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Y. Jin2, P. Degiovanni3, and G. Fève*,1
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Since the pioneering works of Hanbury-Brown and Twiss,
intensity–intensity correlations have been widely used in as-
tronomical systems, for example, to detect binary stars. They
reveal statistics effects and two-particle interference, and offer
a decoherence-free probe of the coherence properties of light
sources. In the quantum Hall edge channels, the concept of
quantum optics can be transposed to electrons, and an analo-
gous two-particle interferometry can be developed, in order to
characterize single-electron states. We review in this article the
recent experimental and theoretical progress on this topic.

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction The manipulation of single to few
electrons in a quantum conductor, directly relevant to the pro-
cessing and transfer of information encoded in the electrical
current, calls for a time-dependent description of electronic
transport. Contrary to the dc regime, the non-stationary case
requires the use of tools able to capture both the energetic and
temporal aspects of electronic transport, for example, using
a time-dependent scattering formalism [1, 2]. When the el-
ementary scale of single charge is reached, this formalism
relates the measurement of electrical current to the wave-
functions of the particles propagating in the conductor.

In chiral edge channels of the quantum Hall effect, this
wavefunction approach to electron transport (stationary or
not) highlights the strong analogies with photons propagat-
ing in optical fibers. For example, (stationary) optics-like se-
tups have been theoretically and experimentally investigated
since the early 00s [3–7], in which electronic waves are pro-

duced in the quantum Hall edge channels and interfere. They
yield information on how electrons propagate and interact
with one another and with neighboring quasiparticles in the
Fermi sea [8–10]. In the same system, the recent develop-
ment of on-demand single electron sources has allowed for
time-controlled experiments at the single electron scale with
increasing accuracy. In this context, it is possible to envision
electron quantum optics experiments in which one controls
the production, transfer, and characterization of elementary
quantum states in a conductor.

Most sources rely on the triggered release of single
charges confined in quantum dots, such as the mesoscopic
capacitor [11–14], or electron pumps or turnstiles [15–19].
Without confinement, the application of voltage pulses V (t)
directly on an ohmic contact can also generate single particles
if they are designed with a Lorentzian shape and such that
e
∫

dt V (t) = h [20, 21], as experimentally verified [22].

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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2 A. Marguerite et al.: Two-particle interferometry in quantum Hall edge channels

Figure 1 (a) Sketch of the Hong-Ou-Mandel geometry. – Two beams of particles (sources 1 and 2) impinge on the two input arms (1 and
2) of a beamsplitter. Cross-correlations or auto-correlations of output ports 3 and 4 reveal two-particle interference between both sources.
A tunable delay τ can be additionally used to modulate the intensity of two-particle interference. (b) Experimental realization in quantum
Hall edge channels. – Two single electron sources (here based on the mesoscopic capacitor [13]) create single electron wavepackets that
interfere on a quantum point contact, used as a beamsplitter. Current (auto-)correlations are measured in output 3 to implement two-particle
interferometry protocols.

Thanks to accurate time control (in the ps range), short
single electron wavepackets (typically of a few tens of ps)
can be precisely controlled to give rise to electron quantum
optics experiments [23]. In these experiments, interference
and correlations at the single particle scale can be studied
to infer information on single particle states and on their
evolution along propagation in the conductor, revealing,
for example, single electron decoherence due to interaction
with the environment [24–26].

Of particular interest, one can observe two-particle
interference of independently emitted electrons. This phe-
nomenon has already been detected in seminal works using
non-triggered dc excitations [27, 28]. In these experiments,
exchange effects can generate two-particle orbital entangle-
ment [6, 29], but this resource can not be used efficiently in
quantum information processing, as the electron–hole pairs
are not triggered or heralded. Feeding two-particle interfer-
ometers with clock-controlled single electron wavepackets
considerably enrich the scope of these experiments. Two-
particle interferences then reveal effects such as indistin-
guishability, coherence (and decoherence) of quantum elec-
tronic states, and provide means to characterize these states.
They also open new routes for the development of on-demand
orbital or time-bin entanglement [30, 31]. In this article, we
wish to review some of the recent progress in the use of
two-particle interferometry in quantum Hall edge channels.

The review is organized as follows. In section 2, we
present the main experimental and theoretical concepts be-
hind electron quantum optics, with a focus on two-particle
interferometry. Section 3 concerns the two-particle interfer-

ence between two identical but independent single electron
sources. Finally, we describe in section 4 a protocol to char-
acterize a single electron source by means of two-particle
interferometry.

2 General principles of two-particle interferom-
etry

2.1 Two-particle interference: Hong-Ou-Mandel
effect Both wave and particle aspects play an important
role in the propagation of electrons. For example, interfer-
ence fringes in the output current of a Mach–Zehnder in-
terferometer [5, 9, 32] strikingly illustrate the wave nature
of electrons. In contrast, current correlations in a shot noise
experiment [3, 4] reflect more prominently the corpuscular
nature of the charge carriers. Yet, experiments involving the
exchange statistics of indistinguishable [7, 27, 28, 33] parti-
cles cannot be explained within merely wave or corpuscu-
lar descriptions, but require a full quantum treatment. As
they ultimately deal with coherence and indistinguishabil-
ity of electron quantum states, they are of particular interest
to quantum information protocols in propagating electronic
states in conductors [34].

The Hong-Ou-Mandel (HOM) interferometer [35],
sketched in Fig. 1, is an example of experiment where
exchange statistics effects are prominent. It comprises a
beamsplitter, onto which two beams of particles collide and
interfere (inputs 1 and 2). Measurements of the current cor-
relations (auto- or cross-correlations) in the output ports (3
and 4) yield information on the exchange statistics of the two
incoming particle. When two particles reach simultaneously

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.pss-b.com
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Figure 2 Two-particle interference. – When two indistinguishable
particles reach the two inputs of a beamsplitter, quantum statistics
enforces two-particle interference. (a) Bosons (such as photons)
bunch and always exit in the same output, with two possible out-
comes. (b) Fermions (such as electrons) antibunch, and always exit
in different outputs, with one possible result.

a beamsplitter, four outcomes are a priori possible. In the
seminal experiment realized in 1987 by Hong et al. [35], two
photons were colliding on the splitter. In this case, Bose–
Einstein statistics imposes that two indistinguishable bosons
impinging simultaneously on a beamsplitter are not randomly
partitioned, but rather “bunch” and always exit in the same
output port, as depicted in Fig. 2a. The cross-correlations
between ports 3 and 4 then cancel out. A tunable delay τ

between the input arms enables to progressively suppress the
two-particle interference: when the impinging particles have
no temporal overlap and thus do not interfere, one recovers
the sum of the shot noises of the two inputs. Two-particle
interferences thus appear as a cancelation of the cross-
correlation around τ = 0, as a unique signature. This first
experiment, which used a source of twin photons, demon-
strated the indistinguishability of the photons forming the
pair. More recently, a couple of experiments have reproduced
the same results with independent photon sources [36, 37].

In contrast, Fermi–Dirac statistics imposes that indistin-
guishable electrons “antibunch” and exit in opposite outputs
(Fig. 2b). In this case, one expects the cross-correlation to
reach a maximum in amplitude around τ = 0, and the auto-
correlations to cancel out. It has recently been possible to
implement such experiments in quantum Hall edge states
[38]. A scanning electron microscope picture of the device
is presented in Fig. 1b, which mimicks the HOM geome-
try. The HOM two-particle interference provides a probe of
the degree of indistinguishability of two electron sources.
Consequently, a two-particle interferometer is a powerful
tool to compare and characterize electronic states. Before
moving to the applications of two-particle interferometry, we
first introduce the theoretical framework to describe generic
electronic states and how their coherence properties can be
probed within the HOM geometry.

2.2 Coherence and Wigner functions A new theo-
retical framework can be constructed relying on the analogies
between photons and electrons in ballistic conductors. It con-
veniently describes the propagation of wavepackets contain-
ing a small number of electrons in a one-dimensional ballistic
conductor, such as a quantum Hall edge channel. These the-

oretical tools rely on the formal analogy between the electric
field operator Ê+(x, t) (that annihilates photons at time t and
position x), and the electron field operator Ψ̂ (x, t) (that an-
nihilates electrons at time t and position x). In analogy with
Glauber’s theory of optical coherence [39], the coherence of
electron wavepackets can be investigated by defining coher-
ence functions of first [40–42] and second order [43, 44], as
well as a Wigner distribution function [45]. We here briefly
introduce the main tools, with a focus on the Wigner repre-
sentation of single-particle coherence, and emphasize their
application to two-electron interferometry in the next section.

In analogy with quantum optics, the coherence function
(of degree one) is defined for electrons as1

G(e)(t, t′) = 〈Ψ̂ †(t′)Ψ̂ (t)〉. (1)

Beyond the analogies with optics, several specificities of the
fermionic statistics have to be treated. At equilibrium, elec-
trons form a Fermi sea |F0〉 (reference of chemical potential),
whose coherence functionG(e)

F0
is non-zero in contrast with the

photon vacuum. One can then decompose as:

G(e)(t, t′) = G(e)
F0

(t − t′) + �G(e)(t, t′), (2)

G(e)
F0

(t − t′) =
∫

dω eiω(t−t′)f0(ω), (3)

where f0(ω) is the Fermi–Dirac electronic distribution func-
tion at equilibrium. It is important to notice that, since the
Fermi sea is a stationary state, the coherence function of the
Fermi sea only depends on the difference t − t′. On the op-
posite, dynamical states such as propagating wavepackets
depend separately on t and t′.

The coherence function in the time domain encodes all
the relevant information on single particle transport, but it is
often hard to exploit it and obtain direct physical insights on
the propagating quantum state. It is often more convenient to
use a mixed time-frequency representation, which encodes
both temporal and energy aspects of the electronic state, by
performing a Fourier transform with respect to τ = t − t′. It
defines the analog of the Wigner function for electrons [45]
similar to that of a particle [46] or an electric field [47, 48]:

W (e)(t, ω) =
∫

dτ G(e)
(
t + τ

2
, t − τ

2

)
eiωτ. (4)

Given hermiticity properties of G(e), W (e) is a real function
of t and ω. As previously, we isolate the contribution of the
Fermi sea |F0〉:

W (e)(t, ω) = W (e)
F0

(ω) + �W (e)(t, ω), (5)

W (e)
F0

(ω) = f0(ω). (6)

1To simplify this equation, we drop the x-dependence, assuming a prop-
agation at constant velocity, and x = x′ = 0.

www.pss-b.com © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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4 A. Marguerite et al.: Two-particle interferometry in quantum Hall edge channels

For a stationary state, the t dependence vanishes and the
state is fully characterized by the out-of-equilibrium elec-
tronic distribution function f (ω). This is no longer true in
the time dependent case, where �W (e)(t, ω) depends explic-
itly on both t and ω. The integration over t (resp. ω) gives the
probability distribution of the energy ω (time t). This natu-
rally defines the excess particle distribution �f (ω) created
atop the Fermi sea as:

�f (ω) = 1

T

∫ T

0

dt �W (e)(t, ω) (7)

(where T can either be the measurement time, or the period
if the source is periodic) and the electrical current generated
by the source:

I(t) = −e

∫
dω

2π
�W (e)(t, ω). (8)

For classical states, W (e) can be interpreted as a time-
dependent electronic distribution function. This requires that,
for all t and ω, 0 ≤ W (e)(t, ω) ≤ 1. Negative or above unity
values are the hallmark of non-classical states.

These theoretical tools are very powerful to encompass
any possible electronic state in a unique framework. It is
particularly simple and insightful in the specific case of a
single-electron wavepacket, such as the ones emitted by the
lorentzian pulse source or by the mesoscopic capacitor. The
emitted quantum states can be described as a single electron
created in a wavepacket ϕ(e)(t), and we find the following
expressions:

Ψ̂ †[ϕe]|F0〉 =
∫

dt ϕe(t)Ψ̂
†(t)|F0〉, (9)

�G(e)(t, t′) = ϕe(t)ϕ
∗
e
(t′), (10)

�W (e)(t, ω) =
∫

dτ ϕe

(
t + τ

2

)
ϕ∗

e

(
t − τ

2

)
eiωτ. (11)

To illustrate these formulas, we present in Fig. 3 color plots of
simulated Wigner functions obtained in the case of exponen-
tial wavepackets generated in different conditions2. Though
the generated current I(t) (shown in the lower panels) is in
all three cases exponentially decaying, the associated Wigner
functions W (e)(t, ω) and energy distributions f (ω) are very
different (resp. central and left panels). This emphasizes the
fact that different states (either classical and non-classical)
can lead to the same current, but that the knowledge of their
Wigner function enables to distinguish them. As a first ex-
ample, the mesoscopic capacitor (Fig. 3a) yields electrons
flying above the Fermi sea, around an energy �ω0 = 85 �eV,
with an exponential decay time of τ0 = 110 ps. The en-
ergy resolution around ω0 is enhanced for larger values of t,

2The results presented here can be derived from section III in Ref. [45],
in which other examples (lorentzian pulses, driven Fermi sea) can also be
found.

-0.4

0

0.5

1

1.4

time [ps]
0 200 400 600 800

I (
t)

0
0.5

1
1.5

00.51

0

50

100

150

-0.4

0

0.5

1

1.4

time [ps]
0 200 400 600 800

I (
t)

0
0.5

1
1.5

00.51

0

50

100

150

-0.4

0

0.5

1

1.4

time [ps]
0 200 400 600 800

I (
t)

0
0.5

1
1.5

00.51

0

50

100

150

f( )

I(
t)

 
[n

A
]

E
ne

rg
y 

 [
eV

]

Time t [ps]

b

E
ne

rg
y 

 [
eV

]

f( )

I(
t)

 
[n

A
]

c

E
ne

rg
y 

 [
eV

]

Time t [ps]

I(
t)

 
[n

A
]

f( )a

Time t [ps]

Figure 3 Wigner functions corresponding to different exponential
wavepackets. – W (e) is shown as a colorplot, in the central panel.
In the lower panel, the current I(t) obtained as the average of W (e)

over ω (Eq. (8)) is shown as a blue line. On the left panel, the
particle distribution f (ω) obtained by averaging W (e) over t (Eq.
(7)) is shown as the blue line. The difference |�f (ω)| is shown as
the red line (as blue and red lines overlay in (a), the red line has
been dashed for clarity). (a) Energy resolved wavepacket gener-
ated above the Fermi sea, as predicted for the mesoscopic capac-
itor [45]. Parameters: τ0 = 110 ps, Tel = 25 mK, �ω0 = 85 �eV.
(b) Wavepacket produced by driving an ohmic contact with an ex-
ponential drive, in the quantum limit h/τ0 � kBTel. Parameters:
τ0 = 110 ps, Tel = 10 mK. (c) Wavepacket produced by driving
an ohmic contact with an exponential drive, in the classical limit
h/τ0 � kBTel. Parameters: τ0 = 110 ps, Tel = 100 mK.

as a manifestation of Heisenberg uncertainty principle. The
associated quantum state is non-classical, as regions with
W (e)(t, ω) < 0 or W (e)(t, ω) > 1 are observed. In contrast, a
contact driven with an exponentially decaying voltage (Fig.
3b and c) generates excitations close to the Fermi sea. If the
typical energy scale h/τ0 is large against the electron temper-

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.pss-b.com
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ature Tel (i.e. h/τ0 � kBTel, Fig. 3b), the state is non-classical.
If h/τ0 � kBTel (Fig. 3c), the classical regime is reached, and
0 ≤ W (e)(t, ω) ≤ 1 for all t and ω. The state is then equiva-
lent to a Fermi sea with varying chemical potential, with the
Wigner function W (e)(t, ω) = f0

(
ω + eV (t)/�

)
.

The coherence and Wigner functions are convenient rep-
resentations of wavepackets containing one to a few elec-
trons or holes. As their photonic counterparts, these quan-
tities naturally appear in observables such as currents and
current correlations. In the following section, we introduce
this formalism to describe the Hong-Ou-Mandel geometry,
and show how current and current correlations are related to
the coherence and Wigner functions in this particular geom-
etry.

2.3 Principles of two-particle interferometry in
the Hong-Ou-Mandel geometry The beamsplitter is
described by energy-independent reflexion and transmission
coefficients R and T (with R + T = 1), connecting the input
to the output ports. The current operator Îα in output port α =
3, 4 is given by Îα(t) = e Ψ̂ †

α
(t)Ψ̂α(t). The current correlators

Sαβ(t, t′) = 〈δÎα(t)δÎβ(t′)〉 (with δÎα(t) = Îα(t) − 〈Îα(t)〉) can
then be written as a function of the input currents and corre-
lators:

S33 = R2S11 + T 2S22 + RTQ, (12)

S44 = T 2S11 + R2S22 + RTQ, (13)

S34 = RT (S11 + S22 − Q) . (14)

In this expression, S11(t, t′) and S22(t, t′) are simply the in-
put noise in channels 1 and 2 transmitted through the beam-
splitter. They can be measured in the absence of partitioning
[49–52]. They encode the charge statistics of the sources, but
are of no interest in the context of two particle interferometry.
The last term Q(t, t′) encodes the partitioning terms, and con-
tains the two-particle interference discussed in Section 2.1.

In electronic transport, one in fact more easily accesses
the time-averaged low-frequency noise Sαβ defined as:

Sαβ = 2
∫

dτ Sαβ(t + τ/2, t − τ/2)
t

, (15)

where · · ·t denotes an average over time t.
The corresponding quantity Q is then easily recast in

terms of the Wigner functions W
(e)
i at input i of the beam-

splitter :

Q = 2e2

∫
dω

2π

[
W

(e)
1 (t, ω)

t + W
(e)
2 (t, ω)

t

− 2W
(e)
1 (t, ω)W (e)

2 (t, ω)
t]
. (16)

This equation embodies the main idea of two-particle inter-
ferometry, and the main message of this review article. The
measurement of low-frequency noise yields the overlap of
the Wigner function. It offers a way to characterize the first

order coherence of the source, by directly comparing the two
quantum states in the two input ports. One notes that the same
information is in principle directly available at the output of
a conventional one-particle interferometer such as a Mach–
Zehnder interferometer [41, 42]. Though the device is more
complex, the measurements of average currents at the out-
put of a one-particle interferometer are far simpler and more
accurate than measurements of correlations in a two-particle
one. Yet, we argue that two-particle interferometers realize a
“punctual” characterization device, while single-particle in-
terferometers are by nature of finite length. Consequently,
HOM interferometry is immune to decoherence effects in
the measurement device, and directly probes the coherence
punctually at the beamsplitter. In contrast, the response of
Mach–Zehnder interferometers can be massively altered by
interactions within the arms of the interferometer [10, 28].

Using Eqs.(5 and 6), Q can be expanded as a sum of four
terms, reading:

Qeq = 4e2

∫
dω

2π
f0(ω) (1 − f0(ω)) , (17)

QHBT,1 = 2e2

∫
dω

2π
�W

(e)
1 (t, ω)

t

(1 − 2f0(ω)) , (18)

QHBT,2 = 2e2

∫
dω

2π
�W

(e)
2 (t, ω)

t

(1 − 2f0(ω)) , (19)

QHOM = −4e2

∫
dω

2π
�W

(e)
1 (t, ω)�W

(e)
2 (t, ω)

t

. (20)

The physical meaning of each quantity is then very clear. Qeq

is the equilibrium contribution of both Fermi seas in ports 1
and 2. More interesting, QHBT,i represents the partition noise
of source i only (while the other source is switched off). In
contrast with photons, the Fermi sea has in particular a non-
trivial contribution 1 − 2f0, which represents two-particle
interferences occurring on the beam-splitter between exci-
tations emitted by source i and the thermal excitations on
the other input port. It can significantly modify the partition
noise [53], as will be recalled in Section 4.1. At zero temper-
ature, this effect is suppressed and one recovers the random
partitioning of classical particles on the splitter. Finally, at
the core of this manuscript is the so called Hong-Ou-Mandel
contribution QHOM, that records the two-particle interference
between the two excitations generated in sources 1 and 2
and measures the overlap between the excess Wigner func-
tions. Two different cases will be envisioned in the follow-
ing sections. In Section 3, sources 1 and 2 are designed to
be identical. The measurement of low-frequency noise then
provides a measurement of their degree of indistinguishabil-
ity. In a second case (Section 4), an unknown source in port
1 is compared to various reference sources in port 2 (biased
Fermi sea, or sinusoidal density waves), in order to recon-
struct the whole Wigner function �W

(e)
1 via a tomography

protocol.

www.pss-b.com © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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6 A. Marguerite et al.: Two-particle interferometry in quantum Hall edge channels

3 Two-particle interference of identical sources

3.1 Coherence and indistinguishability of elec-
tronic wavepackets A very natural experiment consists
in placing two independent but identical single electron
sources in the two input arms. It is convenient to define a
normalized quantity �q as:

�q = QHBT,1 + QHBT,2 + QHOM

QHBT,1 + QHBT,2

(21)

= 1 + QHOM

QHBT,1 + QHBT,2

. (22)

In this configuration, and for synchronized excitations, one
expects to measure the perfect overlap of two identical states,
so that |QHOM| reaches its maximum value (namely 2QHBT),
and �q = 0. As the arrival time of the wavepackets is pro-
gressively shifted by a delay τ 	= 0, their overlap decays to
0, QHOM = 0 and the full partition noise is recovered, with
�q = 1. This dip in the current auto-correlations is then
analogous to the so-called HOM dip observed in light cross-
correlation [35]. In the simple case of a wavepacket ϕi in each
arm i = 1, 2, one can show that �q takes the simple form
�q = 1 − |〈ϕ1|ϕ2〉|2, and �q thus varies between 0 and 1.

At τ = 0, a perfect overlap can however only be obtained
if the two incoming wavepackets are perfectly coherent and
undistinguishable [54]. In this geometry, the contrast of two-
particle interferences at τ = 0 is, thus, a direct indicator of
the degree of indistinguishability of the excitations generated
by the two sources. Besides, the decay of the two-particle in-
terference signal when the delay τ is increased provides addi-
tional information on the temporal shape of the wavepacket.
An analogy can be drawn with photons, where the length of
the photon pulse or radiative lifetime is reflected in the shape
of the HOM dip [35].

In Fig. 4, we present experimental results obtained with
the sample presented in Fig. 1. From average current mea-
surements [13], each of the two sources has been tuned to
emit a wavepacket exponentially decaying in time over a time
scale τe = 30, 100, 180 ps, and the intensity correlations are
recorded as function of a delay τ between arrival times. A
clear dip is observed around τ = 0 for all three curves, sig-
naling the indistinguishability of the impinging wavepackets,
with an increasing width consistent with the increasing tem-
poral width of the wavepackets. The data (symbols) can be
fitted with �q(τ) = 1 − γe−|τ|/τe (solid lines), and two impor-
tant points can be raised. First, the contrast of the two-particle
interference is not perfect �q(τ = 0) = 1 − γ , which indi-
cates that the wavepackets are only partially undistinguish-
able. Secondly, the fit yields the temporal width τe, which is
found to be larger than the one expected from measurement
of the current, particularly for short wavepackets.

Though insufficient control of the parameters of the
source could lead to improperly prepared wavepackets, the
differences are here too strong. They subsequently have to
be attributed to interaction effects that alter the propagat-

Figure 4 HOM dips. – Correlations �q as a function of time delay
τ, for three different values of the temporal width τe. The measured
data is presented as symbols with error bar. Fits with an exponential
decay �q(τ) = 1 − γe−|τ|/τe are shown as solid lines. All three sets
of data exhibit a dip around τ = 0, but the contrast γ is better for a
small τe.

ing wavepackets [10]. We show in the next two sections how
both the degree of coherence and indistinguishability and the
temporal shape of the wavepacket are modified by the pres-
ence of Coulomb interaction in the edge channels, and how
Hong-Ou-Mandel interferometry enables to characterize its
effects.

3.2 Fractionalization in 1D chiral edge channels
Coulomb interactions within and between edge channels
have drastic consequences on the propagation of low-energy
wavepackets, that can be conveniently investigated via two-
particle interference. In this section, we briefly review the
case of filling factor ν = 2. In that case, the outer channel
is the conductor under study, in which charges are initially
injected. It interacts strongly with the inner channel that acts
as a well-controlled environment. As both edge channels
are strongly coupled, new collective (bosonic) modes appear
whose form is known from chiral Luttinger liquid theory.
The charge mode corresponds to a symmetric distribution of
charge among the two channels and propagates with velocity
v+ [10, 55–60]. The neutral mode carries an antisymmetric
distribution of charge with velocity v−. Due to Coulomb re-
pulsion, the charge mode is much faster than the neutral mode
(v+ � v−). Consequently, a single-electron wavepacket of
charge e excited on the outer edge channel splits after prop-
agation on a length l in two charge pulses of charge e/2,
separated by a time τs = l/v− − l/v+, as depicted in Fig. 5.

This many-body problem can not be tackled analytically
for arbitrary initial states, but several particular cases have
been investigated [10, 24, 25, 61–64]. The case of a voltage
driven contact is particularly simple, as interactions only ap-
pear as a modification of the effective voltage pulse applied
on the contact [65]. An illustration of the fractionalization
process in the Wigner representation is shown for exponen-
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Initial pulse Neutral mode Charge mode

Outer channel

Inner channel

ts

v-

v+

Figure 5 Charge fractionalization. – A charge density wave created
initially in channel 1 can be decomposed in two propagation eigen-
modes: a neutral mode −, with antisymmetric charge distribution,
and a charge mode +, with symmetric charge distribution. Coulomb
repulsion results in very different velocities, with v+ � v−. As
propagation takes place, the two modes separate, and the initial
charge pulse fractionalizes.

tially decaying wavepackets (Fig. 6). The outer channel ini-
tially carries all the charge, while the inner channel is empty.
After propagation on a length l, the pulse has split into the fast
charge mode and the slow neutral mode separated by τs. As
a consequence, the outer edge channel carries a sequence of
two pulses with halved amplitude. Moreover, energy relax-
ation toward the Fermi level is clearly visible between Fig. 6a

and c. In contrast, a dipolar charge distribution of electron–
hole pairs has been induced in the inner edge channel, as can
be seen both in the dipolar nature of the current and in the
electron–hole pairs population close to the Fermi level . For
more general states, a heavier treatment is required. Numer-
ical simulations [24, 25] have been performed in the Wigner
function framework and shed light on the consequences of
interaction on a single electron wavepacket.

In this context, HOM correlations offer a way to ac-
cess information on the Wigner function of the propagat-
ing wavepackets, and thus on their relaxation and decoher-
ence. The next paragraphs detail two different experiments
in which interaction effects are particularly prominent.

3.3 Temporal investigation of single-electron
fractionalization The splitting of a charge pulse due to
interchannel interaction can be directly probed in the time
domain using two-particle interferometry. Indeed, the de-
pendence of �q(τ) on the time delay τ encodes the temporal
profile of the incoming state. Experimental resolution on τ

can reach a few picoseconds, giving access to time scales
shorter than those accessed by time-resolved measurements
(typically limited to a few hundreds of picoseconds).

Fig. 4 shows that exponentially decaying wavepackets,
expected for this type of single electron source, yield expo-
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Figure 6 Fractionalization of a pulse generated by a voltage driven contact. – (a and b) Initial Wigner functions W (e), average current I(t),
and energy distribution function f (ω) in the outer (a) and inner (b) channels, at t = 0. The charge is only present on the outer channel. (c
and d) Same quantities in the outer (c) and inner (d) channels, for a separation time τs = 150 ps. The initial charge pulse has split into a
fast charge mode and a slow neutral mode. The current exhibits two positive pulses in the outer edge channel, and a dipolar distribution
in the inner one. Parameters: Tel = 10 mK, τs = 150 ps.
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8 A. Marguerite et al.: Two-particle interferometry in quantum Hall edge channels

Figure 7 Fractionalization in HOM correlations. – (a) Correlations �qi/o as a function of delay τ, for the outer (orange, upper panel),
and inner (black, lower panel) edge channels. Both channels exhibit non-zero noise, indicating that some current has been induced in the
inner edge channel via capacitive coupling to the outer edge channel. Besides the dip around τ = 0, some additional structure is visible
with extra peaks and dips. It results from the fractionalization of the charge pulse initially injected on the outer channel. As examples,
the signal at points τ 
 τs 
 70 ps (label b) and τ 
 T/2 − τs (label c, with T/2 = 550 ps) are detailed in the right panels. (b) As a result
of fractionalization, for τ 
 τs, one expects the pulses of same charges with non-zero overlap to interfere on the outer edge channel, so
that �qo < 1. In contrast, pulses of opposite charges (with little overlap) interfere on the inner edge channel, with �qi 
 1. (c) On the
opposite, for τ 
 T/2 − τs, charges of same signs (resp. opposite signs) reside in the two inner (outer) edge channels, with consequently
�qi < 1 (resp. �qo 
 1).

nentially varying correlations �q, within experimental res-
olution. However, as already pointed out, the width seems
slightly larger than the one estimated from average current
measurements. This is a consequence of the aforementioned
fractionalization of the wavepacket. It is particularly promi-
nent on very short wavepackets. Hong-Ou-Mandel interfer-
ence provides a powerful probe of the alterations of the
wavepackets due to fractionalization, as we show below fol-
lowing Ref. [65].

On a propagation length l 
 3�m, fractionalization
causes a splitting of current pulses in two components sep-
arated by a time separation τs estimated around τs 
 70 ps
from a different study of interactions in a similar sample
[66]. To maximize the visibility of the fractionalization phe-
nomenon, the impinging wavepackets are subsequently gen-
erated with a very short width τe 
 30 ps < τs.

Measurements in both channels [65] are summarized in
Fig. 7. Importantly, as current pulses are generated in the
outer edge channel, and induced by interactions in the in-
ner edge channel, intensity correlations can be measured in
almost equal amounts in inner and outer edge channels (de-
noted �qi and�qo, respectively). Thus, one can image the
complete current distribution.

First around τ = 0, the correlations exhibit a dip in both
inner and outer channels due to two-particle interference.
However, their widths are quite different, and the outer chan-
nel dip is roughly twice as large as the inner one (70 ps
against 40 ps). Indeed, for τ 
 ±τs, a weak anti-bunching

effect remains visible in the outer edge channel, �qo < 1.
The increased width reflects the fractionalization that widens
the current pulse in the outer edge channel into two pulses
of same sign (see Fig. 5). On the opposite, the correlations
overshoot over unity in the outer channel, �qi � 1. As de-
tailed in [24, 67], this subtle effect arises from overlap at
finite temperature between an electron-like and a hole-like
current pulse. This confirms the dipolar nature of the current
distribution flowing in the inner edge channel, in contrast
with the monotonous trend observed in the outer edge chan-
nel. Further signatures of fractionalization can be obtained
from measurements for larger delays τ = ±T/2, when emis-
sions of electron-like wavepacket on source 1 is synchronized
with hole-like wavepackets in source 2, and vice-versa. Both
channels exhibit a weak bunching effect from thermal over-
lap, with �qi/o(±T/2) � 1. In analogy with measurements
around τ = 0, the peak in �qo is twice as large as in �qi,
that rapidly drops below 1 around τ 
 T/2 − τs.

One can model the fractionalization of the wavepackets
emitted in each source in the Wigner representation as il-
lustrated in Fig. 6, and their overlap to obtain �qi/o(τ). The
results are shown as plain lines in Fig. 7. A good agreement
can be found with experimental data, if one takes into ac-
count the imperfections of the rf excitation drive (finite rise
time and finite number of harmonics).

3.4 Visibility and interaction Beyond the deforma-
tion of the shape of incoming states in time domain, the in-
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Figure 8 Contrast of HOM correlations. – The contrast γ (ex-
tracted from exponential fits) is plotted as a function of the temporal
width τe, for filling factors ν = 2 and ν = 3. It confirms that γ de-
creases for larger τe. As solid lines, heuristic fits γ(τe) = (1 + 2τe

τc
)−1

show a good agreement and yield the coherence time τc. The blue
dashed line presents the contrast computed from an interacting
model.

teraction process also leads to the relaxation and decoher-
ence of elementary electronic excitations. The contrast of
the two-particle Hong-Ou-Mandel effect observed at τ = 0
provides a measurement of the degree of coherence and sub-
sequently enables to define a phenomenological coherence
time τc for the incoming wavepackets [68]. Naively, one ex-
pects that short wavepackets for which τe < τc are less sen-
sitive to decoherence than longer ones (τe > τc) which re-
quire to preserve the wave packet phase coherence on much
longer times. Phenomenologically, we assume that interac-
tions affect the non-diagonal parts of the coherence function
such that �G(e)(t, t′) → e−|t−t′ |/τc �G(e)(t, t′). Then, only time
components (t, t′) with |t − t′| ≤ τc of the wavepacket can
interfere on the splitter whereas components for |t − t′| ≥ τc

are subject to random partitioning. It can then be shown
that for exponential wavepackets, the contrast simply reads
γ = (1 + 2τe

τc
)−1. Figure 8 shows measurements of γ recorded

for values of τe ranging between 20 and 250 ps, for filling
factors ν = 2 and ν = 3. The agreement with the previous
phenomenological model (shown as plain lines) is good,
for fitting parameters of τc = 98 ps (ν = 2) and τc = 60 ps
(ν = 3). The coherence time τc depends on the filling factor
ν, confirming that decoherence occurs mostly during prop-
agation. For increasing filling factor, the number of edge
channel increases, and they move closer to one another. The
observed decrease of the coherence time τc suggests that
capacitive inter-channel interactions are prominent, as al-
ready evidenced in several experiments [8, 66, 69–71]. As
already mentioned, a more exact treatment of interactions
can be obtained via bosonization techniques and gives simi-
lar predictions for the contrast γ [24] (see blue dashed line on
Fig. 8).

The two-particle interference between two supposedly
identical wavepackets measures their degree of similarity,

and thus, reveals signatures of their coherence and temporal
shape. In the last section of this article, we turn to the case of
an unknown source, that is being progressively characterized
by measuring its overlap with reference sources. This enables
to obtain first a spectroscopy of the wavepacket in the energy
domain, and more generally yields a tomography protocol to
reconstruct �W (e).

4 Spectroscopy and tomography of single-
electron wavepackets The main idea of this section is
to use Eq. 16 with an unknown source in input 1 and refer-
ence sources in 2, to be able to access W

(e)
1 from its overlap

with reference values of W
(e)
2 . We divide this section in two

parts. First, we study the case of an unbiased Fermi sea in arm
2, in which source 1 only interferes with thermal excitations
of the sea. Second, we discuss the case of interference with
various reference sources as spectroscopy and tomography
protocols.

4.1 Two-particle interference with thermal exci-
tations In this part, we assume that input 2 is an unbiased
Fermi sea, at finite temperature Tel such that

Q = QHBT,1

= 2e2

∫
dω

2π
�W

(e)
1 (t, ω)

t

(1 − 2f0(ω)). (23)

As defined in Eq.7, �W
(e)
1 (t, ω)

t = �f1(ω) is the excess elec-
tronic distribution function of electrons and holes (with re-
spect to the Fermi sea f0(ω)) produced by source 1 [53]. At
Tel = 0, Q is directly proportional to the total number of in-
coming excess excitations �N1 (electrons and holes) emitted
by source 1 in time T :

�N1 = T

[∫ +∞

0

dω

2π
�f1(ω) −

∫ 0

−∞

dω

2π
�f1(ω)

]
, (24)

QTel=0 = 2e2

T
�N1. (25)

This expression simply represents the random partitioning
of �N1 classical particles reaching the splitter in time T .
At finite temperature, the term 1 − 2f0(ω) suppresses the
contribution of electron and holes in the energy range kBTel

around the Fermi energy. This suppression can be interpreted
as a noise reduction coming from two-particle interferences
between the excitations emitted by source 1 at energy ω, and
thermal excitations at the same energy in input 2. It can in
particular be recast as:

QTel 	=0 = QTel=0

−4e2

∫
dω

2π
�W

(e)
1 (t, ω)�W

(e)
2 (t, ω)

t

, (26)

�W (e)
2 (ω) = f0,Tel 	=0(ω) − f0,Tel=0(ω). (27)
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10 A. Marguerite et al.: Two-particle interferometry in quantum Hall edge channels

Figure 9 Excess auto-correlations �S33 as a function of the beam-
splitter transmission T in the HBT configuration: source 1 is fed
with a single electron source, while source 2 is a Fermi sea. As
indicated in the legend, three sets of parameters are studied (vary-
ing transmission D of the quantum dot QPC, and using a sine or
square drive). The dependence �S ∝ T(1 − T) is observed in all
three cases, but the maximum value of �S strongly varies.

�W
(e)
2 then represents the excess Wigner function of thermal

excitations, created around the Fermi level of a sea at zero
temperature.

The reduction of the excess noise due to interference
with thermal excitations can be particularly drastic if source
1 generates excitations close to the Fermi level, where most
thermal excitations reside. The two-particle interference with
thermal excitations thus provides a first probe of the energy
distribution �f1 by measuring its overlap with �W

(e)
2 . In Ref.

[53], three types of wavepackets are generated by exciting
the mesoscopic capacitor either with a square or a sinusoidal
signal, and by changing its coupling to the quantum Hall
edge channel (transmission D). The measured excess noise
�S is plotted in Fig. 9 for these three cases. The curves
show the same expected dependence on the transmission
�S ∝ T(1 − T). However, while the incoming charge per
period (indicated by Qt) is slightly larger for the sine wave
excitation, the amplitude of the measured partition noise is
much smaller in comparison to the case of a square drive. It
reflects the fact that a square drive creates energy-resolved
packets flying well above the Fermi sea, while a sine drive
generates excitations close to the Fermi level, more likely
to interfere with thermal excitations. Similarly, decreasing
the coupling (transmission D) increases the dwell time of
electrons in the dot, that are then emitted at higher energies.
Strong temperature effects can also be observed when mea-
suring partition noise for Levitons [22], that are very sensitive
to finite-temperature effects as they live close to the Fermi
level.

This section shows how two-particle interference can be
used to access partial information on the energy distribu-

tion �f1(ω) of incoming wavepackets by analyzing the two-
particle interference with thermal excitations, that reduces
the amplitude of the shot noise. Not only using thermal ex-
citations, but a carefully engineered reference state in arm
2, we now show how one can reconstruct �f1(ω) and even
�W

(e)
1 (t, ω) as a whole.

4.2 Spectroscopy and tomography of single-
electron wavepackets Probing an unknown Wigner
function �W

(e)
1 (t, ω) with a thermal source suffers from two

major limitations. Firstly, there is no possibility to vary the
energy scanned by the thermal source such that, even if use-
ful information can be extracted, the full energy distribu-
tion cannot be reconstructed. Secondly, as a thermal source
is stationary, no information can be obtained on the dy-
namics of the source encoded in the time dependence of
�W

(e)
1 (t, ω). Getting access to temporal information requires

to use an a.c. source as a probe. As we will see, a combina-
tion of a d.c. bias and a small amplitude a.c. sinusoidal drive
can be used to fully reconstruct an unknown Wigner distri-
bution �W

(e)
1 (t, ω) [40]. For a T = 2π/Ω-periodic source,

�W
(e)
1 (t, ω) can be written in Fourier representation:

�W (e)
1 (t, ω) =

+∞∑
n=−∞

�W (e)
1,n

(ω)e−inΩt. (28)

We can first focus on the n = 0 term, �W
(e)
1,0(ω), which

is nothing but the excess energy distribution �f1(ω). By ap-
plying a d.c. bias μ = −eVdc on source 2, the excess Wigner
function in 2 can be written as �W

(e)
2 (ω) = f0(ω − ωdc) −

f0(ω) (with ωdc = −eVdc/�), which simply is a rectangu-
lar function for the energy window [0, −eVdc] (assuming
Vdc ≤ 0) with thermal smearing (see Fig. 10a).

Consequently, an electron emitted in arm 1 at energy
�ω < −eVdc impinges on the beamsplitter together with an
electron from the biased Fermi sea in input 2, so that HOM
two-particle antibunching effect will then occur in this win-
dow. Tuning the energy window via the applied dc bias Vdc,
one modulates this HOM interference which is sufficient to
compute the excess energy distribution �f1(ω) in the un-
known input arm 1. This is more explicitly evidenced by
writing the HOM contribution to the noise in this case:

QHOM = −4e2

∫
dω

2π
�f1(ω)

[
f0(ω − ωdc) − f0(ω)

]
.

(29)

By measuring the derivative of the HOM noise with respect
to the dc bias, one measures �f1(ω) at ω = ωdc convoluted
by the thermal smearing on the energy window kBT :

−∂QHOM

∂Vdc

= 4e3

h

∫
dω�f1(ω)

−∂f0

∂ω
(ω − ωdc). (30)

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.pss-b.com
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Figure 10 Excess Wigner functions �W (e), energy distribution
function �f (ω), and current I(t) of the injected reference sig-
nal. – (a) Pure dc-bias for Vdc = 75 �V, Tel = 15 mK. (b) Pure
ac-bias, with T = 200ps, Vac = 5 �V, Tel = 15 mK, n = 1, φ = 0.
(c) Mixed ac and dc bias, with Vdc = +50 �V, T = 200 ps, Vac =
5 �V, n = 1, φ = 0. Please note that in this case, the excess Wigner
function is defined with respect to a Fermi sea at μ = −eVdc and
not μ = 0.

If the temperature is well known, it is possible to reconstruct
the true energy distribution �f1(ω) using Wiener deconvo-
lution methods [72].

As mentioned above, accessing the dependence on t of
the unknown Wigner function in 1 requires not only selectiv-
ity on the ω axis, but also non-stationary references sources.
In order to pick the nth component of �W

(e)
1 (t, ω), one needs

a probe on input 2 which Wigner distribution depends sinu-
soidally on time at frequency nΩ. At first order, the depen-
dence 3 one obtains in the case where a sinusoidal drive of

3In this particular case, the excess Wigner function is defined with respect
to a Fermi sea at μ = −eVdc and not μ = 0.

small amplitude eVac � n�Ω is applied on input 2 [45] reads:

�W (e)
2 (t, ω) = eVac

�
cos (nΩt + φ)gn(ω − ωdc), (31)

gn(ω) = f0(ω − nΩ/2) − f0(ω + nΩ/2)

nΩ
. (32)

Examples of probe Wigner functions (for n = 1 and Vdc = 0
and −50 �V) are presented in Fig. 10b and c. It has
n + 1 = 2 nodal lines and occupies an energy range defined
by the energy window of gn(ω) which has a width nΩ

centered on ωdc. The procedure is then straightforward, time
information is accessed by varying the phase φ and frequency
nΩ of the a.c. drive while energy information is obtained
by varying the d.c. bias. Real and imaginary parts of �W

(e)
1,n

can then be obtained by measuring the HOM contribution
to the noise, and its dependence with phase φ of the probe:

Q
φ=0

HOM − Q
φ=π

HOM

Vac

= −4e3

h

∫
dω Re

[
�W (e)

n
(ω)

]
gn(ω − ωdc), (33)

Q
φ=π/2

HOM − Q
φ=3π/2

HOM

Vac

= 4e3

h

∫
dω Im

[
�W (e)

n
(ω)

]
gn(ω − ωdc). (34)

Here also, the exact real and imaginary parts of �W (e)
n

(ω)
are convoluted with the function gn and deconvolution
techniques are required in order to reconstruct the exact
�W

(e)
1,n(ω).
To implement such protocols, most difficulties reside in

the measurement of low levels of HOM correlations in com-
bination with the use of multiple rf excitations signals. How-
ever, this protocol can be simplified if some assumptions are
made a priori on the unknown state. For example, it is exper-
imentally challenging to access a large number of harmonics
�W

(e)
1,n, and it is easier to describe states for which |�W1,n| in

general decays rapidly with harmonic n. Besides, the Wiener
deconvolution process requires an accurate measurement of
the dependence of �W1,n on ωdc. States created by a voltage
drive directly on an ohmic contact are however simpler to
characterize, as they are fully parameterized by a discrete
set of numbers. Indeed, in the framework of photon-assisted
shot noise, the state created in the conductor is only given by
the photon-assisted transition amplitudes pn [73], with:

pn = 1

T

∫ T

0

dt exp

[
− ie

�

∫ t

−∞
V (t′)dt′

]
e−inΩt, (35)

W (e)(t, ω) =
∞∑

n,m=−∞
pnp

∗
m
ei(m−n)Ωtfμ

(
ω − Ω

2
(n + m)

)
.

(36)
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12 A. Marguerite et al.: Two-particle interferometry in quantum Hall edge channels

Under these assumptions, Jullien and co-workers have been
able to experimentally implement this scheme [74], by an-
alyzing the HOM-like noise in this shot noise framework.
They have thus realized the first tomography protocol of volt-
age pulses and obtained a fairly accurate description of the
Wigner function of the state created by a train of Lorentzian
pulses (Levitons). The complete tomography of arbitrary
states, such as states generated by a time-dependent scatterer,
is however yet to be implemented.

5 Conclusions As discussed in this review, the mere
measurement of the time-dependent electrical current does
not allow for a non-ambiguous characterization of the elec-
tron states propagating in a ballistic conductor. Indeed, when
studying time-dependent transport, it is crucial to capture
both the energetic and temporal aspects of the propagating
states. In this context, a mixed time-frequency representation
such as the Wigner function is relevant as it encompasses all
the single particle properties of the system. In particular, this
theoretical tool is particularly well suited to the case of single
particle states at the heart of the present Focus Issue.

In this review, we have discussed the use of two-particle
interference effect to probe, characterize or even reconstruct
the Wigner function of single electron states propagating in
ballistic conductors. Single-particle coherence is in princi-
ple more easily accessed in conventional one-particle inter-
ferometers (Mach–Zehnder interferometer for example), but
suffer from decoherence effects within the interferometer.
In this context, two-particle interferometer offer a powerful
alternative and allow for a punctual decoherence-free mea-
surement of single particle coherence. Though two-particle
interferometry has only been recently implemented for elec-
trons, several recent studies illustrate the richness and versa-
tility of this method.

Future developments can already be envisioned. First, the
tools of electron quantum optics could be adapted to other
ballistic conductors, for example, to investigate excitations
in the fractional quantum Hall effect [75–77] or topological
matter [78–84]. Another route consists in extending the pre-
viously introduced tools, in order to go beyond the single-
particle picture and capture correlations and entanglement
[7, 43, 44]. Such efforts contribute to the development of
quantum signal processing based on electron quantum op-
tics [85, 86].
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(2010).

[51] T. Jonckheere, T. Stoll, J. Rech, and T. Martin, Phys. Rev. B
85, 045321 (2012).

[52] F. D. Parmentier, E. Bocquillon, J. M. Berroir, D. C. Glattli,
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