
RAPID COMMUNICATIONS

PHYSICAL REVIEW B 96, 201302(R) (2017)

Volkov-Pankratov states in topological heterojunctions

S. Tchoumakov,1 V. Jouffrey,2 A. Inhofer,3 E. Bocquillon,3 B. Plaçais,3 D. Carpentier,2 and M. O. Goerbig1

1Laboratoire de Physique des Solides, CNRS UMR 8502, Université Paris-Sud, Université Paris-Saclay, F-91405 Orsay Cedex, France
2Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France

3Laboratoire Pierre Aigrain, Département de physique de l’ENS, Ecole normale supérieure, PSL Research University, Université Paris
Diderot, Sorbonne Paris Cité, Sorbonne Universités, UPMC Université Paris 06, CNRS, 75005 Paris, France

(Received 3 May 2017; published 1 November 2017)

We show that a smooth interface between two insulators of opposite topological Z2 indices possesses multiple
surface states, both massless and massive. While the massless surface state is nondegenerate, chiral and insensitive
to the interface potential, the massive surface states only appear for a sufficiently smooth heterojunction. The
surface states are particle-hole symmetric and a voltage drop reveals their intrinsic relativistic nature, similarly
to Landau bands of Dirac electrons in a magnetic field. We discuss the relevance of the massive Dirac surface
states in recent angle-resolved photoemission spectroscopy and transport experiments.
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Topological gapped phases are fascinating new states of
matter. Their hallmark is the existence of gapless chiral states at
their surface that have been probed in topological insulators by
angle-resolved photoemission spectroscopy (ARPES) [1–3],
transport [4,5] and scanning tunneling microscopy (STM) [6]
measurements. Our common understanding of their existence
lies in the necessary gap closing at the interface between
two insulators characterized by different topological invariants
[7–9]. Moreover, the same experiments that detect these gap-
less states also evidence multiple massive surface states in both
the conduction and valence bands. These additional surface
states have been attributed to conventional properties of the
interface, such as band bending, unrelated to the topological
nature of the insulators. Indeed, previous studies consider that
the amplitude of band bending is strong enough to confine
states in both the conduction and the valence bands [1,2,10].
From this point of view, one would consider the two types of
surface states to be of different origin: topological for the mass-
less states and due to strong band bending for the massive ones.

Here we show that this is not necessarily the case. We
describe the interface between a topological and a normal
insulator or vacuum, which is a topological heterojunction
(THJ), within a model where the gap inversion occurs over
a finite interface size �, and we show that it hosts multiple
surface states, both massless and massive. In the limit of
a wide interface, where � is much larger than an intrinsic
material-dependent length scale ξ , these states are similar to
Landau bands of a Dirac material in a magnetic field. The
gapless surface state is then analogous to the n = 0 Landau
band and it only depends on the properties far away from
the interface as in the Aharonov-Casher argument [11,12].
Furthermore, as for Landau bands, the massive surface states
appear in both the conduction and the valence bands and are
sensitive to the details of the interface. Prior to the recent
discussion within the context of topological insulators [9],
massless and massive surface states at an interface with gap
inversion were studied theoretically back in the 1980s by
Volkov and Pankratov in a set of pioneering papers [13–15],
albeit in the simplified framework of a symmetric interface.
We thus call such massive surface states Volkov-Pankratov
states (VPS). In this Rapid Communication, we stress the
topological origin of this type of confinement which is tightly

related to relativistic physics and inherently different from
confinement in a conventional quantum well. Moreover, we
characterize the properties of the surface states as a function
of various properties of the THJ, such as a gap asymmetry
between the two materials and surface band bending.

We consider the interface between two semiconductors
with inverted, �1 < 0, and conventional, �2 > 0, gaps in the
simplest situation where both gaps are located at a single point
of the Brillouin zone, e.g., the � point. Hence we model each
insulating phase with the generic k · P Hamiltonian around
the � point, describing in particular Bi2Se3 [9],

Ĥ0 = μ1̂ ⊗ 1̂ + �1̂ ⊗ τ̂z + vF kz1̂ ⊗ τ̂y

+ vF (kyσ̂x − kxσ̂y) ⊗ τ̂x , (1)

where we assume vF > 0 and set h̄ = 1 hereafter. The σ̂ and
τ̂ Pauli matrices act, respectively, on spin and orbital sub-
spaces. In a first place, μ is set to zero in both semiconductors.
The spectrum of (1) consists of two doubly degenerate bands
ε

(±)
k = ±

√
�2 + v2

F k2 and the two insulators only differ by
their band gaps �1 and �2.

We model the interface between the two insulators, chosen
as normal to the z direction, by a z-dependent k · P Hamil-
tonian Ĥs , which smoothly interpolates between the two bulk
Hamiltonians over a characteristic size �. This amounts to
replacing � in Eq. (1) with a smoothly interpolating gap
�(z), such that �(z → −∞) = �1 and �(z → +∞) = �2.
In addition to the interface width �, one finds a natural length
ξ = 2vF /|�1 − �2|, and for a smooth interface one has � > ξ ,
while for a sharp interface � < ξ . The interface width �

depends on the material and growth technique but we expect
that a smooth interface generically occurs between a small gap
topological insulator such as Bi2Se3 (2�1 = −0.35 eV [1],
vF = 2.5 eV Å [16]) and a large gap insulator such as HfO2

(2�2 = 5 eV) since then ξ ∼ 2 Å is rather small. On the other
hand, for the interface between two small gap insulators, with,
e.g., 2� ∼ 0.25 eV, we estimate ξ ∼ 2 nm and thus, depending
on �, there can be either a smooth or a sharp interface [17].

A convenient choice to describe the z-dependent gap around
the THJ is �(z) = 1

2 (�2 − �1)[δ + tanh(z/�)], where we have
introduced the gap asymmetry δ = (�1 + �2)/(�2 − �1).
The situation with opposite gaps, δ = 0, for which the
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FIG. 1. (a) Surface states obtained for 2�1 = −0.35 eV, 2�2 = 5 eV, vF = 2.5 eV Å, and � = 6 nm. The corresponding reduced parameters
are δ = 0.87 and ξ/� = 0.03. We show the band dispersion of the gapless surface state (red), the massive surface states (orange), and the bulk
states (blue). (b),(c) Gaps of the surface states (orange) for vF = 2.5 eV Å, 2�1 = −0.35 eV, and (b) as a function of the sharpness of the
interface ξ/� with δ = 0.87 and (c) as a function of the gap asymmetry δ with ξ/� = 0.03. An applied electric field renormalizes the values of
ξ and δ (gray dashed lines), as a function of energy for δ.

Schrödinger equation resembles the Pöschl-Teller equation
[18], was studied in Refs. [13–15]. Here, we solve the more
relevant situation with δ �= 0 with the use of hypergeometric
functions (see Supplemental Material [19]). This yields the
spectrum of surface states,

εn,±(kx,ky) = ±vF

√
k2
x + k2

y + 1/�2
n, (2)

where the characteristic length �n of each mode in the z

direction is

1

�2
n

= 2n

�ξ

(
1 − n

ξ

2�

)⎡
⎣1 −

(
δ

1 − n
ξ

�

)2
⎤
⎦, (3)

which depends on the integer values n delimited by

n < N = �

ξ
(1 −

√
|δ|). (4)

The corresponding band dispersions are illustrated in Fig. 1(a)
with the n = 0 state in red and the n � 1 states in orange. The
inequality (4) yields surface states only if |δ| < 1, i.e., if the
two semiconductors have gaps of opposite sign. Moreover, as

illustrated in Fig. 1(b), the number of states depends on the THJ
geometry with many massive (N � 1) hole- and electronlike
surface states for a smooth interface, but with only the single
massless n = 0 surface state for a sharp interface. This kind
of quantization is reminiscent of that in a uniform magnetic
field which happens to be analog to the limit of a linearized
potential for � � ξ , which we discuss in the Supplemental
Material [19] and which was already discussed in the context
of Majorana surface states in Refs. [20–22]. Note that the
occurrence of the additional VPS still fulfills the topological
Z2 constraint [23] since the n = 0 state is simply degenerate,
while the VPS (n � 1) are doubly degenerate, such that the
parity of the number of surface states is unchanged. We stress
that the existence of both the massless and the massive surface
states requires the heterojunction to be topological, �1�2 < 0,
in contrast to standard band-bending massive surface states.

The peculiar nature of the VPS is further illustrated by
their response to an electric field applied perpendicular to the
interface. We expect the number of VPS, expressed in Eq. (4),
to be small since their band gap has to be smaller than the
smallest bulk band gap, min(|�1|,|�2|), and that a large gap
asymmetry δ decreases their number as illustrated in Fig. 1(c).

(a) (c)(b)

FIG. 2. Surface states of a THJ with n- and p-doped insulators. (a) Sketch of the heterojunction with a μ2 − μ1 drop in the chemical
potential. The pn junction is characterized by a chemical potential μc and a band gap common to both insulators (shaded green region) of
size Eg = |�2 − �1 − (μ2 − μ1)|, which vanishes for a large chemical potential or voltage drop, defining a breakdown voltage. The surface
states are centered around the position z0 where the gap vanishes, with surface chemical potential μS ≈ μ(z0) = 1

2 (μ1 + μ2) − 1
2 (μ2 − μ1)δ.

(b) Spectrum obtained by numerical simulation with the same parameters as in Fig. 1, f (z/�) = tanh(z/�), and centered around the band gap
of the inverted insulator (blue). We use μ2 − μ1 = 1 eV, and the colors represent the amplitude of surface density ρS ≈ |�(z = z0)|2 for each
state. (c) Energy εn,±(k‖ = 0) of the surface states as a function of the chemical-potential difference μ2 − μ1. Multiple VPS appear in the
valence band for |μ2 − μ1| closer to |eVc| = |�2 − �1| = 2.675 eV for a positive and strong gap asymmetry, δ = 0.87 ∼ 1 = |δ|max.
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However, we show below that the visibility of VPS can be
strongly enhanced by an electric field, possibly originating
from surface band bending due to chemical doping or an
applied gate voltage under Dirac screening [24]. We consider
a chemical potential μ in Eq. (1) that varies over the interface
with the same profile μ(z) = 1

2 (μ2 − μ1)f (z/�) as the gap
�(z), as depicted in Fig. 2(a), and with opposite potentials
in each semiconductor. We account for this potential with a
Lorentz boost (see Supplemental Material [25]) which shows
that the surface states only exist if the relativistic parameter
β = −(μ2 − μ1)/(�2 − �1) ∈ [−1,1]. This reminds one of
the behavior of Landau levels in crossed electric and magnetic
fields [26] with a typical electric field E = (μ2 − μ1)/e�
that has to be smaller than a critical electric field Ec =
(�2 − �1)/e�, corresponding to a breakdown voltage Vc =
(�2 − �1)/e, above which the surface states disappear. This
critical behavior happens because the surface states exist
within the band gap common to both semiconductors depicted
in Fig. 2(a) and it vanishes above the breakdown voltage. For
voltage drops below Vc, the Lorentz boost renormalizes the
parameters in the Schrödinger equation Ĥ ′

s |� ′〉 = ε|� ′〉 (see
Supplemental Material [25]). The interface is sharpened by an
increase in the intrinsic length as ξ ′/ξ = 1/

√
1 − β2, while

the effective gap asymmetry becomes

δ′ = 1

1 − β2

[
δ + ε(μ2 − μ1)/2

(vF /ξ )2

]
, (5)

and the effective Fermi velocity decreases as v′
F /vF =√

1 − β2. These renormalized parameters decrease the VPS
band gaps (see Supplemental Material [25]) and alter their
spectrum in a way that depends on the sign of the voltage
drop μ2 − μ1, relative to the gap asymmetry δ. As shown
in Fig. 1(c), the renormalized δ′ is such that if μ2 − μ1 and
�2 − �1 have the same signs, then increasing the voltage
drop shifts up the spectrum of VPS and increases the number
of particlelike VPS. This is the situation depicted in Fig. 2(c).
Conversely, if μ2 − μ1 and �2 − �1 have opposite signs, an
increasing electric field shifts down the VPS spectrum and
increases the number of holelike VPS. This unique behavior is
a hallmark of VPS in a THJ, revealing their intrinsic relativistic
origin. The spectrum of surface states has to be obtained
self-consistently if the original spectrum depends explicitly
on δ, as in Eq. (2). This can be avoided in simplified models
(see [4] and Supplemental Material [25]). Alternatively, we
can directly solve a discretized version of Eq. (1) for a generic
tanh(z/�) interface. The results are shown in Figs. 2(b) and
2(c) and confirm the unique effect of a voltage drop on the
VPS of a THJ.

Let us comment on the intrinsic difference in nature
between VPS in a THJ and conventional nonrelativistic states
localized in a potential well at an interface. In both cases,
the interface is described by a change in the gap �(z) for
which the parity symmetry P = σ̂z ⊗ τ̂z leads to a particle-
hole symmetric spectrum which is absent in the case of
electrostatic confinement. Moreover, a general surface state
� = (φ1,+,φ2,+,φ1,−,φ2,−) written over the eigenbasis of the
parity operator P , as in the Supplemental Material [19], can
be determined by squaring the time-independent Schrödinger
equation associated with Eq. (1). In doing so, we obtain

(c)

(d)

(a)

(b)

FIG. 3. Sketch of the position-dependent gap �(z) and the corre-
sponding confining potentials V±(z) of the wave-function components
�±. (a),(b) The case of band inversion (THJ) and (c),(d) the case of a
gap minima |�(z)| in a conventional heterojunction. (b) The potentials
minima are shifted in energy by δV ∼ v2

F /�ξ ; (d) the potential minima
are shifted in position by δz ∼ vF /2�min. It is only in the case of a
THJ that one finds a nondegenerate bound state for the V− potential.

for each component φi,s (i = 1,2, s = ±) a one-dimensional
nonrelativistic Schrödinger equation,[ − v2

F ∂2
z + Vs(z)

]
φi,s = (

ε2 − v2
F k2

‖
)
φi,s, (6)

with a potential V±(z) = �(z)2 ∓ vF ∂z�(z), and associated
eigenvalues E2

n = (ε2 − v2
F k2

‖). The chiral symmetry relates
the two solutions associated with both V±(z) potentials via
the relation φi,s = −[vF ∂z − s�(z)]φi,−s . Thus every state is
doubly degenerate except for the n = 0 surface state, which is
analyzed in detail below and which we call the chiral surface
states (CSS). These CSS are the topologically protected
ones, which one obtains based on topological invariants and
that survive in the limit where the interface becomes sharp,
�/ξ → 0. This means that the CSS are completely independent
of the �(z) profile as shown by the Aharonov-Casher argument
in the Supplemental Material [27]. In Fig. 3, we represent two
situations for this Schrödinger equation: a THJ in Figs. 3(a) and
3(b) where �(z = 0) = 0 and a conventional heterojunction in
Figs. 3(c) and 3(d) where there is no band inversion but a local
minimum of the band gap |�(z)|.

The physical properties of these surface states can be
captured by an analysis of Eq. (6). In the THJ case, V+(z)
necessarily has a minimum regardless of the interface size
because �(z = 0) = 0 and thus V+(z = 0) = −vF ∂z�(z =
0) < 0. The associated bound state is then the CSS with
E0 = 0 whose nondegenerate nature manifests itself here by
the fact that V−(z = 0) = +vF ∂z�(z = 0) > 0, precluding
another E = 0 state. The existence of VPS necessitates
that both V−(z) and V+(z) have a minimum because of
the chiral symmetry, in particular this necessitates V−(0) <

min{�2
1,�

2
2}. One can estimate V (z ∼ 0) ∼ vF ∂z�(z = 0) ∼

v2
F /�ξ , such that the condition for appearance of VPS reads

v2
F /�ξ < min{�2

1,�
2
2} = v2

F (1 − |δ|)2/ξ 2, which agrees with
Eq. (4) obtained for a particular choice of �(z) discussed
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above. This discussion can also be extended to a conventional
heterojunction with no gap inversion, as studied in Refs. [5,28].
We expect bound states if the gap function |�(z)| has a
minimum |�min| < min{|�1|,|�2|}, as depicted in Fig. 3(c).
Indeed, Eq. (6) provides a pair of VPS shown in Fig. 3(d)
since both potentials satisfy V±, min � �2

min < min{�2
1,�

2
2}.

In this case, all massive surface states are degenerate with a
linear combinations of |±〉 states located on either side of the
interface with a separation δz � vF /2�min, similarly to the
case of a thin confined insulator recently discussed in Ref. [5].

The above description of a THJ shows the existence
of massive states intimately related to the relativistic and
topological nature of the interface. While a clear determination
of the nature of these surface states requires one to study
their dependence on an external electric field, along the
lines of Ref. [4] for strained bulk HgTe, their occurrence
in previous ARPES experiments in Bi2Se3 and Bi2Te3 aged
in an oxidizing atmosphere [2,3] can be critically discussed
within our theory. While electrostatic band bending can
reproduce the electronlike surface states, the holelike ones
necessitate an associated energy scale larger than the bulk
valence-band width, unlikely in particular in Bi2Te3 [3]. On
the other hand, in our theoretical description, both electron-
and holelike VPS arise on equal footing due to the underlying
particle-hole symmetry in a THJ. In the experiments reported
in Refs. [2,3], one observes two or three electron- and holelike
surface states. For Bi2Se3, published values for vF = 2.3 . . . 5
eV Å [16,29] and 2� = 350 meV [1] yield a characteristic
interface width ξ ≈ vF /� = 6.5 . . . 23 Å. In an oxidizing
atmosphere, the depth of the oxide layer can be estimated as
� ≈ 10 . . . 20 Å [30], which leads to an expected number of
N ≈ �/ξ = 1 . . . 3 VPS, in agreement with experiments [2,3].
Moreover, we find �S = √

�ξ ≈ 8 . . . 20 Å and thus VPS
energy gaps �VPS ≈ vF /�S = 100 . . . 600 meV in reasonable
agreement with [2,3]. In our theory, we expect similar band

gaps for the electron- and holelike VPS which is observed
experimentally in Bi2Se3, as we discuss in the Supplemental
Material [31]. This is a strong indication of the topological
origin of the surface states. The ARPES measurement of both
the band gap and the Fermi velocity of VPS as a function of
band bending could help one to get better insight into their
relativistic nature. Moreover, we expect the absence of VPS
for In-doped Bi2Se3 in an oxidizing atmosphere for a doping
that turns the material into a normal semiconductor and which
has been recently discussed in Ref. [32].

In conclusion, we have shown that THJs, characterized
by a continuous gap inversion between two semiconductors,
generically host massive surface states in addition to the usual
massless chiral state. A condition for the existence of these
VPS is a sufficiently smooth interface � > ξ as compared to the
material-dependent characteristic length ξ = 2vF /|�1 − �2|
and a small gap asymmetry δ = (�1 + �2)/(�2 − �1). Both
the massless and the massive surface states are intrinsically
relativistic, revealed in the particle-hole symmetry of their
spectrum as well as by the effect of electrostatic band bending.
The surface states only persist below the breakdown voltage
but the number of electron- or holelike surface states can
be increased by band bending depending on the sign of the
voltage drop with respect to the direction of increase in the
gap. These surface states are reminiscent of Landau bands,
in particular for a wide THJ (� � ξ ). The existence of such
VPS and their relativistic nature is relevant for recent ARPES
measurements on aged Bi2Se3 and Bi2Te3 [1–3] and have been
identified in transport measurements on strained bulk HgTe [4].
Uncovering the signature of these states and their electric-field
dependence for other probes such as in tunneling spectroscopy
is a natural and exciting perspective.

We would like to thank M. Civelli, B. A. Assaf, and
C. Quay for fruitful discussions.
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