore,
it can be shown that �S3T (ω) = �S3T (−ω),48 such that the
emission and absorption excess noises are equal. This implies
that S3T (−ω) − S3T (+ω) = 2h̄ωGK , where GK = e2/h is the
conductance of the outer edge channel flowing between the
measurement contact and the ground contact. This result is
similar to what was found in Ref. 49. This implies that, as
long as only excess noise �S3T (ω) is considered, no special
care is required in the ordering of the operators entering the
definition of C(t,t ′) in Eq. (14). One would indeed get the
same result for �S3T (ω) by considering the inverse ordering
of Î (t) and Î (t + t ′) or the symmetrized time ordering. From
now on, we only consider the excess noise of the source in the
three-terminal geometry �S3T (ω), and in order to simplify the
notation, we define S(ω) ≡ �S3T (ω).

IV. AVERAGE CURRENT

The expressions for the average ac current 〈Î (t)〉 and I�

given by Eqs. (11), (12), and (13), respectively, can now
be compared to previous theoretical38 and experimental7,23,44

works. Note that in the three latter references, comparisons
between experimental data and the time-dependent scattering
theory were provided. In these models, however, the ac drive
was applied to the ohmic contacts instead of the top gate of
the quantum dot. This situation differs only by a simple gauge
transformation when a single emitter is considered but would

not be applicable to a system containing several emitters such
as those investigated theoretically in Refs. 24 and 26.

We now consider actual experimental data: in Fig. 5(a), we
show experimental results for |I�| as functions of the square
excitation amplitude Vexc and the QPC gate voltage Vg (or
correspondingly the QPC transparency D) taken from a sample

FIG. 5. (Color online) Contour plot of |I�| as functions of the
square excitation amplitude 2eVexc/� (vertical scale) and the gate
voltage Vg or equivalently the QPC transmission D (horizontal scale).
Top panel: experimental results for sample A from which we extract
the parameters � = 4.2K , fd = 1.5 GHz, and Tel ≈ 60 mK, see
text. Bottom panel: numerical calculations based on Eq. (13) using
the extracted model parameters. The horizontal dashed lines denote
2eVexc = �, and the vertical dashed lines correspond to φ = 0 on one
of the diamonds.
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that we label as sample A. The experiment was carried out
in a dilution refrigerator and the driving frequency was fd =
1.5 GHz. The experimental results display a series of diamond-
like structures centered around 2eVexc/� = 1. The spacing of
the diamonds at low gate voltages Vg, where the QPC is nearly
pinched off, allows us to extract the level spacing � = 4.2 K of
the quantum dot. The electron temperature Tel ≈ 60 mK can
moreover be determined from the smearing of the diamond
structures. Finally, the capacitive coupling between the QPC
gates and the quantum dot can be evaluated from the shift of the
position of the levels as Vg is varied. Using these parameters,
we evaluate numerically Eq. (13) as shown in Fig. 5 (bottom
panel). To this end, we use a saddle-point transmission law
for the QPC.50 The agreement between the experimental data
and numerical calculations is very good, up to small energy-
dependent variations in the QPC transmission, which were not
included in the model.

Figure 5 allows us to locate operating regimes for which
the mesoscopic capacitor is expected to function optimally as
a controllable single-electron source. The white areas of the
diamonds correspond to plateaus on which the current |I�| =
2efd is given by the product of the driving frequency and twice
the elementary charge e (electrons and holes each contribute
with an elementary charge, resulting in the factor of two). In
these regions, the device acts on average as a single-electron
source that emits in each cycle one single electron (hole) at
a well defined energy far above (below) the Fermi level. The
sharpness of the diamonds is then related to the accuracy of
the expected quantization. Note that at low Vexc these regions
become sharp peaks in |I�| as a function of Vg, corresponding
to the HOL being resonant with the Fermi energy in absence of
the driving (φ = 0) (in the linear regime 2eVexc � hfd,kBT ,
we also recover theoretically the known expression for the
average ac current.14,23) In contrast, the values of Vg where
two diamonds intersect interpolate at low Vexc to zeros in the
conductance corresponding to the Fermi energy lying midway
in between two energy levels (φ = π ). For large transmissions,
the quantization is gradually lost and the diamonds fade into a
linear dependence of the current on the driving amplitude. For
low transmissions on the other hand, the typical escape time
of an electron on the quantum dot becomes much longer than
the period, and charge emission becomes rare such that I� is
strongly suppressed.

In the strong driving regime 2eVexc  hfd , we recover
theoretically well-known results for the average ac current.7 In
particular, a second-order expansion of Eq. (12) in the driving
frequency, h̄� = hfd � D�, enables us to express 〈Î (t)〉 as
the current response of an RC circuit.7 Concretely, we find

〈Î (t)〉 =
∑

k

iVexc

π (2k + 1)

(−i�Cq + �2RqC
2
q

)
ei(2k+1)�t , (22)

where

Cq = e2
∫

dερ(ε)F(ε,Vexc) (23)

and

Rq = h

2e2

∫
dερ2(ε)F(ε,Vexc)[∫
dερ(ε)F(ε,Vexc)

]2 . (24)

are the Vexc-dependent capacitance Cq and resistance Rq ,
respectively, and we have defined the function

F(ε,Vexc) = f (ε − eVexc) − f (ε + eVexc)

2eVexc
(25)

in terms of the Fermi-Dirac distribution f (ε). We see that the
capacitance Cq is given by an integral of the density of states
ρ(ε) over the energy window from −eVexc to +eVexc. Under
optimal operating conditions, where φ = 0, a peak in ρ(ε) is
centered around ε = 0, such that the integral (and the current)
is independent of Vexc as long as 2eVexc is larger than the width
of the peak. This can be seen on the diamonds in Fig. 5: for
intermediate transmissions, D � 0.2–0.5, the current becomes
independent of Vexc at φ = 0 on a large range of Vexc (see
vertical dashed lines in Fig. 5). For larger transmissions D � 1,
the range is reduced and the diamonds become smaller.

In the following, we restrict our considerations to excitation
drives that exactly compensate the level spacing, i.e., 2eVexc =
�. In this case, one of the peaks in ρ(ε) is always fully
integrated over regardless of φ, and the capacitance Cq

becomes independent of φ and D.7 In that case, we obtain
the simple result Cq = e2/�. For a square excitation drive
voltage, the time-dependent average current is

〈Î (t)〉 = e

τ

e−t/τ

1 + e−T/2τ
(26)

for 0 � t � T/2. Clearly, this is an exponentially decaying
current with a characteristic RC time given by the escape time
τ = RqCq , that is related to the QPC transmission D as51

τ � h

�

(
1

D
− 1

2

)
� τo

D
, D � 1, (27)

where we recall that τo = h/� is the time it takes an electron
to complete one round inside the mesoscopic capacitor.
Integrating next the current over one-half period of the driving
we find the average transferred charge per half period

Qt = 2VexcCq tanh

(
1

4fdτ

)
= e tanh

(
1

4fdτ

)
. (28)

The exponential decay of the current described by Eq.
(26) was observed experimentally in Refs. 7 and 44. Typical
experimental results are shown in Fig. 6 for a sample that
we label as sample B.7,23,44 For this sample, the level spacing
was � = 2.5 K and the electron temperature Tel ≈ 200 mK,
while the experiment was carried out at a driving frequency of
fd = 32 MHz.

The current is well approximated by an exponential decay,
allowing us to extract the escape time τ , which is tunable by
the QPC gate voltage Vg and thus the QPC transparency D. For
sufficiently large QPC transmissions, the integral of the current
becomes constant (see also data in Ref. 44), demonstrating
the quantization of the average transferred charge per half
period Qt = e, so long as fdτ � 1 and thus tanh( 1

4fdτ
) � 1

in Eq. (28). For low transmissions, 〈Î (t)〉 still exhibits an
exponential decay with an escape time τ that is comparable
to the half period T/2. This indicates that the RC circuit
description of the single electron emitter is still valid even
for fdτ � 1. The RC circuit description of the single electron
emitter also allows us to extract τ = RqCq from measurements
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FIG. 6. (Color online) Time dependence of the average ac
current 〈Î (t)〉 measured in sample B for different values of the
QPC transmission D. The level spacing and electron temperature
of sample B were � = 2.5 K and Tel ≈ 200 mK, respectively.
The driving frequency was fd = 32 MHz. Experimental data are
shown with symbols, while the blue lines are exponential fits from
which the escape time τ is extracted. The green dashed line in
panel (a) corresponds to scattering theory calculations with 16
harmonics included. QPC transmission and extracted escape times are
(a) D = 0.005, τ ≈ 3.6 ns, (b) D = 0.0035, τ ≈ 5 ns, and (c)
D = 0.03, τ ≈ 0.9 ns.

of the phase of the first harmonic I� and Qt from both
modulus and phase measurement of I� for arbitrary values
of the transmission D.

Using measurements of the modulus (see Figure 5) and
phase of I� for sample A, the Qt and τ dependence on the
QPC gate voltage Vg at excitation amplitude 2eVexc = � are
plotted in Fig. 7. As Vg is swept from large negative voltages
toward zero, the transmission D increases, while the escape
time τ decreases over two orders of magnitude. The blue
line corresponds to the measurement data of Qt while the
black dashed line expresses Qt in terms of τ according to
Eq. (28). For sufficiently short escape times τ , Qt becomes
quantized and equal to the electron charge e (corresponding to
the quantization of the modulus of the first harmonic in units
of 2ef in Fig. 5). Small residual oscillations around Qt = e

stemming from the capacitive coupling between the QPC gates
and the cavity can be seen. When Vg is swept, the quantum
dot goes periodically from optimal conditions φ = 0 (ε0 = 0)
to φ = π (ε0 = �/2). In the first case, Qt is quantized, i.e.,
Qt = e, whereas in the second case, Qt becomes extremely
sensitive to the exact value of the excitation amplitude and
Qt ≈ e (slightly above e in Fig. 7) explaining the oscillations.
The quantization of Qt can be checked on the inset of Fig. 7,
showing Qt as a function of the escape time τ for conditions
close to the optimal value of φ ≈ 0. For short escape times,
all data agree with Qt = e within error bars (size of squares).
In this regime, electrons and holes appear to be systematically
emitted with the uncertainty in the emission time determined
by τ . In contrast, when the escape time becomes comparable
to half a period, the expected quantization is lost, Qt < e,
reflecting that single charges are not deterministically and

FIG. 7. (Color online) Measured average transferred charge per
half period Qt (blue line) and escape time τ (red line) for sample
A as functions of Vg . Parameters are � = 4.2 K, Tel ≈ 60 mK, and
fd = 1.5 GHz. The dashed line corresponds to Qt determined from
the measured τ using Eq. (28). The dotted circle corresponds to the
point at which τ = T/2. Inset: average transferred charge for optimal
operating conditions (φ ≈ 0) as a function of the escape time τ in
units of T/2.

periodically emitted from the quantum dot. Furthermore, Qt/e

(squares) is well described by the expected tanh (1/4fdτ )
dependence (continuous black line). Finally, we note that the
Floquet scattering matrix theory predicts rapid oscillations
in the current39 on time scales on the order of τo = h/�

which is much smaller than the periods considered here. The
observation of such oscillations, however, is not yet within
experimental reach, as the time scale τo ≈ 10 ps is still well
below the measurement resolution of our experiment.

As we have seen in this section, the measurements of
the average ac current suggest that the mesoscopic capacitor
in certain parameter regimes acts as a controllable single-
electron source. Average measurements only, however, do
not reveal possible fluctuations of the quantized current and
to this end we need to consider the noise properties of
the mesoscopic capacitor. As already discussed, the noise
spectrum can be calculated numerically using the Floquet
scattering matrix theory. In order to understand in detail the
noise properties of the mesoscopic capacitor, we first analyze
a simple semiclassical model of the charge transport. The
description of the mesoscopic capacitor in terms of an ac
driven RC circuit forms the basis of the semiclassical model
described in the following section.

V. SEMICLASSICAL MODEL

As mentioned above, the noise of the mesoscopic capacitor
can be calculated numerically using the Floquet scattering
theory. However, except for certain limiting cases, it is
generally difficult to obtain analytic results from which one
could hope to develop a deeper understanding of the noise
properties. In the adiabatic regime, where the period of
the driving is much longer than any other time scale, the
noise spectrum has been found analytically.37–39 In contrast,
in the situation that we consider here, where the driving
potential is highly nonadiabatic, a perturbative expansion in
the driving frequency is not possible. Nevertheless, both the
experimental and the numerical results obtained from the
Floquet scattering approach suggest that it may be possible to
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calculate analytically the noise spectrum using a conceptually
simple semiclassical model. The model that we now describe
was first suggested by Mahé et al.35 and later investigated
theoretically by Albert et al.36 In the following, we discuss the
semiclassical model from which we derive the finite-frequency
noise spectrum and provide a thorough comparison between
analytic, numerical, and experimental results.

The semiclassical model can be explained by considering
again Fig. 1(b). The model assumes that the quantum dot can
emit at most one electron and one hole per period and time
is discretized in units of τo; the time it takes an electron to
complete one round inside the mesoscopic capacitor. In the
emission phase 1©, the probability in each time step for an
electron to escape is equal to the transparency of the QPC,
namely D. Additionally, since the amplitude of the periodic
driving is on the order of the level spacing �, higher-lying
states can safely be neglected and maximally one electron can
escape the mesoscopic capacitor as refilling is not possible.
Similarly, in the absorption phase 2©, the probability of
emitting a hole in each time step is D. This semiclassical
model can be theoretically formulated as a master equation in
discrete time for the probability of the mesoscopic capacitor
to be occupied by an electron. Setting the electron charge
e = 1 in the following, this probability is equal to the average
(additional) charge of the mesoscopic capacitor 〈Q〉, where
Q = 0,1.

The master equation determines the evolution of the average
charge after one time step and takes the form35,36

〈Q(tk+1,�)〉 =
⎧⎨⎩ (1 − D)〈Q(tk,�)〉 1©

D[1−〈Q(tk,�)〉]+〈Q(tk,�)〉 2©
, (29)

where we have used that 1 − 〈Q〉 is the probability for the
mesoscopic capacitor to be empty and t = tk,� denotes time
at the k’th time step during the �’th period. The emission
(absorption) phase 1© ( 2©) corresponds to k = 1,2 . . . ,K (K +
1,K + 2, . . . ,2K), where K is the number of time steps in the
absorption and emission phases, respectively, each of duration
T/2.

Experimentally, the noise measurement frequency ω was
roughly equal to the driving frequency � = 2πfd and both
were much smaller than the inverse round trip time τo,
i.e., 2π/ω � 2π/� � 60 τo.35 This allows us eventually to
consider the continuous-time limit of the model, where the
step size τo becomes irrelevant and drops out of the problem.
Interestingly, the physics of the system is then governed by the
single dimensionless ratio T/τ of the period T over the escape
(or correlation) time

τ ≡ τo

ln[1/(1 − D)]
. (30)

In the limit D � 1, we recover the expression in Eq. (27). At
the end of this section, we discuss the physical meaning of the
correlation time.

The master equation can be understood by considering the
average current as it was calculated using Floquet scattering
theory in Ref. 39. For the square-shaped driving considered in
this work, the current consists of one steplike term with time
step τo contained in an exponential envelope function and one
oscillatory part with period τo. The latter corresponds to the

rapid oscillations of the current mentioned in the previous
section. These oscillations are due to quantum interferences
between different orbits in the mesoscopic capacitor and they
vanish at high temperatures. Still, at arbitrary temperature
only the first steplike term survives after integration over
the time step τo, which leads to the master equation. The
semiclassical description reflects that the oscillations due to
quantum interferences are irrelevant for the average current on
a time scale that is larger than τo.

At this point, we have not provided a detailed derivation
of the model that would require us to compare not only
average current but also noise and higher-order correlations
with the full quantum theory. This still remains a challenging
and open task and for now we simply rely on the excellent
agreement with experimental data as we demonstrate in the
following. Obviously, the semiclassical description cannot be
correct under all operating conditions, and already now, we
can anticipate situations where the model will differ from
the full Floquet scattering theory: for example, as the noise
measurement frequency approaches the internal frequency
of the quantum dot, namely, the frequency h/� = 1/τo

associated with the level spacing �, we expect that the
semiclassical model will no longer be valid. The model also
neglects the possibility of emitting two electrons within the
same period and will therefore not apply to situations where a
level of the quantum dot is in resonance with the Fermi level
of the 2D electron gas, i.e., for φ = π . We make a detailed
comparison between the semiclassical model and numerics in
the following section.

Before turning to calculations of the noise spectrum, we
consider the average charge 〈Q〉 in the mesoscopic capacitor.
In Ref. 36, the average charge was used to obtain the average
current flowing out of the mesoscopic capacitor 〈I (t)〉 ≡
−〈Q̇(t)〉 � [〈Q(t)〉 − 〈Q(t + τo)〉]/τo. Solving Eq. (29) for
the average charge 〈Q〉, we readily find

〈Q(tk,�)〉 =
⎧⎨⎩

α� e−(tk,�−�T )/τ 1©

1 − β� e−(tk,�−[�+ 1
2 ]T )/τ 2©

. (31)

Here, we have defined ε = e−T/2τ , α� = 1/(1 + ε) + θε2�,
and β� = 1/(1 + ε) − θε2�−1 with θ depending on the initial
conditions at the time when the periodic driving is turned on.
The correlation time τ determines the time scale over which
the system loses memory about the initial conditions encoded
in θ and 〈Q〉 becomes periodic in time. We notice the close
relation of the above expression with the average current of an
RC circuit. Importantly, the model reproduces the expressions
in Eqs. (26) and (28) for the time-dependent average current
and the average transferred charge per half period, respectively,
obtained from the Floquet scattering theory.

VI. NOISE SPECTRUM

We are now ready to discuss the noise properties of the
mesoscopic capacitor. As we will see, the finite-frequency
noise spectrum allows us to characterize the mesoscopic
capacitor as a single-electron source as well as to determine the
optimal operating conditions of the device. Before presenting
any detailed calculations, we discuss the two primary sources
of noise.
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FIG. 8. (Color online) Current correlators within the semiclassi-
cal description. (a) Shot noise limit: for small escape probabilities
D, charges are not systematically emitted within each half period:
the emission probability per half period P = Qt/e is small, and
the current fluctuations correlator is essentially given by the Dirac
peak in C

〈II 〉
0 (t ′) (black line). (b) Phase noise limit: for sufficiently

large escape probabilities (here, D = 0.2), charges are systematically
emitted (P � 1), and C

〈I 〉〈I 〉
0 (t ′) (red line) consists of a peak with a

finite width given by the escape time τ . In both upper panels, the
continuous black line represents the periodic drive, and the red dashed
line the emitted average current (not to scale).

A. Sources of noise

In the semiclassical model, the mesoscopic capacitor emits
at most one electron and one hole per period. Still, depending
on the ratio between the escape time τ and the period T , the
source may fail to emit. We quantify the emission probability
per half period by the ratio

P = Qt/e, (32)

having recalled that Qt is the average transferred charge per
cycle, see Eq. (28). We refer to the noise associated with
such cycle missing events, where the mesoscopic capacitor
fails to emit, as shot noise. However, even when the emission
probability is close to unity and the mesoscopic capacitor emits
an electron and a hole in almost every cycle, there are still
fluctuations in the current associated with the random emission
times within a period. This source of noise is referred to as
phase noise. The two upper panels of Fig. 8 illustrate the main
sources of noise by showing typical realizations of the current,
where emissions of electrons (holes) are shown with filled
(empty) circles, on top of the average current. The upper panel
of Fig. 8(a) illustrates shot noise, while the upper panel of
Fig. 8(b) corresponds to phase noise.

From the definition of the current-current correlation
function in Eq. (14), we can immediately write

C(t,t ′) = 〈I (t)I (t + t ′)〉 − 〈I (t)〉〈I (t + t ′)〉, (33)

where I (t) is no longer a quantum-mechanical operator, since
we are considering a semiclassical description. As already
mentioned, the system is not translational invariant in time
due to the periodic gate voltage modulations. The correlation
function therefore does not only depend on the time difference
t ′, but also on the absolute time t . Experimentally, the
correlation function is averaged over the absolute time t and

the time-average correlation function is then

C0(t ′) = C
〈II 〉
0 (t ′) − C

〈I 〉〈I 〉
0 (t ′), (34)

where C
〈II 〉
0 (t ′) = 〈I (t)I (t + t ′)〉 t

and C
〈I 〉〈I 〉
0 (t ′) =

〈I (t)〉〈I (t + t ′)〉 t
. The time-average correlation function

is exactly the Fourier component C0(t ′) entering Eq. (15) and
the corresponding noise spectrum is consequently given by
Eq. (16).

Figure 8 shows numerical calculations of the correlation
functions in the two limiting cases. The results were obtained
in numerical simulations of the stochastic process defined by
the semiclassical model. The left panels correspond to the
shot noise regime, where the escape time τ is much larger than
the period T , whereas the right panels show results for the
phase noise regime. Depending on the escape probability D [or
equivalently the ratio between the escape time and the period,
see Eq. (30)], the contributions from C

〈II 〉
0 (t ′) and C

〈I 〉〈I 〉
0 (t ′)

vary. The two lower panels of Fig. 8 show the correlation
functions C

〈II 〉
0 (t ′) and C

〈I 〉〈I 〉
0 (t ′) for short times t ′ � T . In

both regimes, C〈II 〉
0 (t ′) contains a Dirac peak at t ′ = 0. Indeed,

since maximally one charge is emitted per half period, the
short-time correlations vanish. In this respect, the Dirac peak
is the hallmark of single-particle emission.

The height of the Dirac peak at t ′ = 0 is proportional to
the average transferred charge per half period Qt : C

〈II 〉
0 (t ′ =

0) counts the average number of peaks and dips in the
instantaneous current I (t) corresponding to emitted electrons
and holes. The correlation function C

〈I 〉〈I 〉
0 (t ′) is given by the

autocorrelation of the exponentially decaying average current.
At short times, it therefore has a peak at t ′ = 0 with a finite
width given by the escape time τ . For long times t ′  T , the
correlation function C0(t ′) vanishes since charges emitted by
the source are no longer correlated. The time scale on which
C0(t ′) decays to zero depends on the transmission D and is
given by the escape (or correlation) time τ .36

1. Shot noise

For small escape probabilities D � 1, the escape time τ

becomes much larger than the period T . The peak at t ′ = 0
in C

〈I 〉〈I 〉
0 (t ′) correspondingly becomes much smaller than the

Dirac peak in C
〈II 〉
0 (t ′), see Fig. 8(a). The current correlator

C0(t ′) is thus given by a Dirac peak at t ′ = 0. The noise power
spectral density is then constant, except at zero frequency,
where it vanishes because the integrals over C

〈II 〉
0 (t ′) and

C
〈I 〉〈I 〉
0 (t ′) cancel each other. In this case, the source randomly

emits charges and the charge fluctuations are similar to shot
noise.

Approximating C
〈I 〉〈I 〉
0 (t ′) � 0, see Fig. 8(a), and writing

C
〈II 〉
0 (t ′) = (2fdQ

t/e) × δ(t ′), we find35,36

Sshot(ω) = 4e2fd P = e2

τ
, (35)

where P the emission probability per half period, Eq. (32).
Interestingly, this expression is identical to the usual shot noise
formula S = 2eIp, where the usual charge current has to be
replaced by the particle current Ip given by the sum of the
average number of electrons emitted in the first half period
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FIG. 9. (Color online) Schematics of periodic driving and (condi-
tional) charge occupations. The mean occupation of the mesoscopic
capacitor 〈Q(t)〉 is shown in red. The mean occupation is equal to
the probability of the mesoscopic capacitor to be occupied with one
(additional) electron. The blue curve shows the conditional mean
occupation 〈Q̃(t + t ′)〉. This is the probability that the mesoscopic
capacitor is charged with an (additional) electron at time t + t ′, given
that it was charged at time t , such that 〈Q̃(t)〉 = 1. Correlations
decay on a time scale set by the correlation time τ , implying that
〈Q̃(t + t ′)〉 � 〈Q(t + t ′)〉 for t ′  τ .

and holes in the second one, times the product of the electric
charge with the drive frequency: Ip = 2efd P .

2. Phase noise

In the phase noise regime, the escape probability D is so
high that charges are emitted in nearly every cycle and the
emission probability P is close to unity. The time-dependent
average current then consists of well-defined exponential
decays with a decay time given by the escape time τ � T/2:
〈I (t)〉 = ±(e/τ )e−t/τ . Here, the different signs correspond to
the emission of electrons or holes. In this case, we find a simple
expression for the correlation function

C
〈I 〉〈I 〉
0 (t ′) = e2fd

τ
e−|t ′|/τ . (36)

and the noise is then given by35,36

Sphase(ω) = 4e2fd

ω2τ 2

1 + ω2τ 2
. (37)

Even if charges are systematically emitted each period, we find
a finite value of the noise which depends only on the escape
time τ . This noise is due to the uncertainty in the emission
time of charges within a period, and is thus referred to as phase
noise. The phase noise is an intrinsically high-frequency noise
and it is the signature of single charge emission: when the
source periodically emits single charges, the noise reduces to
the value of the phase noise determined only by the temporal
extension τ of the emitted wave packets.

B. Analytic expression

We now present an analytic calculation of the noise power
spectrum that covers both limiting cases as well as the interme-
diate regime.36 To this end, it is useful to consider the charge
correlation function CQ(t,t ′) = 〈Q(t)Q(t ′)〉 − 〈Q(t)〉〈Q(t ′)〉
together with the relation P0(ω) � ω2PQ(ω). Here, the defini-
tion of PQ(ω) is similar to that of P0(ω) in Eq. (16), but with
the current I replaced by the charge Q. The charge correlation
function can be evaluated following the schematic illustration
in Fig. 9. We first note that 〈Q(t)Q(t + t ′)〉 is the joint
probability for the capacitor to be charged with one electron
both at time t and at time t + t ′. Using conditional probabilities

FIG. 10. (Color online) Finite-frequency noise S(ω) close to the
driving frequency, ω ∼ �. Symbols are the scattering theory (φ = 0),
continuous lines are the semiclassical model, and dashed lines are
the limits given by Eqs. (35) and (37). Parameters are � = 4K and
fd = 1.5 GHz.

we then write 〈Q(t)Q(t + t ′)〉 = 〈Q(t)〉〈Q̃(t + t ′)〉, where
〈Q̃(t + t ′)〉 is the probability that the capacitor is charged with
one electron at time t + t ′ given that it is charged at time
t . For t ′ > 0, the conditional probability 〈Q̃(t + t ′)〉 can be
found by propagating forward in time the condition 〈Q̃(t)〉 = 1
using the master equation in Eq. (29), see also Fig. 9. Similar
reasoning applies to the case t ′ < 0. Finally, integrating over
t , the time-averaged charge correlation function becomes
〈δQ(t)δQ(t + t ′)〉 t = τ

T
e−|t ′ |/τ tanh( T

4τ
), and we immediately

obtain the noise power spectrum as36

S(ω) = 4e2fd tanh

(
1

4fdτ

)
ω2τ 2

1 + ω2τ 2
. (38)

Interestingly, the noise power spectrum is given by the average
charge emitted during the emission phase tanh(1/4fdτ ) (the
factor of two accounts for the additional contribution from the
average charge absorbed in the absorption phase) multiplied by
a Lorentzian-like frequency dependence, which accounts for
the exponential decay of correlations in the time domain with
time constant τ . Finally, the factor ω2τ 2 reflects that the noise
spectrum becomes flat in the high-frequency limit, while the
zero-frequency limit S(0) = 0 shows that charge on average
does not accumulate on the capacitor once 〈Q〉 has become
periodic in time. From Eq. (38), it is straightforward to recover
the limiting cases given by Eqs. (35) and (37), but the analytic
result above also accounts for the intermediate regime where
the escape time τ is comparable to the period T .

C. Detailed comparison

We are now ready to carry out a careful comparison
of experimental and theoretical results. In Fig. 10, we first
compare results for the noise spectrum obtained from the
full Floquet scattering theory and the semiclassical model.
We focus here on the experimentally relevant regime with
ω ≈ � � �/h̄ together with the optimal operating conditions
of the source, φ = 0, and consider three different values
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FIG. 11. (Color online) Noise power spectrum S(ω = �) as a
function of the escape time τ . Left axis: measured average transferred
charge per half period Qt (black squares) together with Eq. (28)
(continuous black line). Right axis: measured noise spectrum (red
circles, φ ≈ 0, sample A) together with Eq. (38) (red line). Dashed
lines correspond to the two noise limits, Eqs. (35) and (37), illustrated
schematically in the top panels.

of the transmission probability D. The figure shows that
the two complementary approaches yield results that are
in excellent agreement. We observe that our numerical and
analytic calculations agree well both in the shot noise limit
with D = 0.01 (τ ≈ 3.5 T/2) and in the phase noise limit
with D = 0.2 (τ ≈ 0.16 T/2), as well as in the intermediate
cross-over regime. For ωτ  1, the phase noise Sphase saturates
to 4e2fd , such that S(ω) � 4e2fdP as seen both for D = 0.06
(τ ≈ 0.57 T/2, P = 0.71) and D = 0.01 (P = 0.14).

The two theoretical approaches can also be compared
with experimental data, obtained with sample A using a high
sensitivity microwave noise measurement setup implemented
in a dilution refrigerator.52 The noise was measured in
a bandwidth of 1.2–1.8 GHz centered around the driving
frequency fd = 1.5 GHz. Figure 11 shows the dependence of
the noise S(ω = �) on the escape time τ . The numerical and
analytic results (overlapping continuous lines) are in excellent
agreement with the experimental data (circles) obtained at
φ ≈ 0. In particular, the experimental results are captured
by the analytical expression in Eq. (38) over more than two
orders of magnitude of the escape time τ , going from the
phase-noise limit (blue dashed line), where the source exactly
emits a single electron and a single hole in each cycle, to the
shot-noise limit (black dashed line) where particle emissions
are rare and shot-noise like.36 As discussed in Sec. IV, the
average emission probability P (squares) is also well captured
by the expected tanh 1/4fdτ dependence (continuous black
line). For τ � T , the average emitted charge per half period
is equal to one. However, this curve alone does not allow
us to conclude that exactly one electron and one hole are
emitted in each cycle. To this end, we must consider the
measurements of finite-frequency noise and their comparison
with the phase-noise limit. In particular, for τ ≈ 0.2T/2,
the agreement is within less than 10% (see error bars), thus
yielding an upper bound of 10% on the error on the number of
emitted particles per cycle.

0.1 1

0

1

2 Δ=2K

Δ=4K

Δ=8K

S
/e

2 f d

/(T/2)

shot noise limit

scattering theory:

phase noise limit
semi-classical model

FIG. 12. (Color online) Universality of the noise spectrum. Noise
spectrum based on the semiclassical model, Eq. (39) (blue line), and
full numerical Floquet scattering theory for different values of the
level spacing (symbols) as a function of the escape time τ with
Tel = 100 mK. The dashed lines correspond to the two limits given
by Eqs. (35) and (37).

D. Universality and deviations

While the semiclassical model is only valid for a restricted
range of parameters, the Floquet scattering theory in contrast
allows us to explore the full set of experimentally relevant
operating conditions, including changes of temperature, level
spacing, and measurement frequency ω/2π . In the following,
we first discuss a particular universal property of the noise
under optimal operating conditions as described by the semi-
classical model. Secondly, we discuss possible discrepancies
between the semiclassical model and the full numerical
calculations based on the Floquet scattering theory. As we
will see below, the two descriptions start to differ once the
system is not operated under optimal conditions, or when the
noise is measured at very large frequencies h̄ω ∼ �.

1. Universality

Figure 10 clearly illustrates that the Floquet scattering
theory and the semiclassical model agree well under optimal
operating conditions. Moreover, by plotting the noise power
S(ω = �) in units of the driving frequency e2fd as a function
of the escape time τ in units of the half period T/2 one
finds strong indications of a simple universal behavior of the
noise power that is independent of the specific parameters of
the system. Indeed, by rewriting Eq. (38) in terms of these
normalized units, we find

S(�)[e2fd ] = 4 tanh

(
1

2τ[T/2]

)
(πτ[T/2])2

1 + (πτ[T/2])2
, (39)

from which this universality is evident. In particular, neither
the level spacing � nor the temperature enter this expression.
The universality of the noise spectrum is verified by our full
numerical Floquet scattering theory calculations with different
values of � as shown in Fig. 12 (the dependence of τ on �

is taken into account). We also performed calculations with
varying temperatures (not shown) and found good agreement
with the expression above. The universal behavior can be
understood by noting that under optimal operating conditions,
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FIG. 13. (Color online) Noise spectrum as a function of the QPC
gate voltage Vg . Circles are the experimental data (sample A), and
continuous line is the Floquet scattering theory (� = 4 K, Tel =
100 mK, three odd harmonics in the excitation drive). The panels
illustrate charge emission in the minima (φ = 0) and the maxima
(φ = π ) of the noise oscillations.

the noise arises from elementary charge transfer processes that
only depend on the parameter τ . As long as the charges are
emitted sufficiently far above or below the Fermi level, these
processes do not depend of the energy at which the charges
are emitted.

2. Deviations

Deviations from the universal behavior start to appear
as the QPC transmission approaches unity, D � 1, and the
escape time τ becomes comparable to the inverse level spacing
τo = h/�. For short escape times, Eq. (39) predicts that the
noise would vanish. However, the semiclassical description
is expected to break down as the relevant time scales of
the problem approach τo. Small deviations between the
semiclassical model and full numerics are already visible in
Fig. 12 for τ � 0.1 T/2. The semiclassical model is also not
expected to be valid when one of the levels in the quantum
dot is brought into resonance with the Fermi energy during the
emission cycle. In this case, the total charge on the quantum
dot is no longer quantized and the quantization of the first
harmonics of the average ac current is lost, see Fig. 5. Under
these conditions, the noise is expected to depend strongly
on various parameters such as temperature, the shape of the
excitation drive, and the static potential in the quantum dot.

The expected parameter dependencies are clearly visible in
the noise measurements. In Fig. 13, we show the measured
noise spectrum as a function of the QPC gate voltage Vg (red
circles), which simultaneously controls the QPC transmission
D and the levels in the quantum dot via a capacitive coupling,
see also Fig. 5. Oscillations in the noise are observed for
−0.345 V � Vg � −0.330 V (0.8 � P � 1). The maxima
of the oscillations correspond to the case φ = π , where one
of the levels is brought into resonance with the Fermi energy,
while the minima occur at the optimal operating conditions
φ = 0, see insets in Fig. 13. The semiclassical model cannot
account for these oscillations.35 Instead, we have used the
Floquet scattering theory and numerically evaluated Eq. (21)
as a function of Vg . The dependence of the QPC transmission
on the gate voltage D(Vg) was extracted using Eq. (27) in
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FIG. 14. (Color online) Noise spectrum as a function of the
measurement frequency ω. Blue dotted line is the semiclassical
model. Since time is discretized in units of τo = h/�, S(ω) can only
be calculated up to h̄ω = �/2. Black line is Floquet scattering theory
with φ = 0. Red dashed line is Floquet scattering model with φ = π .
The electronic temperature was set to Tel = 100 mK. The blue circle
denotes the noise at the driving frequency, ω = �. Parameters are
D = 0.2 (P ≈ 1), � = 4 K, and fd = 1.5 GHz. Inset: zoom on the
low-frequency part of the spectrum h̄ω � �.

combination with the escape time τ as a function of Vg , Fig. 7.
The ac drive Vexc(t) used in the calculations consisted of three
odd harmonics, accounting for the finite bandwidth of the
microwave pulse generator used in the experiments.

The numerical results (blue line) shown in Fig. 13 are in
good agreement with the experimental data. The maxima in the
noise can be understood by noting that a square-shaped ac drive
with a finite number of harmonics contains fast oscillations,
or ripples, which affect the energy resolution of the emitted
charges. In the case φ = π , the level is brought into resonance
with the Fermi energy and then oscillates rapidly with respect
to the Fermi energy. This “shaking” of a resonant level causes
additional charge transfers (which also depend on the QPC
transmission), leading to an increase in the noise. Due to such
spurious emissions of electron-hole pairs, the source does
not behave as a perfect single-particle emitter under these
operating conditions.

Deviations between the Floquet scattering theory and
the semiclassical model also occur when the measurement
frequency becomes comparable to the level spacing ω � �/h̄.
Indeed, since the semiclassical model describes the dynamics
of charge emissions with a discrete time step τo = h/�, it
cannot account for dynamics on time scales shorter than
τ , or large measurement frequencies ω � �/h̄. The Floquet
scattering model, on the other hand, predicts fast oscillations
on time scales comparable to τo in the average ac current.39 We
therefore expect strong deviations between the semiclassical
model and the Floquet scattering theory in the noise spectrum
at high frequencies.

Numerical calculations of the noise spectrum at high mea-
surement frequencies, obtained from the Floquet scattering
theory and the semiclassical model, are shown in Fig. 14.
We see that the two complementary approaches agree well at
small frequencies for φ = 0. However, while the noise in the
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FIG. 15. (Color online) Mean and variance of the counting
statistics of emitted electrons P (n,N ) after a large number of periods
N as functions of the escape time τ , in units of the half period. Full
lines are the results based on the semiclassical model. Symbols are the
numerical data obtained from the Floquet scattering theory (� = 4 K,
fd = 1.5 GHz).

semiclassical model saturates to S(ω  �) = 4e2fd at high
frequencies, the Floquet scattering theory, in contrast, is cut
off for h̄ω ≈ �/2, where it drops to zero. Indeed, the electrons
(holes) are emitted at an energy �/2 above (below) the Fermi
energy, corresponding to emission of radiation (or photons) at
frequencies below �/2. For φ = π , charges can be emitted
at energies up to � above or below the Fermi energy, and the
cutoff frequency is then equal to � as seen in the figure. We
note that the excess noise shown here indeed is symmetric in
ω, as expected.

E. Full counting statistics

We round off this section by discussing the counting
statistics of emitted electrons.53 Under optimal operating
conditions, the semiclassical model fully accounts for the
charge dynamics of the emitter at low frequencies and it
allows for tractable calculations of the counting statistics
P (n,N ) of the number of emitted electrons n during a large
number of periods N . In principle, we can calculate all
moments (or cumulants) of the distribution,36,54,55 but we
focus here on the first and second cumulant, the mean 〈n〉
and the variance 〈�n2〉 with �n = n − 〈n〉. In Fig. 15, we
show a comparison between the calculations of the first two
cumulants based on the semiclassical model36 and Floquet
scattering theory.27 We observe an excellent agreement for
escape times comparable to the half period, but eventually
deviations appear for τ � 0.1T/2. These discrepancies appear
as the broadening of energy levels become so large that the
effect of spurious emissions of (several) electron-hole pairs
during a period becomes non-negligible. In this case, the
mean number of emitted electrons during a period can exceed

one. The counting statistics is important for characterizing
the accuracy of the mesoscopic capacitor as a single-electron
emitter.36

VII. CONCLUSIONS

We have investigated experimentally and theoretically the
finite-frequency noise spectrum of the mesoscopic capacitor
when operated as a periodic single electron emitter. We
have compared experimental data with two complementary
theoretical descriptions. On the one hand, we discussed the
Floquet scattering theory that allows us to accurately describe
the system over the full range of experimentally relevant
parameters, in particular the energy ranges in which charges
are emitted. On the other hand, we considered a semiclassical
model that, despite its simplicity, is able to account for
the charge dynamics of the emitter when operated under
the optimal operating conditions. This model allowed us to
develop an analytic understanding of the measured noise
spectrum and the numerical results obtained using the Floquet
scattering theory.

Depending on the escape time of electrons from the
mesoscopic capacitor, two distinct noise regimes could be
identified. When the escape time is much smaller than the
period of the drive, the mesoscopic capacitor emits electrons
and holes in an almost fully periodic manner and the main
source of noise is due to the uncertainty in the emission
time within a period. This type of noise, referred to as phase
noise, can be clearly identified both in the theoretical and
experimental results. The phase noise provides a fundamental
lower limit on the noise, arising from the random jitter between
the triggering of emission and the actual emission time. In the
phase-noise regime, we obtained excellent agreement between
our experimental data, the Floquet scattering theory, and the
semiclassical model. In the other extreme, when the escape
time of electrons is much larger than the period of the drive,
electron emission becomes rare and the fluctuations are shot
noiselike with a white spectrum related to the average (particle)
current Ip = 2efd P , where P is the emission probability,
through the usual Schottky formula SSchottky = 2eIp.

As the mesoscopic capacitor is tuned away from the optimal
operating conditions and charges are emitted close to the Fermi
energy, a significant increase in the noise is observed due to
additional charge fluctuations generated by the source. These
spurious emission processes are not accounted for by the
semiclassical model, in which maximally one electron–hole
pair can be emitted during each cycle. In contrast, these
additional fluctuations are fully accounted for by the Floquet
scattering theory. The ability to accurately investigate, model,
and characterize the single-electron emission process will
prove useful in future few electron experiments involving the
mesoscopic capacitor as a controllable single-electron source.
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14M. Büttiker, H. Thomas, and A. Prêtre, Phys. Lett. A 180, 364
(1993).
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22M. Lee, R. López, M.-S. Choi, T. Jonckheere, and T. Martin, Phys.

Rev. B 83, 201304(R) (2011).
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