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� We discuss Coulomb interaction effects on charge propagation along quantum Hall edge channels.

� Various experimental works are connected and analyzed in a unified theoretical framework.
� Low frequency transport is described by a lumped element model.
� High frequency transport is described by edge magnetoplasmon propagation.
� Interchannel magnetoplasmon scattering leads to electron fractionalization and decoherence.
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a b s t r a c t

We study time dependent electronic transport along the chiral edge channels of the quantum Hall re-
gime, focusing on the role of Coulomb interaction. In the low frequency regime, the a.c. conductance can
be derived from a lumped element description of the circuit. At higher frequencies, the propagation
equations of the Coulomb coupled edge channels need to be solved. As a consequence of the interchannel
coupling, a charge pulse emitted in a given channel fractionalized in several pulses. In particular, Cou-
lomb interaction between channels leads to the fractionalization of a charge pulse emitted in a given
channel in several pulses. We finally study how the Coulomb interaction, and in particular the fractio-
nalization process, affects the propagation of a single electron in the circuit. All the above-mentioned
topics are illustrated by experimental realizations.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

The theoretical study of the dynamical properties of electronic
transport in mesoscopic conductors has been pioneered by Markus
Büttiker and his collaborators in the 1990s [1–4]. Following the
description of the dc conductance of multichannel mesoscopic
conductors as the coherent scattering of electronic waves [5], they
studied the frequency dependent conductance G ω( ) arising when
the conductor terminals are driven by a time dependent voltage
excitation. The latter case turns out to bring more complexity than
the dc one, in particular as the role of Coulomb interaction is
crucial. In the dc case, the current is expressed as a function of
both the probability to be transmitted from one contact to the
other and the difference between the electrochemical potentials of
the contacts. In most of the cases, the effects of Coulomb inter-
action can be disregarded and remarkably, the conductance can be
expressed as a function of the scattering amplitudes of non-
interacting electronic waves. In the ac case, the time dependent
current resulting from the variation of the electrochemical po-
tential of the contacts gives rise to a time dependent accumulation
of charges in the conductor which in turn leads to the variation of
the electrostatic potential mediated by the long range Coulomb
interaction. It is clear that this contribution to the ac current which
directly stems from Coulomb interaction is crucial. Indeed, if one
simply applied scattering theory as in the dc case, no current
would be predicted to flow between contacts capacitively coupled,
as scattering theory only predicts non-zero conductance between
contacts which are physically connected by some transmission
probability. The method introduced by Büttiker and coworkers in
Refs. [1–4] follows two steps. In the first one, the ac current is
calculated in a scattering formalism assuming a fixed value of the
electrochemical potential of the contacts and of the electrical po-
tential in the conductor. In the second one, the electrical potential
is self-consistently calculated by relating the potential to the
charges accumulated in the conductor using the capacitance ma-
trix. Following these two steps, two time scales naturally appear.
The first one, related to the non-interacting scattering description
is the time of flight of non-interacting electron through the
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Fig. 1. Schematics of a generic Hall bar sample. Ohmic contacts and metallic gates
are driven by time dependent electrochemical potentials Vα .
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conductor of length l, l v/1τ = . The second one is related to the
Coulomb interaction through the conductor capacitance C and the
typical impedance of a mesoscopic sample: hC e/2

2τ = . Combining
these two time scales by v l e hC1/ / /2τ = + , one can define the
important concept of electrochemical capacitance Cμ defined by

C C hv e l1/ 1/ / 2= +μ , where the second term is the quantum capa-
citance of the conductor. The electrochemical capacitance is cen-
tral to describe the effects of interactions in quantum conductors
such as mesoscopic capacitors [1] but also the inductive like [4]
behavior of quantum wires. Another major concept of time de-
pendent transport is the charge relaxation resistance Rq [1] which
together with the electrochemical capacitance defines the time it
takes for charges to relax from the mesoscopic conductor to a
macroscopic reservoir (contact). It differs from the dc resistance
given by the Landauer formula. In particular, for a single mode
quantum coherent conductor, R h e/2q

2= [1,6,7], independently of
the probability for charges to be transmitted from the conductor to
the reservoir. Remarkably, this universal behavior is robust to
strong electron–electron interactions [8–10]. Mesoscopic capaci-
tors and charge relaxation resistance have applications beyond the
obvious understanding of the dynamics of charge transfer in me-
soscopic conductors such as dephasing induced by charge fluc-
tuations [11–13] or the efficiency of mesoscopic detectors [14,15].

The present paper will address more specifically time depen-
dent electronic transport along the chiral edge channels of the
quantum Hall regime. The motivation is twofold. Firstly, chiral
edge channels provide an ideal system to test quantum laws of
electricity beyond the dc limit. The ballistic and one dimensional
nature of propagation, which can be implemented on long dis-
tances, realizes a simple set of interacting single mode quantum
wires. However, one specificity of quantum Hall systems distin-
guishes them from usual wires: chiral propagation is enforced by
the strong magnetic field. This specificity makes chiral edge
channels particularly useful to study quantum coherence effects in
time dependent situations. Indeed, the coherence of electron
beams can be probed in electronic interferometers [16]. When
time-dependent drives are applied, quantum coherent electronics
can be pushed to the single electron scale where one studies the
evolution of a single electron wavefunction in a quantum con-
ductor. These electron quantum optics experiments [17] are the
second motivation of this work. They have been pioneered by
Markus Büttiker as well in many ways: mesoscopic capacitors are
used as single electron emitters [18–20] which statistical proper-
ties can be accessed through the measurement of electronic noise
[21–24] or the study of distribution of waiting times between
successive electron emissions [25–27]. Next, the coherence prop-
erties of single electron states [28,29] can be probed in the elec-
tronic analog of the Hanbury–Brown and Twiss [30] or Hong–Ou–
Mandel geometry [31] following a proposal by M. Büttiker and his
collaborators [32] and paving the way for the coherent manip-
ulations of a few charge quanta in quantum conductors based on
multiparticle interference effects [33–35]. Remarkably, these ex-
periments [36] have been so far well accounted for by the time
dependent Floquet scattering theory [37,38] of the mesoscopic
capacitor which builds on the generic scattering theory of time
dependently driven mesoscopic conductors discussed above in the
introduction.

While the study of single electron coherence is a strong moti-
vation of the work presented in this paper, quantum coherence
effects on time dependent transport will not be directly addressed.
However, the purpose of the manuscript is to discuss the role of
Coulomb interaction in charge propagation in quantum Hall sys-
tems and to connect it to the issue of single electron coherence.
This question naturally arises as, on one hand, understanding and
manipulating single electron coherence rely on a single-particle
picture where interactions are disregarded. On the other hand, as
mentioned above, Coulomb interaction plays a prominent role in
time dependent charge propagation.

The paper will first review the lumped element description of
Hall conductors at high frequency based on the calculation of the
circuit emittance introduced in Ref. [39]. In particular the role of
the electrochemical capacitance in the ac properties of Hall con-
ductors will be extensively discussed. At higher frequency the
lumped element description of the circuit breaks down and pro-
pagation effects need to be taken into account. The ac conductance
then stems from the propagation of edge magnetoplasmons. The
role of Coulomb interaction between edge channels will then be
discussed as the coupling leads to the emergence of new propa-
gation eigenmodes responsible for the fractionalization of the
charge propagating in a given channel. Finally, fractionalization
will be discussed at the single electron level, addressing the
question of the death of the elementary quasiparticle caused by
the Coulomb interaction. All the above-mentioned topics will be
illustrated with various experimental realizations (with an em-
phasis put on our own). We would like to emphasize that the data
presented are extracted from already published works. The pur-
pose of this manuscript is to connect together various experi-
mental approaches and discuss them in a unified theoretical fra-
mework inspired by the seminal works of Markus Büttiker and his
collaborators.
2. Emittance of a Hall bar

We consider a generic quantum Hall circuit schematically re-
presented in Fig. 1. Electronic transport occurs along the quantum
Hall edge channels [40–42] located at the edges of the sample, the
number of flowing channels at each edge being fixed by the
number of occupied spin polarized Landau levels (the filling factor
N). The metal-like edge channels are separated by dielectric re-
gions [43]. They are electrically connected to ohmic contacts acting
as electronic reservoirs and imposing the electrochemical poten-
tial Vα of the channels emerging from contact α. They are in ca-
pacitive influence with each other and with nearby metallic gates.
In a time dependent situation, the electrochemical potential V t( )β
of the reservoirs or gates is subject to a periodic modulation:
V t V e i t( ) =α α

ω− . We are interested in the time dependent current
response I t( )α flowing from contact α, defining the multiterminal
ac conductance:

I G V
1

∑ ω= ( )
( )

α
β

αβ β

For low enough drive frequency, G ω( )αβ can be expanded at first
order in ω, providing the first correction to the well known dc-
conductance, see Eq. (2), and defining the emittance Eαβ as done by
Christen and Büttiker in Ref. [39].

G G i E 2
dcω ω( ) = − ( )αβ αβ αβ

( )
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Fig. 2. Two terminal Hall bar. N channels are transmitted from contact 1 to contact
2. The electrical potential of the upper/lower edge channels is U1/2. The edge
channels are capacitively coupled to a grounded metallic gate with capacitance Cg.
Counterpropagating channels are coupled by the capacitance Ch.
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The following calculation of the emittance follows closely the one
made in Ref. [39] with a few simplifications. We only consider here
fully transmitted or fully reflected edge channels such that charges
flowing in one channel emerge from a single contact and are in-
jected to a single one. To distinguish edge channels from re-
servoirs, the edge channels are labeled by the roman indices k. To
identify to which contacts the channels are connected, we use the
notation 1kΔ =β if channel k emerges from contact β (0 otherwise)
and 1kΔ =α if edge channel k injects to contact α (0 otherwise).
The edge channels are modeled as metallic wires with uniform
electrical potential Uk along the sample edge. The electrochemical
potential of channel k is imposed by the electrochemical potential
Vβ from which it emerges. The electrical potential Uk however is
not imposed by the reservoir β. Its value depends on the charges
accumulating in all the nearby conductors (edge channels and
gates), and related by the capacitance matrix C describing the
Coulomb interaction between the metallic conductors:

Q C U .
3

k
j

kj j∑=
( )

The charge accumulating in edge channel k also equals the density
of states of the channel times the energy difference between the
electrochemical potential Vk and the band bottom Uk:

Q D V U , 4k k k k= ( − ) ( )

with D le hv/k D k
2

,= ( ) represents the quantum capacitance of
channel k which equals the electric charge times the density of
states of a one dimensional wire of length l and drift velocity vD k, .
To simplify, we will assume all edges to have the same drift ve-
locity vD and same quantum capacitance such that D Dk 0= . Solving
Eqs. (3) and (4) provides the dependence of all the electrical po-
tentials Uk on the variations of the electrochemical potentials of
the contacts Vβ , defining the characteristic potentials ukβ:

U u V .
5

k k∑=
( )β

β β

The current Iα flowing from contact α is the difference between the
current carried by the outgoing channels, I ,α + and the one carried
by the incoming channels I ,α −. The first one is related to the
electrochemical potential Vα by the Landauer conductance while
the second can be deduced from charge conservation on each
channel k:

I I
e
h

V
6k

k k
k

k, ,

2
∑ ∑Δ Δ= =
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α α α α+ +

I I I Q
7k

k k
k
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k k
k
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2

,∑ ∑ ∑δ Δ Δ ω Δ= − −
( )

α
β

β αβ α β β α

where Nβ is the total number of edge channels flowing from
contact β and k k k, ,Δ Δ∑ α β represents the number of edge channels
transmitted from contact β to contact α. The first term in factor of
e h/2 is the usual dc conductance, the second one related to the
charge accumulated in the edge channels is the emittance matrix.
Using Eqs. (3)–(5), one immediately gets

E D u ,
9k

k k k k∑ Δ Δ= ( − )
( )

αβ α β β

where the only quantities to be calculated are the characteristic
potentials.
3. Examples, RL and RC circuits

We first consider the geometry depicted in Fig. 2 which con-
sists of a Hall bar with two contacts at filling factor N such that N
channels are connecting ohmic contact number 1 to Ohmic contact
number 2. The edge channels on each side are interacting with a
nearby gate with a capacitance Cg which represents interactions
with the ground plane, and with each other through the mutual
capacitance Ch (see Fig. 2). The capacitive coupling between co-
propagating edge channels on the same side of the sample is
supposed to be strong, such that they all share the same electrical
potential U1/2 for the upper/lower channels. The capacitance ma-
trix relating the charges Q1/2 to the potentials U1/2 is given by

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟C

C C C

C C C 10

g h h

h g h
=

+ −
− + ( )

We also assume equal density of states on each channels:
D D D ND1 2 0= = = .

Using Eqs. (3), (4) and (10), we obtain the characteristic po-
tentials:

u
D D C C

D C C D C
u u

2
,

11
g h

g h g
11 22 11=

( + + )
( + + )( + )

=
( )

u
DC

D C C D C
u u

2
,

12
h

g h g
12 21 12=

( + + )( + )
=

( )

From which we get the emittance:

E
DC D C C D C

D C C D C
2

2 13
g g h h

g h g
21

2
=

( + + ) +
( + + )( + ) ( )

G
Ne

h
i

DC D C C D C
D C C D C

2
2 14

g g h h

g h g
21

2 2
ω= − −

( + + ) +
( + + )( + ) ( )

E21 is positive which corresponds to an inductive behavior of the
circuit. Given the sign conventions used in the paper, the serial
association of a resistance R and an inductance L provides the
following low frequency two terminal conductance:
G R i L R1/ /21

2ω= − − . The relation between the inductance of the
Hall bar and the emittance is then given by L E Ne h/ /21

2 2= ( ) .
Two interesting limits can be discussed. The first one corres-

ponds to the strong coupling between counterpropagating edges:
C D C,g h⪡ , E DC D C C/ 2h h h21 ≈ ( + ) = μ , where C hμ is the electro-
chemical capacitance between the edges given by the serial as-
sociation of the quantum capacitance D of the channels located on
each side of the sample and the mutual capacitance Ch. The
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Fig. 3. Left panel: Schematics of the sample. A quantum point contact transmits T of the N edge channels from contact 1 to contact 2. The edge channels are capacitively
coupled (with capacitance Cg to a grounded metallic gate. Counterpropagating edge channels are coupled by the capacitance Ch. Right panel: picture of the sample. The
electron gas is colored in blue. The voltage Vg is applied on the gold top gate acting as a quantum point contact. Gray top gates are grounded and screen the Coulomb
interaction. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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inductance is then given by L C Ne h/ /h
2 2= ( )μ . If the coupling is very

strong ( C Dh⪢ ) corresponding to the limit of a non-chiral wire,
E D/221 ≈ giving L h e D N/ /22 4

0= ( ) which corresponds to the usual
kinetic inductance of a quantum wire [44,45].

The relevant experimental situation is the limit of weak cou-
pling between counterpropagating edges, C Ch g⪡ in which case the
emittance reduces to E DC D C C/g g g21 = ( + ) = μ , the electrochemical
capacitance to the gate given by the serial association of the
quantum capacitance D and the geometrical capacitance Cg. The
inductance is then given by L C Ne h/ /g

2 2= ( )μ .
The differences between these two limits can be even more

emphasized if one can vary the number T of channels transmitted
from contact 1 to contact 2 using a quantum point contact (see
Fig. 3), thereby changing the dc conductance (and resistance) of
the wire, G Te h/dc 2= , R h Te/ 2= . For a classical circuit, one expects
the value of the inductance not to vary when the resistance is
modified, implying that E21 should vary like T2. To compute the
charges Q1/2 accumulated on the upper and lower side of the Hall
bar, we assume again that interchannel interaction is so strong
that upper/lower channels have the same potential U1/2. The only
modification compared to the previous case is the change in the
electrochemical potential of the lower channels as charges come
both from contact 1 at V1 (reflected channels) and from contact
2 at V2 (transmitted channels).

Q ND V U C U C U U 15g h1 0 1 1 1 1 2= ( − ) = + ( − ) ( )

Q D TV N T V U C U C U U 16g h2 0 2 1 2 2 2 1( )= + ( − ) − = + ( − ) ( )

u
ND ND C C

ND C C ND C

2

2 17

g h
T
N

g h g
11

0 0

0 0

( )( ( )
=

+ + −

( + + )( + ) ( )

E TD u1 1821 0 11= ( − ) ( )

E
TD C

ND C
T D C

ND C C ND C2 19
g

g

h

g h g
21

0

0

2
0
2

0 0
=

+
+

( + + )( + ) ( )

E12 is the sum of two terms, the second one varying like T2 is the
classical term, predicting a classical RL circuit which inductance L
does not vary when the resistance R of the circuit is modified. The
first term predicts an emittance linear in the dc conductance,
meaning a constant phase of the complex conductance. This be-
havior cannot be understood as the serial addition of independent
resistance and inductance. Looking at the dependence of the
classical term, it emerges from the coupling between counter-
propagating edges which tends to suppress the chiral nature of the
Hall bar. For C Ch g⪢ , we have E T N C/ h21

2 2= ( ) μ and we recover
L C Ne h/ /h

2 2= ( )μ , the value of the inductance is independent of the
number of transmitted channels. On the contrary, when chirality is
preserved, C Cg h⪢ , E T N C/ g21 = ( ) μ and L N T C Ne h/ / /g

2 2= ( ) ( )μ . This
expected difference shows up spectacularly in the phase of the ac
conductance Im G Re G C Ne htan / / /g12 12

2ϕ ω= ( ) ( ) = ( )μ which be-
comes independent of the number of transmitted channels and
only depends on the total number of channels (filling factor N).

The variation of the ac conductance of a Hall bar when the
number of transmitted edge channels is modified has been
checked experimentally in Ref. [46] on a 50 μm long and 6 μm
wide Hall bar made in a GaAs/AlGaAs electron gas of nominal
density ns 1.3 10 cm11 2= × − and mobility 3 10 cm V s6 2 1 1μ = × − − .
The bar is interrupted in its middle by a pair of quantum point
contacts (the right panel of Fig. 3). Only the first QPC is active with
a negative voltage bias (V 1 Vg ≈ − ) fully depleting the electron
gas beneath it resulting in a small gate to 2DEG capacitance. The
grounded gate of the second QPC widely overlaps the electron gas.
This results in a large gate-2DEG capacitance C fF30g ≈ (for a gate
length l 10 mg ≈ μ ) which efficiently screens the Coulomb inter-
action. Two values of the magnetic field have been investigated,
B 0.224 T= and B 0.385 T= corresponding to filling factors N¼24
and N¼14 respectively. Fig. 4a represents the real and imaginary
parts of the ac conductance (a drive frequency of 1.5 GHz) at
B 0.385 T= , as a function of the gate voltage Vg (which controls the
number of transmitted edge channels). Both the real and imagin-
ary parts exhibit steps each time one additional channel goes
through the QPC as Vg is varied. The step height is e h2 /2 for the real
part of the conductance which equals twice the conductance
quantum (spin degeneracy is not lifted). It is only coincidental that
the steps in the imaginary part of the conductance are also close to

e h2 /2 . Fig. 4b shows a Nyquist representation (Im(G) as a function
of Re(G)) of the conductance. Remarkably, as a result of the chiral
nature of the circuit, the phase stays constant when the number of
transmitted channels is varied as can easily be seen on the Nyquist
representation. As a comparison, the classical case of constant
inductance ( L 0.7 H= μ ) is represented in black dashed line, it
clearly does not reproduce the data.

The constant phase observed in the Nyquist representation can
be expressed as a transit time of charges through the Hall bar:
tan ϕ ωτ= ρ defining a charge velocity renormalized by the
screened Coulomb interaction: v l/τ=ρ ρ where l is the propagation
length:

C Ne h l v Ne hC/ / / / 20g D g
2 2τ = ( ) = ( + ˜ ) ( )ρ μ



Fig. 4. (a) Real part Re G21( ) (black circles) and imaginary part (with minus sign)
Im G21− ( (red circles) as a function of the gate voltage Vg which controls the number

of transmitted channels. (b) Nyquist representation of the conductance (imaginary
part versus real part). Black dots represent the data ( f 1.25 GHz= and B 0.385 T= ).
The red dashed line is a linear fit of the data. The black dashed line is the expected
behavior for a classical circuit with constant inductance L 0.7 H= μ . Data at
f 1.5 GHz= and B 0.224 T= (black dots) and B 0.385 T= (red dots) are plotted in
the inset with their linear adjustments (black and red lines). (For interpretation of
the references to color in this figure caption, the reader is referred to the web
version of this paper.)
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Fig. 5. Hall bar with fully pinched quantum point contact. Counterpropagating
channels across the QPC are coupled by the capacitance Cm.
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v v Ne hC/ 21D g
2= + ( ˜ ) ( )ρ

where Cg
˜ is the geometrical capacitance per unit of gate length.

From 0.12 nsτ =ρ extracted from a linear fit and the estimated gate
length, l 10 mg ≈ μ , we obtain a charge velocity v 10 m s5 1≈ρ

− in
agreement with reported numbers in the literature [47,48] for
gated samples. The inset of Fig. 4b shows measurements at dif-
ferent magnetic field and frequency. The extracted transit time is
compatible with Bτ ∝ , that is v B1/∝ρ . As expected, the charge
velocity is inversely proportional to the magnetic field.

A change from an inductive to a capacitive behavior should be
expected when the QPC is fully pinched (see Fig. 5). In that case,
the edge channels emerging from contact 1 are fully reflected back
to contact 1 and charge transfer results from the capacitive cou-
pling between counterpropagating edges reflected at the QPC with
geometrical capacitance Cm. The charges Q1 and Q2 of edge chan-
nels emerging from contacts 1 and 2, their potentials, and the
emittance E21 then read

Q ND V U C U C U U 22g m1 0 1 1 1 1 2= ( − ) = + ( − ) ( )

Q ND V U C U C U U 23g m2 0 2 2 2 2 1= ( − ) = + ( − ) ( )

u
ND C

ND C C ND C2 24
m

g m g
21

0

0 0
=

( + + )( + ) ( )

E ND u 2521 0 21= − ( )

E
ND C

ND C ND C2 26
m

m g
21

0
2

0 0
= − ( )

( + )( + ) ( )

The change of sign of the admittance in Eq. (26) compared to Eq.
(13) reflects the change from an inductive to a capacitive behavior
of the circuit. In the limit ND Cg0⪢ , the coupling capacitance re-
duces to the electrochemical capacitance C mμ between counter-
propagating edges. This transition cannot be observed in Fig. 4 in
our data, because C mμ is small and hard to distinguish from the
parasitic capacitive coupling between the contact pads. This
transition has however be observed in ac measurements per-
formed on a similar sample by Hashisaka and collaborators, Ref.
[49]. Due to the geometry of their quantum point contact, coun-
terpropagating channels run parallel to each others along a 50 mμ
length resulting in a large capacitive coupling when the QPC is
closed (C fF3m ≈μ ). At the opening of the first channel, they observe
the transition from a purely capacitive to an inductive regime.
Interestingly, once the phase of the conductance has shifted from

/2π− (pure capacitance) to a positive value (inductance) at the
opening of the first channel, the phase stays constant when an
increasing number of channels are transmitted accordingly to our
observation. The charge velocity vρ extracted from their mea-
surements is higher than ours and lies in the 10 m s6 1− . This dif-
ference is related to the absence in their sample of a metallic top
gate covering the edge channels and efficiently screening the
Coulomb interaction [48] (a lower value of Cg

˜ leads to a larger
charge velocity vρ). At frequencies higher than 1 GHz and large
magnetic fields (filling factor N 4≤ ) measurements in Ref. [49] are
not compatible with the low frequency expansion at first order in
ω of the conductance G, Eq. (2). In this high frequency regime,
propagation effects must betaken into account, this will be the
purpose of Section 5.
4. Interchannel interactions, N¼2 case

The experiments described in the previous section do not allow
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electrochemical potential of each copropagating channels 1 and 2. Electrochemical
potential of channel 1/2 is V1/2. Two output configurations are studied: either
channels 1 and 2 are both reflected to contact 3 (configuration 1) or only channel
2 is reflected towards 3 (configuration 2).
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to probe interactions between co-propagating channels. Indeed,
co-propagating edge channels are connected to the same contact,
they share the same electrochemical potential and are excited in a
symmetric fashion. In this situation, one only probes the propa-
gation velocity of the total charge carried by all the co-propagating
channels, which is more sensitive to the coupling to the screening
gate than to the coupling between edges. However, the study and
characterization of interchannel interactions are central to un-
derstand energy relaxation [50,51] and the loss of electronic co-
herence in quantum Hall edge channels [52,53]. It has indeed been
shown that Coulomb interactions were directly responsible for
these phenomena [54–57].

The simplest situation to study inter-channel interaction is the
N¼2 case, where propagation occurs along two spin polarized
channels. In order to impose different electrochemical potentials
to the two channels, we consider the sample depicted in Fig. 6. A
quantum point contact is set to selectively transmit [42] the outer
edge and fully reflect the inner one, such that edge channels 1 and
2 emerge from two different ohmic contacts 1 and 2. A second
quantum point contact placed after a propagation length l can be
used either to reflect both channels towards contact 3 (case 1) or
to reflect only the inner channel towards 3 (case 2). We first
consider the case where only V1 is time dependently driven such
that current is only injected in the outer edge channel 1 at the
input of the inter-edge interaction region. As in the previous sec-
tion, both edge channels are assumed to have the same quantum
capacitance D0, they are coupled to the ground plane through the
capacitance Cg and to each other through the inter-channel capa-
citance C. We compute the emittance in the two above-mentioned
cases. In the first one, both edge channels are connected to the
output contact 3, and E D u u D C D C1 /g g31

1
0 1,1 21 0 0= ( − − ) = ( + )( ) . The

result is very similar to the emittance of the Hall bar obtained in
the previous section. The phase of the complex conductance
G e h i l v/ 1 /31

1 2 ω= − ( + )ρ
( ) encodes the transit time of charges in the

interaction region with a charge velocity renormalized by the
screened Coulomb interaction that can be expressed as a function
of the electrochemical capacitance to the gate:

v v
e

hC
e

hC 27
D

g g

2 2
= + ˜ = ˜ ( )

ρ
μ

In the second case, the output quantum point contact is set to
reflect only the inner channel towards contact 3. This setup di-
rectly measures the current transferred from the outer to the inner
channel as a result of the inter-channel interaction. Considering a
weak coupling to the gate (C C D,g 0⪡ ), we obtain

E D u
D C

C D2 2831
2

0 21
0

0
= − = −

+ ( )
( )
G i
D C

C D
i C

2
.

2931
2 0

0
ω ω=

+
=

( )μ
( )

The change of sign of the emittance from configuration (1) to
configuration (2) reflects the change from an inductive to a ca-
pacitive behavior. The capacitance equals the electrochemical ca-
pacitance Cμ between the inner and outer channels given by the
serial association of the quantum capacitance D0 of each channel
and the geometrical capacitance C. As expected from this purely
capacitive coupling, the output current is purely imaginary such
that no timescale or transit time can be associated to the con-
ductance phase. However, it is possible to define a characteristic
time τn from E31

2( ) by dimensional arguments: E e h2 / /n 31
2 2τ = ( )( ) .

Following the same line of thought, a velocity v l/n nτ= can be
defined

l
v e hC/ 2 30

n
D

2
τ =

+ ( ˜ ) ( )

v v
e
hC

e
hC2 2 31

n D

2 2
= + ˜ = ˜ ( )μ

where C C l/˜ = and C C l/˜ =μ μ are the geometrical and electro-
chemical capacitances per unit length. To provide an interpreta-
tion of this transit time and of this velocity, one can consider the
case where both ohmic contacts 1 and 2 are driven by voltage
excitations at the same pulsation ω but with opposite amplitudes
V V2 1= − . This generates opposite or antisymmetric charge dis-
tributions along edge channels 1 and 2. As such, the total current
collected in configuration (1) when both edge channels are de-
flected towards ohmic contact 3 vanishes: I G G V 01

31
1

32
1

1= ( − ) =( ) ( ) ( )

(where G G31
1

32
1=( ) ( ) directly results from the symmetry between

edge channels 1 and 2 assumed in the previous discussions). This
antisymmetric charge distribution is thus a neutral excitation
which does not carry a total charge when summed on both
channels. To get the propagation velocity of this neutral excitation
through a standard current measurement, one must use config-
uration (2) so as to measure only the current carried by the inner
edge channel at the output of the interaction region,
I G G V2

31
2

32
2

1= ( − )( ) ( ) ( ) . G i E31
2

31
2ω= −( ) ( ) as calculated above. From

symmetry between channels and current conservation arguments,
we get, G G G G32

2
41
2

31
1

31
2= = −( ) ( ) ( ) ( ), providing:
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⎞
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⎛
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⎠⎟I G G V

e
h

i
D C

C D
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/2 32
2

31
2

31
1

1

2
0

0
1ω= − = +

+ ( )
( ) ( ) ( )

l vtan / 33n nϕ ωτ ω= = ( )

The velocity vn introduced above from dimensional arguments and
related to the interchannel coupling C thus probes the propagation
velocity of a neutral antisymmetric charge distribution between
both channels. The velocity vρ related to the coupling to the
screening gate Cg probes the velocity of the total charge (sym-
metric distribution between the channels).

To probe interchannel interactions through high frequency
conductance measurements, we used in Ref. [58] a geometry dif-
ferent than the one proposed in Fig. 6. The sample is presented in
Fig. 7. To inject current in the outer channel, we use a mesoscopic
capacitor [1,7]. The outer edge channel (1) is selectively trans-
mitted in a cavity which is capacitively coupled to a metallic top
gate on which we apply the RF excitation. The ac current at the
output of the l 3.2 0.4 m= ± μ interaction region is measured on
ohmic contact 3. Configurations (1) and (2) are selected by chan-
ging the gate voltage Vqpc applied on the output quantum point
contact. To avoid gain and phase calibrations, we measure the ratio



Fig. 7. Modified scanning electronic microscope picture of the sample. The electron gas is in blue, metallic gates in gold, and edge channels 1 and 2 are represented by blue
lines. Selective current injection on the outer edge channel (1) is performed by capacitively coupling edge channel 1 only to a metallic top gate on which time dependent
voltage V1 is applied. The current at the output of the l 3 m≈ μ interaction region is measured in configuration 1 (left panel) and in configuration 2 (right panel). (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 8. Modulus (upper panel) and phase (lower panel) of the conductance G31
2( ) normalized G31

1( ) as a function of frequency. The data are represented by black dots, low
frequency linear adjustments by black dashed lines. The red dashed lines represents the predictions of the propagation model Eq. (52) with parameters C 1.35=μ fF
(v 4.6 10 m sn

5 1= × − ), imposed by the low frequency behavior, v 2.25 10 m sD
4 1= × − , imposed by the high frequency behavior, and 4.1 psrτ = . (For interpretation of the

references to color in this figure caption, the reader is referred to the web version of this paper.)
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of the conductance in the two configurations, G G/31
2

31
1ω ω= ( ) ( )( ) ( ) as

a function of the drive frequency from 1 GHz to 11 GHz. Assuming
C Cg ⪡ , we have v vn⪢ρ and G e h/31

1 2ω( ) ≈( ) such that measures

G31
2 ω( )( ) in units of e h/2 . Measurements of the modulus and phase of

G31
2 ω( )( ) as a function of frequency are presented in Fig. 8. At low

frequency ( f 2.5 GHz≤ ), both the modulus and phase of the con-
ductance evolve linearly with frequency (see the linear fits re-
presented by the black dashed lines). The zero frequency intercept
of the modulus is zero, while the phase goes to /2π . This low
frequency dependence agrees with the capacitive coupling de-
scribed by Eq. (29) with an electrochemical coupling capacitance
C f F f F1.35 0.15= ±μ , that is a neutral mode velocity of
v 4.6 0.5 10 m sn

5 1= ± × − . The linear dependence of the phase with
frequency provides the ω2 term in the power expansion of G31

2 ω( )( ) :
G i C i RC1 , 3431
2 ω ω ω( ) = ( + ) ( )μ μ

( )

corresponding to the serial addition of a capacitance and a re-
sistance. From the slope of the linear dependence of the phase
with frequency, we deduce R k h e27 3.5 / 2Ω= ± ≈ . This is in
agreement with Refs. [1] and [7] investigating the charge relaxa-
tion resistance in an ac driven RC circuit. As discussed in the in-
troduction, it equals h e/ 2 2( ) for a single spin polarized channel.
Here charge transfer occurs from a single spin polarized channel to
another single spin polarized channel, charge relaxation resistance
thus equals twice h e/2 2.

At frequencies higher than 3 GHz, the lumped element circuit
description limited in second order in ω cannot account for the
frequency dependence of the ac conductance which exhibits an
oscillating behavior. For such high frequencies, the wavelength of
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the propagating modes becomes comparable with the circuit size
(few microns) and the uniform potential assumption valid at low
frequency does not hold anymore. One needs to take into account
propagation effects along the edge channels.
C

L

R R

L

C

Fig. 9. (a) Transmission line description of propagation, C C g= μ , L h e C/ g
2 4= ( ) μ .

(b) Dissipative transmission line with resistance R to the ground. (c) Dissipative
transmission line with resistance R in series with the capacitance C gμ .
5. Propagation and edge-magnetoplasmons

At high frequencies, one cannot neglect the space dependence
of the currents I x t,k ( ), charge densities x t,kρ ( ) and electrical po-
tential U x t,k ( ) at position x of edge channel k. Current propagation
is then described in terms of edge magnetoplasmon modes which
circulate at the edges of the sample [59–61]. The charge density

x t,kρ ( ) is related to I x t,k ( ) through the usual current conservation
equation: I 0x k t kρ∂ + ∂ = . The propagation equation for the current
[62] is obtained by considering the sum of two contributions. The
first one comes from the excess charge ρk moving at the drift
velocity vD k, , the second one comes from the Hall current e h U/ k

2( )
caused by the variation of the channel potential. Focusing on a
harmonic variation of the current, potential and charge at pulsa-
tion ω, we get

I x t x t v
e
h

U x t, , , 35k k D k k,

2
ρ( ) = ( ) + ( ) ( )

i v I x
i e

h
U x 36D k x k k,

2
ω ω( − + ∂ ) ( ) = − ( ) ( )

The potential Uk(x) is related to the charge densities of all other
edge channels and conductors by the long range Coulomb inter-
action:

U x dyU x y y,
37

k
j

kj j∫∑ ρ( ) = ( ) ( )
( )

We start first with the simple limit of shirt range Coulomb inter-
action: U x y U x y,kj kj δ( ) = ( − ). Note that this crude assumption will
always be valid at low enough frequency, when the wavelength of
the propagation modes are larger than the interaction range. In
this limit, the interaction parameters Ukj identify to the inverse

capacitance matrix elements per unit length: Cij
1˜ − :

U x C x ,
38

k
j

ij j
1∑ ρ( ) = ˜ ( )

( )

−

and the current propagation equation can be rewritten introdu-

cing the velocity matrix v with v v e h C/ij D i ij ij,
2 1δ= + ( ) ˜ −

:

i v I x 0 39xω( − + ∂ ) ( ) = ( )

where  is the identity matrix and I(x) is the vector of the currents
propagating along the edge channels.

Eq. (39) lends itself to a description in terms of voltage and
current propagation in a unidirectional transmission line [63]. The
electrochemical potential of edge channel k, V x t,k ( ), is the sum of
the electrical potential U x t,k ( ) and the chemical potential

x t D, /k 0ρ ( ) ˜ (where D0
˜ is the quantum capacitance per unit length).

As such, V x t,k ( ) also depends on the position x along the edge
channel and is very simply related to the current I x t,k ( ):

V x t U x t
h
e

x t v
h
e

I x t, , , , 40k k k D k2 2
ρ( ) = ( ) + ( ) = ( ) ( )

Eqs. (39) and (40) describe current propagation in terms of cou-
pled unidirectional transmission lines of characteristic im-
pedances R h e/K

2= . Let us discuss first the simple case N¼1 where
a single line is involved with charge velocity v e h C/ 1/ g

2= ( ) ˜ρ μ . Then
current propagation can be described as a distributed LC line (se
Fig. 9a) with a capacitance to the ground C g

˜μ and an inductance
L h e C/ g

2 4˜ = ( ) ˜μ per unit length. When several lines are coupled, the
solutions of Eq. (39) are found by diagonalizing the matrix v. La-
beling Iλ an eigenmode of the velocity matrix and vλ the eigen-
value, we obtain I x t I e, i x v t/( ) =λ λ

ω ( − )λ .
In the specific case where two copropagating channels are

considered, the velocity matrix and its eigenvalues read
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n D

g
g n

2 2

1 2= + ˜ + ˜ = ˜ ( ˜ ⪡ ˜ ) = −
( )μ

Note that we restricted ourselves to the case of identical channels
( C C Cg g g1 2

˜ = ˜ = ˜ , v v vD D D1 2= = ) which imposes the nature of the
eigenmodes: the symmetric charge mode and the antisymmetric
neutral mode already introduced in the previous sections. Differ-
ent eigenmodes could be obtained considering that channels 1 and
2 are different. However, if the interchannel interaction is stronger
than the asymmetry between channels : v v v /212 11 22⪢( − ) (strong
interaction regime), one recovers the charge and neutral
eigenmodes.

The propagation model now allows us to calculate the currents
at all orders in the drive pulsation ω. Decomposing the edge
currents I1 and I2 on the eigenmode basis, we can express I x l1( = )
and I x l2 ( = ) as a function of their input values I x 01( = ) and
I x 02 ( = ) using the 2�2 scattering matrix S l,ω( ) [64,55]:

I l S l I, , , 0 44ω ω ω( ) = ( ) ( ) ( )
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The conductance is then calculated first by relating I 01( ) and I 02 ( )
to the electrochemical potentials of the contacts to which they are
connected: I e hV0 /1

2
1( ) = , I 0 02 ( ) = . Secondly by summing the

output currents measured in contact 3: I l I l1 2( ) + ( ) in configuration
(1), I l2 ( ) only in configuration (2). We obtain the following ac
conductances in configurations (1) and (2) as a function of the
scattering coefficients S l,ω( ):
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Fig. 10. Real (black dots) and imaginary (red dots) parts of the wavevector kn as a
function of frequency. The black dashed line represents the constant velocity pre-
diction (short range model). The red lines represent the full propagation model
including attenuation and long range interaction with parameters C 1.35=μ fF
( v 4.6 10 m sn

4 1= × − ), imposed by the low frequency behavior,
v 2.25 10 m sD

4 1= × − , imposed by the high frequency behavior, and 4.1 psrτ = . (For
interpretation of the references to color in this figure caption, the reader is referred
to the web version of this paper.)
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Eq. (47) describes an oscillatory behavior as a function of either
interaction length l or pulsation ω. The current injected in the
outer channel oscillates from the outer to the inner channel and
back to the outer channel again. Such a behavior agrees qualita-
tively with the one observed in Fig. 8, where the modulus of G31

2 ω( )
increases up to E0.75 then decreases back down to E0.35 and
rises up again to E0.7. Contrary to Eq. (47), G31

2 ω( ) does not go up
to 1 then back down to zero, this attenuated oscillation signals the
presence of dissipation in the propagation. To capture the dis-
sipation in the propagation process, we can rewrite the phase
factor l v/ nω as k ln where kn is the wavevector of the neutral mode.
kn extracted from the measurements of G31

2 by inverting Eq. (47) is
plotted in Fig. 10. As discussed above, dissipation is present and
shows up as an imaginary part of kn which vanishes at low fre-
quency. The real part of kn evolves linearly with frequency up to
f 6 GHz≈ , which is consistent with a frequency independent ve-
locity v 4.6 10 m sn

4 1= × − . At higher frequencies, Re kn( ) deviates
from a linear variation to reach again a linear evolution but with a
different slope: v 2.25 10 m sn

4 1ω( → ∞) = × − . This ω dependence
of the velocity is not predicted by the short range interaction
model presented above. It results from the finite range of inter-
action. In the limit of high frequencies, when the wavelength of
the propagating modes becomes smaller than the interaction
range, the role of interaction in the propagation velocity is sup-
pressed and one recovers the non-interacting drift velocity vD. We
can thus attribute the high limit of the velocity to the non-inter-
acting value, v 2.25 10 m sD

4 1= × − . In order to add an interaction
range in the model, we assume that the interaction between xiρ ( )
and yjρ ( ) does not depend on the distance x y− (for x y l0 ,≤ ≤ ).
This crude assumption imposes an interaction range which equals
the length of the interaction region l. U x y,k j, ( ) then becomes in-
dependent of x and y, U x y U,k j kj, ( ) = where Ukj identify to the in-

verse capacitance matrix elements Ckj
1− . Uk(x) becomes in-

dependent of x and Eq. (37) can be rewritten as
U U dy y C Q
48
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1∫∑ ∑ρ= ( ) =

( )
−

Dissipation can also be taken into account by adding a dissipative
term in Eq. (36). Several possibilities can be considered which can
be illustrated by the unidirectional transmission line model. Let us
consider first the simple case of a single uncoupled line. Dissipa-
tion can first be added by considering that some current leaks to
the ground for example through the bulk of the electron gas (see
Fig. 9b). A second possibility is to consider that the line is capa-
citively coupled to a dissipative conductor before reaching the
ground (see Fig. 9c). Computing the propagation equation and the
dispersion relation k ω( ) in these two cases provide very different
results:
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k 1ω( )( ) describes an attenuation which does not depend on fre-
quency such that dc current also leaks to the ground. The fre-
quency independent damping does not properly account for our
observation of Im kn( ) in Fig. 10. On the contrary, k 2ω( )( ) describes a
damping increasing with frequency which fits more our observa-
tion. We thus choose to add the r

2γ ω ω τ( ) = term in the propa-
gation equation (36):
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Solving Eq. (51), we obtain the current I l2 ( ) as a function of the
input current I 01( ):
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with l v/D Dτ = and R CC Kτ = . Eq. (52) obeys the same low frequency
behavior as the discrete element model, Eq. (29) and the propa-
gation model with short range interaction, Eq. (47), with the same
expression for the electrochemical capacitance Cμ. At second order
in ω, the charge relaxation resistance is slightly modified by dis-
sipation effects and increases by C/2rτ μ compared to the dis-
sipationless value h e/ 2 with e C h/2 1r

2τ ⪡μ if dissipation is small. The
effect of the interaction range only appears at high frequency
when the neutral mode wavelength becomes comparable with l.
Predictions of Eq. (52) are plotted (red lines) in Figs. 8 and 10.
Parameters are C fF1.35=μ (imposed by the low frequency beha-
vior) and 4.1 psrτ = (adjustable parameter), v 2.25 10 m sD

4 1= × −

(imposed by the high frequency behavior of Fig. 10). The model
captures the period of the oscillations of the modulus as well as
the attenuation of the amplitude of these oscillations. In Fig. 10, it
reproduces well the attenuation and captures the change in ve-
locity as a function of the frequency although the change of ve-
locity is much sharper in the experiment.

Another complementary simple geometry investigated in Refs.
[63] and [65] to study Coulomb interaction effects between two
edge channels is the N¼1 case when two counterpropagating
channels are brought close enough (see Fig. 11) such that their
mutual interaction cannot be neglected. A 1 mμ wide and 50 m≈ μ
long gate, on which a negative voltage is applied so as to deplete
the electron gas underneath, is used to define an interaction re-
gion between the two single counterpropagating edge channels
located on each side of the metallic gate. Compared to the co-
propagating case, the opposite velocities of the two initially non-
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Fig. 11. Interaction between counterpropagating channels as implemented in Ref.
[65]. At filling factor ν¼1, a single edge channel (represented in red) propagates at
the edges of the sample. A metallic gate (yellow on the sketch) is biased with a
negative voltage Vg in order to deplete the electron gas underneath. Two coun-
terpropagating edge channels separated by the gate width of approximately 1 μm
interact through the Coulomb interaction on the gate length l 50 m≈ μ . Assuming
short range interaction, the interchannel interaction can be modeled by the capa-
citance per unit length C̃ . (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this paper.)
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Fig. 12. (a) Upper panel: sketch of charge fractionalization in situation 1. The input
charge pulse in channel 1 splits in a charge and neutral eigenmode. Lower panel:
simulations of the input I x t0,1( = ) and output I x l t,1( = ), I x l t,2 ( = ) with
v v2.5 n=ρ . (b) Upper panel: sketch of charge fractionalization in situation 2. The
input charge pulse in channel 1 drags the charge rQ− in channel 2 in the inter-
action region. Due to charge conservation, the pulse rQ is generated at t¼0 and x¼ l
in channel 2. Lower panel: simulations of the input I x t0,1( = ) and output
I x l t,1( = ), I x l t,2 ( = ) with r¼0.3. The successive pulses result from successive re-
flections at the edges of the interaction region and are separated by the delay l v2 /| |± .
(For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this paper.)
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interacting edge magnetoplasmons give rise to different eigen-
modes when interchannel Coulomb interaction is turned on.
Compared to Eq. (41), the sign of the velocities is changed for edge
channel 2 in the velocity matrix:
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The eigenvalues and eigenmodes of v are given by
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The two eigenmodes have opposite velocities which is re-
miniscent of the initial non-interacting case. Due to the coupling
between the edge channels, the charge of the eigenmodes is dis-
tributed on both channels. In the example of the eigenmode I+, the
current I1 propagating on channel 1 in the forward direction drags
the charge rI1− on edge channel number 2 in the interaction re-
gion. In the strong interchannel interaction limit, C D C, g0

˜ ⪢ ˜ , r 1→

and v e h C C/ 2 g
2→ ± ˜ ˜μ μ± , the eigenmodes in the interaction region

correspond to antisymmetric charge distributions propagating in
the forward or backward direction. In the small interchannel in-
teraction limit which corresponds to the relevant experimental
situation of Ref. [65], C D C,g 0

˜ ⪢ ˜ , r C C/2 1g→ ˜ ˜ ⪡ and v e hC/ g
2→ ± ˜μ± .

Only a small portion r− of the input charge carried in channel 1 is
dragged on channel 2 in the interaction region.
6. Interchannel coupling and charge fractionalization

Charge fractionalization in the integer quantum Hall regime
[65–69] occurs when a current pulse carrying charge Q is incom-
ing at the input of the interchannel interaction region. There, as



Fig. 13. (a) Modified scanning electron microscope picture of the sample. The two sources generate the charge pulse synchronously. The quantum point contact is set to
partition either the outer channel (1) or the inner channel (2). The low frequency partition noise is measured on output 4. (b) Noise measurements (normalized by the
random partition noise) qΔ as a function of the time delay τ between the sources. The upper/lower panel represents measurements of the outer (1)/inner (2) channels. The
sketches represent the shape of the current pulses colliding synchronously for the different values of delay τ. (c) Simulations of the excitation voltage and input current
I x t0,1( = ) (upper panel) and of the output currents I x l t,1( = ) and I x l t,2 ( = ).
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seen in the previous section, the propagation of currents obeys
coupled equations in which eigenmodes involve charge excitations
on both channels. As a result, at the output of the interaction re-
gion, charge excitations have been created in channel 2 and the
charge Q in channel 1 has fractionalized in several packets. The
two situations corresponding to interactions between copropa-
gating channels (situation 1) or between counterpropagating
channels (situation 2) are depicted in Fig. 12 on panels a and b.

In situation 1, the charge initially emitted in channel 1 decom-
poses on the symmetric charge mode and antisymmetric neutral
mode. As these two eigenmodes travel at different velocities, the
pulse of charge Q fractionalizes in two pulses of charge Q /2 in
channel 1. A dipolar excitation consisting in two pulses of charge
Q /2 and Q /2− is left in channel 2. In situation 2, the propagating
eigenmode consists in the charge Q in channel 1 dragging charge

rQ− in channel 2, such that the total charge r Q1( − ) propagates
along the coupled channels. Due to charge conservation in channel
2, a charge rQ is reflected in channel 2 when the charge Q in
channel 1 enters the interaction region.

As can be seen in the sketches of Fig. 12, the observation of
charge fractionalization calls for time resolved measurements of
the currents flowing in each edge channel. Below the sketches
representing each situation, a trace of the currents at the input,
I x t0,1( = ) (black line), and output, I x l t,1( = ) (red dashed dotted
line) and I x l t,2 ( = ) (blue dashed line), of the interaction region is
plotted in Fig. 12. The current traces result from simulations using
the input/ouptut relations for each situation. In situation 1, the
traces reproduce the above qualitative discussion: two pulses of
same sign are observed on output 1 while two pulses of opposite
sign are observed on output 2. In situation 2, a pulse rQ is observed
in channel 2 simultaneously as the entrance of pulse Q in channel
1 in the interaction region. A succession of pulses is observed at
later times in both channels, they result from successive reflec-
tions of the pulses at the output of the interaction region (the time
delay between two pulses in one channel corresponds to l v2 /| |± ).
The time unit in Fig. 12 is arbitrary but an estimate of the time
resolution needed to observe the splitting of charge in successive
pulses can be obtained using a typical length l 10 m≈ μ and a
typical velocity v 10 m s5 1≈ − giving a time resolution better than

100 psτ ≈ .
Situation 2 has been experimentally investigated in Ref. [65] by

generating a current pulse of charge Q 150 e≈ and duration
500 ps≈ and measuring the time dependent current resulting from

the fractionalization process. A time resolution of a few tens of
picoseconds was obtained by varying on a short time the trans-
mission of a quantum point contact placed at the output of the
interaction region. This allowed us to sample the current as a
function of the delay between the injection of the incoming charge
pulse and the closing of the output QPC. The technique could ac-
curately measure the reflected charge pulse on channel 2 at the
input of the interaction region providing r 0.04≈ and the velocity
of the eigenmodes in the interaction region v 1.5 10 m s5 1≈ ×±

− .
Both values are in agreement with calculations of the involved
capacitances and the predictions of Eqs. (57) and (54).

In Ref. [69], we investigated charge fictionalization in situation
1 by generating a current pulse in channel 1 using a mesoscopic
capacitor on which we applied a step voltage. The pulse carries
charge Q e≈ and its duration 40 psτ ≈ is limited by the risetime of
the excitation pulse. The sample is identical to the one presented
in Fig. 7 but the excitation voltage differs: instead of a sine ex-
citation of variable frequency, a periodic step voltage of frequency
f 0.9 GHz= (period T) is applied on the metallic top gate of the
quantum dot. Note that the charge carried by the pulse is very
close to the elementary electric charge, however in this experi-
ment, the quantum dot is perfectly coupled to edge channel
number 1 (outer edge) such that the emitted charge is not
quantized and does not correspond to single electron emission.
Time domain information on the output current is obtained not by
measuring directly the current but by performing the electronic
analog [31,32] of the Hong-Ou-Mandel [70] (HOM) experiment at
the output of the interaction region. It requires two sources placed
at the input of a quantum point contact (see Fig. 13a). When in-
distinguishable particles collide on the beam-splitter, two-particle
interference effects related to quantum exchange occur [71–73]
and show up in the fluctuations of the number of particles counted
at the output (noise). The output current noise thus measures the
degree of indistinguishability of the states incoming at the input of
the splitter. As in the seminal HOM experiment, two-particle in-
terference effects can be used to acquire short time information on
the shape of the current pulses at the input : it provided the length
of a single photon wavepacket with a subpicosecond time re-
solution in the original experiment, we use it to unveil the frac-
tionalization in two charge pulses [74] with a resolution of ten
picoseconds in our case. In order to generate a charge pulse at each
input of the QPC, the quantum dot placed in input 2 (source 2 in
Fig. 13a) is also time dependently driven by a step voltage in order
to generate a pulse identical to the one generated by source 1.

Interestingly, HOM interferometry can be performed on both
channels 1 and 2 by setting the QPC to partition either channel
1 or channel 2, so as to recover information on the current traces
on these two channels. The resulting noise measurements as a
function of the time delay τ between the sources are presented in
Fig. 13b. The upper/lower traces represent the outer (1)/inner
(2) channels partitioning measurements. On both traces a dip in
the noise can be seen at 0τ ≈ resulting from the antibunching
between undistinguishable pulses when the sources are perfectly
synchronized. Importantly the dip width observed on channel
1 when the time delay is increased is twice larger than the one
observed on channel 2 (80 ps compared to 40 ps). This increased
width results from the splitting of the charge pulse in channel 1 in
two separate pulses (see sketch in Fig. 13b, upper panel). As the
time separation l v/ 70 pss nτ ≈ ≈ is comparable with the pulse
width 40 ps≈ , the separation is not complete but results in an
increase of the pulse width which matches the separation time. On
channel 2 the dip at τ¼0 evolves to a small peak in the noise for

70 pssτ τ≈ = revealing the collision between charges of opposite
signs (electron vs holes) [75]. This shows the dipolar nature of the
current pulse in channel 2 as a result of the interchannel inter-
action (see sketch in Fig. 13b, lower panel). On long time delay

T/2τ ≈ , the noise shows a peak on channel 1 which results, as
stated before, from collisions between electrons and holes. This
behavior is expected as, the dot being ac coupled, emission of an
electron type pulse at time t 0≈ is followed by the emission of a
hole one at time t T/2≈ . The noise trace is completely different on
channel 2. A peak is also observed for T/2τ = (for the same reason
as mentioned before) but a dip is observed for T/2 sτ τ≈ − which is
not present on channel 1. It signals an electron-electron type
collision which results from the fractionalization process: due to
the dipolar nature of the current on channel 2, collisions between
charges of the same sign occur at T/2 sτ τ≈ − .

These results are nicely reproduced by the propagation model
presented in the previous section, taking the input pulse re-
presented in Fig. 13c (upper panel). The simulations of the currents
at the output of the interaction region are represented on the
lower panel Fig. 13c resulting from the calculations of Eq. (45) with

70 pssτ = . As discussed before, the two pulses on channel 1 are not
fully separated and the current trace on channel 2 has a dipolar
form. The input current pulse shows a rebound at 150τ ≈ ps re-
sulting from the rebound included on the excitation voltage pulse
(black dashed line upper panel). This rebound has to obtain a good
quantitative agreement between the noise data and the simula-
tions (red and black lines) in Fig. 13b. In particular, the additional
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dip observed on the noise traces for channel 1 ( 400 psτ ≈ ± and
channel 2 ( 250 psτ ≈ ± ) are only reproduced when adding this
rebound.
7. Chiral Luttinger liquid description and single electron
fractionalization

As seen in the previous sections, Coulomb interaction effects
play a major role in the transport along chiral quantum Hall edge
channels. As seen in Sections 2, 3 and 4 at low frequency, they are
encoded in the electrochemical capacitances in a lumped element
description of the circuit, which behavior can be either inductive
or capacitive depending on its geometry. At higher frequencies,
propagation effects need to be taken into account and the lumped
element description breaks down. Propagation is then described in
terms of a velocity matrix describing the coupling between the
edge channels. As seen in Sections 5 and 6, Coulomb interaction
determines the nature of the propagating eigenmodes and their
velocity (related to the above-mentioned electrochemical
capacitances).

At this point, the coherence of the electronic wavefunction and
its effect on electronic propagation has not been discussed as
single electron interference effects were not considered. These
interferences between multiple paths can be introduced in a
scattering matrix description of time dependent electronic trans-
port developed by M. Büttiker and his collaborators in various
works [2,4]. The purpose of this final section is not to introduce
these interference effects but to discuss how electronic coherence
on which they rely is affected by Coulomb interaction. To address
this question, we will consider the simple case of a single electron
propagating in the conductor. As we will see, it differs strongly
from the propagation of a classical pulse discussed in the previous
section. This single electron state with wavefunction xeϕ ( ) propa-
gating above the Fermi energy of the edge channel k can be
written in the following way:

dt x x F 58k e k k∫Ψ ϕ Ψ| 〉 = ( ) ( )| 〉 ( )
†

where xkΨ ( )† creates an electron at position x of the edge channel k,
on top of the fermi sea represented by the many-body state Fk| 〉.

The sketch depicted in Fig. 12a representing charge fractiona-
lization in the N¼2 case provides an insight on how Coulomb
interaction affects single electron propagation. The single electron
is emitted on channel 1, the blue pulse now representing the
wavepacket xeϕ ( ). As the electron enters the interaction region, it
fractionalizes in two distinct pulses, exactly as in the classical case
studied in the previous section. However, the consequences are
much more drastic. Indeed, once the fractionalization process has
taken place, the pulses carrying charge e/2 cannot obviously be
described as single electron states, meaning that they involve
numerous electron/hole excitations of the Fermi sea which total
charge matches half the electron charge. The fractionalization
process thus leads to the creation of collective excitations (elec-
tron/hole pairs) in which the originally emitted electron dilutes. In
the process, collective excitations are also created in channel
2 which was originally empty. The energetic cost associated with
the creation of these collective excitations is associated with the
energy relaxation of the electron [51,55], it also leads to the de-
coherence [69,74,76,77] of the single electron wavepacket.

To go beyond this simple picture, one needs to include Cou-
lomb interaction effects in the single electron dynamics, which, in
general, is not a simple task. Here because of the specific one di-
mensional nature of the problem, the full interaction problem can
be solved in terms of the propagation of bosonic modes [78] which
are nothing but the edge magnetoplasmon modes considered in
the two previous sections. In this bosonic description, a bosonic

field x t,kϕ̂ ( ) is introduced for each chiral edge channel. It is related

to the charge density x t,kρ̂ ( ) by x t e x t, / ,k x kρ π ϕ^ ( ) = − ( )∂ ^ ( ) and to

the electrical current by i x t e x t, / ,k t kπ ϕ^ ( ) = ( )∂ ^ ( ) (from the charge
conservation equation). The dynamics of the bosonic field is de-
scribed with the chiral Luttinger liquid theory [79,80] which Ha-
miltonian is the sum of the free motion plus the long range Cou-
lomb interaction between the charge densities of the various
channels [54]:
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From Eq. (59), we can deduce the equation of motion of the field

x t,kϕ̂ ( ) and of the current i x t,k
^ ( ):
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Eq. (62) for the current operator is the exact analog of the classical
calculation of the current made in Section 5, see Eq. (36).

As in Section 5, solutions are easier to express at a given pul-
sation ω using the Fourier decomposition of the field and the
current:

x t
i d
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. .
63k k

i x v t/ D k,∫ϕ
π

ω
ω

ω^ ( ) = − ^ ( ) −
( )

ω ( − )
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b e h c,
2

. . 64k k
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π
ω ω^ ( ) = − ^ ( ) + ( )

( − )

where bk ω^ ( ) annihilates a single boson (plasmon) at energy ω in
edge channel k. Using the work developed in the previous sec-

tions, the solutions of the propagation equations for kϕ̂ and ik
^ are

already known. Once the eignemodes of the velocity matrix have
been found, one can compute the scattering matrix S l,ω( ) relating
the field at pulsation ω at the output of the interaction region
(x¼ l) to the field at the input (x¼0):

x l S l x, , , 0 65Φ ω ω Φ ω( = ) = ( ) ( = ) ( )

where Φ is the vector of the ω component of the field on all the
edge channels. Finally, the connection to the original electronic
problem is made through the bosonization procedure relating the
fermionic field to the bosonic one [78]:

x
U

a
e

2 66k
k i x4 kΨ
π

( ) =
( )

π ϕ†
†

− ( )

where a is a short distance cutoff and Uk
† a Klein factor which

ensures fermionic anticommutation relations. This provides a
straightforward route to calculate the evolution of the single
electron state when it goes through the interaction region. Firstly
one solves the dynamics of the coupled bosonic fields x t,kϕ ( ) by
finding the eigenmodes of propagation fromwhich the coefficients
of the scattering matrix are deduced. One then computes the
electron state at the output of the interaction region using Eqs.
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Fig. 14. (a) Sketch of the energy distribution of emitted particles at the input of the
interaction region. An electron is incoming at a well defined energy 0ω re-
presented by a quasiparticle peak. (b) Sketch of the energy distribution at the
output of the interaction region in the weak coupling case. The quasiparticle peak is
reduced to height Z 0ω( ), a relaxation tail emerges (red line) and electron/hole pairs
(blue line) are created at the Fermi surface. (c) Sketch of the energy distribution at
the output of the interaction region in the strong coupling case. The relaxation tail
merges with the created electron/hole pairs and cannot be distinguished from it.
(For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this paper.)
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(65) and (66).
Before dealing with the single electron case, let us first com-

pute the evolution of a classical charge pulse discussed in section 6
within this formalism (situations 1 and 2 discussed in the previous
section). In the bosonic description, a classical sinusoidal pulse at
pulsation ω is represented as a quasi-classical or coherent state,
that is, an eigenstate I

e
1 ω| − ( )〉
ω

of the annihilations operator

b ω^ ( ): b I I
e

I
e e

1 1ω ω ω^ ( )| − ( )〉 = − | − ( )〉
ω

ω
ω ω

( ) . The state of a generic
classical pulse and the corresponding average electrical current
i x t,( ) are then deduced by summing on all the pulsations:

e
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π
ω( ) = 〈^( )〉 = ( ) + ( )
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and I ω( ) finally appears to be the Fourier component at pulsation
ω of the classical current pulse i x t,( ). These coherent states are
naturally generated when an edge channel is driven by a classical
time dependent voltage drive V(t) of Fourier component V ω( ),
with I e h V/2ω ω( ) = ( ) ( ). In situation 1 for example, at the input of
the interaction region, x¼0, edge channel 1 is driven by a classical
drive V(t) whereas edge channel 2 (which plays the role of an
environment for channel 1) is in the ground state described by the
vacuum (zero temperature is assumed):
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Using the scattering matrix S l,ω( ) and Eq. (65), the effect of
Coulomb interaction on the quasiclassical states of the bosonic
description can be easily computed. The state at the output of the
interaction region then reads
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The output state is still described as a product of coherent states. It
is entirely determined by the currents flowing in each conductor
resulting from the edge magnetoplasmon scattering. For example,
considering the N¼2 case, everything happens as if the edge
channels were not interacting but channel 1 was driven by the
voltage S V11 ω ω( ) ( ) and channel 2 by S V21 ω ω( ) ( ). In particular, once
the fractionalization process has fully taken place and the input
pulse has split into two separate pulses, nothing particular can be
seen on the bosonic description of the output state. Everything
happens as if the excitation voltage of channel 1 consisted in two
successive pulses. As studied by Degiovanni and coworkers in Refs.
[76,77,28], the situation is completely different in the single
electron case. Using Eqs. (58) and (67), the single electron state at
the input and output of the interaction region can be expressed in
the bosonic description:
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Compared to the classical case, the input state is now described as
a coherent superposition of quasi-classical states, each component
of the wavefunction xeϕ ( ) giving rise to a different plasmonic co-
herent state. Each of these x dependent coherent states is scat-
tered in the interaction region. As a result, the output state is an
entangled state between the edge channel and the other Coulomb
interacting conductors. Tracing out the environment degrees of
freedom, this x dependent scattering leads to a decoherence factor
between two components x+ and x− of the electronic wavepacket:
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The extrinsic decoherence factor is not the only contribution to
decoherence. Indeed, the remaining state in channel 1 does not
correspond anymore to a single electron above the Fermi sea due
to the ω dependence of the scattering coefficient S11 ω( ). In addi-
tion to the initially emitted electron, additional electron/hole pairs
have been created in the interaction process leading to the re-
laxation of the single electron energy. This decoherence scenario is
illustrated in Fig. 14 on the example of an electron emitted at the
input of the interaction region at a well defined energy 0 0ωϵ =
above the Fermi sea. The energy distribution in channel 1 at the
input of the interaction region is represented on the sketch of
Fig. 14a). It consists of a single peak at energy 0ω as the con-
tribution of the Fermi sea has been subtracted. At the output of the
interaction region, two possibilities have to be considered. The
weak interaction case is depicted by the sketch of Fig. 14b: the
relaxation of energy of the electron leads to the appearance of a
relaxation tail for 0ϵ ≤ ϵ and a decrease of the quasiparticle peak at
ϵ0. Electron/hole pairs are also created close to the Fermi sea. As
can be seen in Fig. 14b, the electron contribution can still be dis-
tinguished from the additional electron/hole pairs created close to
the Fermi surface. In this case, an effective density matrix [76,81]
can be written to describe the single electron state at the output of
the interaction region:

x x x x D x x, , 75out e e totρ ϕ ϕ( ) = ( ) ( ) ( ) ( )+ − + −
⁎

+ −
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d Re S e2 1 1
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11∫

( ) = ( )
ω

ω ω
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− ( ) −
ω+∞ − ( +− −)

Compared to Eq. (74), an additional contribution has been added
to the extrinsic decoherence factor. This additional coefficient ac-
counts for the loss of coherence associated with the creation of the
additional electron hole/pairs. Note that the full decoherence
factor (or even the full many-body state) is expressed as a function
of the plasmon scattering parameters S11 ω( ) and S21 ω( ) which are
themselves directly related to the high frequency conductance
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Fig. 15. Sketch of the capacitive coupling of an edge channel to a resistive
conductor.
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measurements as seen in Section 5. As an example of the con-
nection between high frequency conductance and decoherence,
we can consider the case where edge channel (1) is coupled with a
capacitance C to a metallic conductor with resistance R RK⪡ . In this
limit considered in Refs. [82,76] the low frequency description of
the circuit fully encodes the single electron relaxation. In parti-
cular, the elastic scattering probability Z 0ω , which is the height of
the quasiparticle peak after interaction can be directly related to
the lumped element description of the circuit:
Z R R R C1 / K K0 0

2ω ω( ) = − ( )μ (Fig. 15).
However, it is not always possible to separate the initially

emitted electron from the electron/hole pairs created in the in-
teraction process. This situation is described by the sketch of
Fig. 14c: the relaxation tail fully merges with the electron/hole
excitation of the Fermi surface. One has then to rely on the full
expression of the output many-body state. It is the case in parti-
cular at N¼2 in the regime of strong coupling between copropa-
gating edge channels, where as seen in Section 5, S21 ω( ) is close to
one in a very large range of frequencies. Single electron deco-
herence and relaxation have then to be numerically calculated
[74,77] starting from the knowledge of the scattering parameters
S21 and S11 extracted from the high frequency conductance mea-
surements. As seen in Refs. [74,77] before the full fractionalization
of the charge in two distinct pulses, the electron energy relaxes
close to the Fermi surface and the coherence is strongly
suppressed
8. Conclusion

We have investigated time dependent electronic transport
along the chiral edge channels of the quantum Hall regime, and in
particular, the role of Coulomb interaction. At low frequency, a
lumped element description of the circuit can be used to model
the ac conductance G ω( ). Depending on the geometry of the cir-
cuit, the ac response is capacitive or inductive, the capacitance and
inductance being related to the electrochemical capacitances in
the circuit. They are given by the serial association of the quantum
capacitance related to the non-interacting density of states in the
conductor and the geometrical capacitance which encodes Cou-
lomb interaction. At higher frequency, propagation effects need to
be taken into account by solving the propagation equation of the
Coulomb coupled edge channels. The propagation eigenmodes
correspond to a charge distributed on all the edge channels. As a
consequence, a charge pulse emitted in a given edge fractionalizes
on several pulses. Finally, Coulomb interaction can be conveniently
described in a chiral Luttinger liquid description of the coupled
channels. It describes Coulomb interaction as the propagation and
scattering of collective bosonic excitations (plasmons) in the
coupled conductors. Using the bosonization technique, one can
then study the effects of Coulomb interaction, and in particular,
the consequences of the charge fractionalization process, on a
single electron state. As the single electron wavepacket splits in
distinct pulses, the single electron energy relaxes down to the
Fermi level and the single electron coherence is suppressed. The
preservation of single electron coherence thus requires the im-
plementation of schemes to reduce or suppress interaction in-
duced decoherence.
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