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FIG. 1: Low-field magnetostransport in bilayer graphene at T = 4 K. a) Conductance quantization

steps (at Vds = 3 mV in units of 4e2/h) of the 2-terminal bottom gated bilayer graphene on 23 nm-

thick boron nitride (BN) device of dimensions L×W = 4× 3 µm (optical image in the inset). The

tiny width of the quantum Hall plateaus warrants the absence of disorder-induced localized bulk

states. b) Fan chart of the zero-field differential conductance ∂Gds/∂Vg (µS/V ) showing a series

of Landau levels (N = −10 → 10, the yellow line signals the median N = 5 state) and the lifting

of their 4-fold degeneracy of the N = 0 state.

I. SAMPLE FABRICATION

Our sample is fabricated from BLG chosen here as a prototypal massive (m∗/m0 ' 0.03)
2D electron system with a Landau ladder of inter-LL gap ~ωc . 30 meV for B . 8 T.
Boron nitride (BN) dielectric provides a high mobility µ = 3 m2V−1s−1 (T = 4 K), a smooth
electrostatic environment, and an enhanced thermal stability against the high currents and
E-fields used in this work [1]. These points are central as they favor homogeneous breakdown
over the surface, and high-quality breakdown measurements. A local bottom gate allows
tuning the number of occupied LLs in a broad range N . 10, while efficiently screening the
substrate charge disorder. These statements are supported by several observations. First
the electrostatic smoothness is evidenced by the small size of the zero-bias quantization
plateaus in Supp. Fig.1-a and their smearing at low bias Vds & 5 mV. Secondly, the fan
chart ∂Gds(Vgs, B)/∂Vg in Supp. Fig.1-b, is characteristic of clean BLG with a low quantizing
threshold B & 2 T and a lifting of the fourfold degeneracy of the N = 0 state. A typical
working condition is the (B = 4 T ; Vg = −3 V) point in the middle of the experimental
window corresponding to N ' 5 and n ' −2 1012 cm−2 in Supp. Fig.1-b. The breakdown
is monitored by measuring the transport current and the shot noise as described in Ref.[1].
It is expressed as a noise current SI/2e in the Fig.1 of the main text for an easy comparison
with transport currents presented in the same panel.

The 2-terminal sample, of dimensions L×W = 4× 3 µm, is an as-exfoliated BLG flake
stacked on a 23 nm-thick BN crystal deposited on a metallic bottom gate (see optical picture
in Supp. Fig.1-a inset). The sample is equipped with low-resistance (Rc ' 120 Ω.µm)
Pd/Au contacts (see Fig.1 in Ref.[1]), and embedded in a coplanar wave guide for 0–10 GHz
cryogenic (4 K) noise measurement. Shot noise is measured in the 4.5–5.5 GHz band (see
Supplementary of Ref.[1]). The high-frequency band is needed to overcome the colored low
frequency noise that obscures shot noise up to ∼ 1 GHz at the maximum bias current.
Carrier density is compensated for drain gating as explained in Ref.[1]. The dissipation-less
Hall regime is characterized by a 2-terminal conductance Gds matching the Hall conductance
GH = |n|e/B. QHE plateaus are used to calibrate the gate capacitance Cg ' 1.15 mF/m2.
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The B = 0 transport and noise properties have been characterized in a previous report
(Ref.[1]) where a new cooling mechanism could be revealed and experimental techniques
were detailed.

II. MAGNETO-EXCITONS IN CROSSED MAGNETIC AND ELECTRIC FIELDS

Magneto-excitons are collective electron-hole excitations that arise in 2D electronic sys-
tems in a strong magnetic field. They are the zeros of the dielectric function,

εE(q, ω) = 0 ' 1− e2

εq
Π0
E(q, ω), (1)

where the last expression is that obtained within the random-phase approximation (RPA),
in terms of the polarizability Π0

E(q, ω) for non-interacting electrons. Here, the subscript
indicates that we consider a non-zero electric field that we choose to be oriented in the
y-direction.

A. Polarizability

We have

Π0
E(q, ω) =

1

~S
∑
ν,ν′

Pν − Pν′
ω − (εν − εν′) + iη

∣∣ψ†νeiq·rψν′∣∣2 , (2)

where S denotes de total surface, Pν is the Fermi-Dirac occupation number of the level εν and
ψν the associated eigenstate. The latter are labelled by the quantum numbers ν = (λ, n, k),
which in our case include the band index λ, the Landau level index n, and the wave vector
k = kx. Here, we consider the Landau gauge A = B(−y, 0, 0) for the vector potential
because of our choice to apply an electric field in the y-direction. Finally, η denotes a small
level broadening. Equation (2) is generic for the usual 2D electron gas, monolayer or bilayer

graphene. The latter case is of interest here, and we have εν = λ~ωc
√
n(n− 1) + ~vDk,

where vD = E/B is the drift velocity, and the wave functions

ψν =
1√
2

(
|n− 2, k〉
λ|n, k〉,

)
(3)

where the states |n, k〉 are simply the solutions of the Hamiltonian2

H =
p2y

2m∗
+

1

2
m∗ω2

c (y − y0)2 + ~vDk, (4)

in terms of the average position y0 = kl2B − vD/ωc and the magnetic length lB =
√

~/eB.
In the present experiment, the bilayer graphene system is substantially doped, and the

last occupied Landau level N � 1. In this limit we can approximate the matrix elements

ψ†λ,n,ke
iq·rψλ,n′,k′ ' 〈n, k|eiq·r|n′, k′〉, (5)

the corrections being on the order of 1/N , and neglect interband contributions to the polar-
izability (2). The matrix elements can be calculated with the help of the wave functions

〈x, y|n, k〉 =
1√
L
eikxχn(y − y0), (6)
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where χn(y) = Hn(y/lB) exp(−y2/2l2B) in terms of the Hermite polynomial Hn, and one
obtains

〈n, k|eiq·r|n′, k′〉 = δk,k′+qx

∫
dy eiqyyχn(y − kl2B + vD/ωc)χn′(y − k′l2B + vD/ωc). (7)

The delta term indicates momentum conservation in the x-direction, and one notices that
the electric field only enters here in the form of an irrelevant shift that disappears by a
variable transformation y′ = y − vD/ωc in the integral. This means that the electric field
does not alter the matrix elements with respect to the E = 0 case, apart from a phase factor
exp(−iϕ), with ϕ = qyvD/ωC , and it only tilts the energy levels as a function of k [see Eq.
(4)]. We emphasize that this property also holds if we had not used the approximation (5).
The matrix elements can now be obtained in the standard manner [2] and read, for n′ ≥ n,8

〈n, k|eiq·r|n′, k′〉 = δk,k′+qxe
−iϕe

i
2
qy(k+k′)l2Be−|α|

2/2

√
n′

n
(−α∗)n−n′

Ln−n
′

n′ (|α|2), (8)

in terms of the associated Laguerre polynomials Lmn and the complex wave vector α =
(qx + iqy)lB/

√
2. Notice that all phase factors disappear once we take the modulus square

in the expression for the polarizability, which becomes

Π0
E(q, ω) =

1

~S
∑
n,n′;k

Pn,k − Pn′,k−qx
ω − [(n− n′)ωc + vDqx] + iη

∣∣〈n, k|eiq·r|n′, k − qx〉∣∣2 . (9)

The last expression is still difficult to evaluate because of the Fermi-Dirac occupation
numbers. However, just below the breakdown threshold, the system is not at thermodynamic
equilibrium, and we consider the Fermi level to be quenched between two adjacent Landau
levels even if they are tilted with respect to k (see Supp. Fig. 2),

Pn,k = Pn = Θ(N − n), (10)

in terms of the step function Θ(N − n) = 1 for n ≤ N and Θ(N − n) = 0 for n > N . This
allows us now to carry out the sum over the quantum number k, and with

∑
k = NB = nBS,

in terms of the flux density nB = eB/h = 1/2πl2B, we obtain the final expression

Π0
E(q, ω) =

nB
~
∑
n,n′

Pn − Pn′

(ω − vDqx)− (n− n′)ωc + iη
Fn,n′(q) (11)

for the polarizability, where we have defined the form factor

Fn,n′(q) = Θ(n− n′)n
′!

n!

(
q2l2B

2

)n−n′ [
Ln−n

′

n′

(
q2l2B

2

)
e−q

2l2B/4

]2
+Θ(n′ − n)

n!

n′!

(
q2l2B

2

)n′−n [
Ln

′−n
n

(
q2l2B

2

)
e−q

2l2B/4

]2
. (12)

B. Collective excitations

Let us discuss in more detail the obtained result for the polarizability (11) in the presence
of an electric field. The expression is insofar extremely useful in that we find the same result
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as in the absence of an electric field, E = 0, but at a different frequency ω → ω − vDqx.
The electric field thus has the sole effect to shift the energies by −~vDqx, and we find quite
generally

Π0
E(q, ω) = Π0

E=0(q, ω − vD · q) (13)

and consequently
εE(q, ω) = εE=0(q, ω − vD · q), (14)

as mentioned in the main text. The collective excitations therefore satisfy, before the break-
down transition, Galilean invariance, and their dispersion reads

ωEME(q) = ωE=0
ME (q)− vD · q, (15)

where ωE=0
ME (q) is the dispersion in the absence of an electric field.

While this analysis is valid for any type of collective electron-hole excitation, we now
concentrate on magneto-excitons, i.e. excitations that are adiabatically connected to the
poles mωc at zero wave vector. In order to obtain these excitations, with m = (n − n′),
we can restrict the sum in Eq. (11) to the relevant terms – we simply need to analyze the
E = 0 case in view of the above discussion,

Π0
E=0(q, ω) =

nB
~

∞∑
m=1

m−1∑
n=0

2mωc
ω2 −m2ω2

c

FmN−n(q). (16)

Under the above-mentioned assumption of adiabatic connection to the pole mωc, we can
omit the sum over m in the calculation of the zeros of the dielectric function, and one
obtains

ωE=0
m (q)2 −m2ω2

c ' 2mωc
e2nB
~εq

m−1∑
n=0

FmN−n(q). (17)

Linearization of this equation, which is strictly speaking valid in the limit rs = 1/a∗BkF =

e2/εlB
√

2N~ωc � 13, yields the magneto-exciton4 dispersion

ωE=0
m (q) ' mωc +

1

2π~
e2

εql2B

m−1∑
n=0

FmN−n(q), (18)

and for the fundamental magneto-exciton (m = 1), we obtain

ωE=0
ME (q) ' ωc +

1

2π~
e2

εql2B

q2l2B
2(N + 1)

[
L1
N

(
q2l2B

2

)
e−q

2l2B/4

]2
' ωc

{
1 +

rs
2π

√
2N

qlB

[
J1(qlB

√
2N)

]2}

' ωc

{
1 +

rs
2π

kF
q

[J1(2Nq/kF )]2
}
, (19)

where we have used the asymptotic large-N behavior of the Laguerre polynomial

1

N
L1
N(x) ' 1√

Nx
J1(2
√
Nx),
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FIG. 2: Sketch of the Landau levels and their associated wave functions below (a) and at (b)

the breakdown transition. Due to the electric field, the Landau levels are tilted but the Fermi

level (dashed line) is quenched between N and N + 1, due to lack of possible equilibration. (a)

Below breakdown, the magneto-exciton remains gapped at wave vectors that correspond to average

distances between the electron and the hole constituting the magneto-exciton that are larger than

the sum of the typical wave-function extensions. (b) Once the wave functions substantially overlap,

i.e. at a magneto-exciton wave vector qlB ∼ 2
√

2N , upon increase of the electric field, the system

becomes unstable to proliferation of magneto-excitons.

where J1 is a Bessel function, and we have expressed the dispersion in terms of the Fermi
wave vector kF =

√
2N/lB in the last line.

The magneto-exciton dispersion in the presence of an in-plane electric field is then readily
obtained from Eq. (15),

ωEME(q) ' ωc

{
1 +

rs
2π

√
2N

qlB

[
J1(qlB

√
2N)

]2}
− vD · q

' ωc

{
1 +

rs
2π

kF
q

[J1(2Nq/kF )]2
}
− vD · q. (20)

This dispersion is depicted in Fig. 3(b) of the main text for several values of the electric
field.

We finally notice that our calculation of the magneto-exciton dispersion does not provide
information about their spectral weight and thus their visibility and pertinence in the ω− q
plane. Here, we can nevertheless rely on calculations performed in the RPA for the full
polarizability Π(q, ω) = Π0(q, ω)/ε(q, ω), at E = 03,5 that show that the spectral weight
ImΠ(q, ω) is essentially restricted to an area of allowed particle-hole excitations6 delimited
by ωL ' vF q and ωR ' vF (q − 2kF ), where vF = ~kF/m∗ is the Fermi velocity and where
we have neglected a parabolic contribution that becomes relevant only at large values of
ω ∼ Nωc. For the magneto-exciton of frequency ωME ∼ ωc, the spectral weight is therefore
concentrated in interval qmin ≤ q ≤ qmax, with qmin ' ωc/vF ' 1/lB

√
2N and qmax '

2kF + ωc/vF ' 2
√

2N/lB.
This behavior of the spectral weight can also be understood from a wave-function point

of view (see Fig. 2). Indeed, the average distance ∆R between the centers of the ringlike
wave functions of the electron (in level N + 1) and that of the hole (in level N) is related
to the wave vector of the particle-hole pair ∆R = ql2B

6. Furthermore, the radii of the

ringlike wave functions are
√

2(N + 1) + 1lB and
√

2N + 1lB for the electron and the hole,
respectively. Therefore, the electron and the hole have a substantial overlap as long as the
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average distance is between the radii difference and sum,
√

2(N + 1) + 1lB −
√

2N + 1lB ≤
∆R ≤

√
2(N + 1) + 1lB +

√
2N + 1lB, which yields in the large-N limit the same criterion

1/
√

2N ≤ qlB ≤ 2
√

2N (21)

for the wave-vector range of strong spectral weight. The system therefore becomes instable
towards proliferation of magneto-excitons, that thus trigger the breakdown phenomenon,
when the dispersion becomes negative at the wave vector qmax, i.e. ωEME(qmax) ≤ 0 or

vDqmax ' ωc ⇔ vD = E/B ' ωclB/2
√

2N. (22)

III. FANO FACTOR

In contrast with the Zener mechanism, the proliferation of inter-LL collective excitations
is naturally explained by the ME instability. However a quantitative determination of the
number Nbunch = F . 20 of excitation bunches remains beyond the scope of the present ar-
gument. This would require a comprehensive theory of the polarizability at high E-field and
of the contribution to electric transport of the collective excitations. Moreover, experimental
feedback would require a knowledge of the bias-dependent Hall angle which is not accessible
in 2-terminal RF measurements. Still we can propose a tentative explanation which estimates
the electrostatic back-action from the inter-edge charging energy εc ∼ e2/(εW ) ' 2 meV,
assuming an instantaneous bulk to edge counter drift of electron/hole partners after an ele-
mentary ME bunch creation. In this simple picture, the local E-field is transiently reduced
below the breakdown threshold, stopping the excitation bunch, whenever the Coulomb po-
tential Nbunchεc compensates for a Landau gap unit, i.e. Nbunch = F ∼ ~ωc/εc in order
of magnitude accordance with experiment. Such a relaxation-oscillation mechanism bears
analogies with the Frank-Condon mechanism in nanoelectronics where giant Fano factors
are considered under phonon-triggered tunneling events [7].
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8 For n′ > n, one simply needs to take the complex conjugate and interchange n and n′.
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