From laser cooling to BEC First experiments of superfluid hydrodynamics

Alice Sinatra

Quantum Fluids course - Complement 1

2013-2014

Plan

1 COOLING AND TRAPPING

2 CONDENSATION

8 NON-LINEAR PHYSICS AND HYDRODYNAMICS

4 VORTICES

Two possible path towards degeneracy

Condensation criterion: $\rho \lambda^3 \ge 2.612$; $\lambda = \sqrt{\frac{h^2}{2\pi m k_B T}}$

• High density : superfluid helium

$$ho \sim 10^{30} \mathrm{at/m}^3$$
 $T_c = 2 \mathrm{K}$

• Low temperature and low density : ultra-cold gases

$$\rho \sim 10^{19} {\rm at/m}^3 \qquad T_c \sim 1 \mu {\rm K} \qquad \lambda \sim 10^{-6} m$$

Reach $T = T_c$ and remain a gas !

Polarized H : it seamed a good idea but ...

- Absence of two body bound states
- Bad collisional properties

Extremely diluted gases in a metastable state

Slowing down and cooling atoms

Nobel Pize (1997)

Slowing down : $\langle v \rangle$ Cooling : $\langle \Delta v \rangle$

Na@300 K $\langle \Delta v_x \rangle = \langle v_x \rangle = 300 \text{ m/s}$ $\lambda = 5 \times 10^{-11} \text{m}$

SLOWING Radiation pressure: Plane wave : $\vec{p} = \hbar \vec{k}_L$

absorption

and spontaneous emission **F**

Average force : $\vec{F} \simeq \hbar \vec{k}_L \Gamma$

Deceleration : $\frac{F}{m} \simeq 10^6 \text{ m/s}^2 = 10^5 g$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Zeeman slower

Keep the laser on resonance ω_A Zeeman effect in B(z)

⁴He^{*}; ENS

Laser cooling...

• Laser cool and trap the atoms: $\delta_{v=0} = \omega_L - \omega_A < 0$, $F = -\alpha v$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Optical Molasses: laser beams provide a friction force

Limits of Doppler cooling

Excitation rate at rest: $\gamma(\delta) \propto rac{l_L}{\delta^2 + \Gamma^2/4}$

Average force:

$$F = \hbar k \left[\gamma (\delta - kv) - \gamma (\delta + kv) \right] = -2\hbar k^2 v \gamma'(\delta) = -\alpha v$$

Diffusion of momentum:

$$\Delta p^2 = 2Dt$$
 $\mathbf{D} = \hbar^2 k^2 \gamma(\delta)$

Einstein relation: $\mathbf{k}_{\mathbf{B}}\mathbf{T} = \frac{\mathbf{D}}{\alpha} \geq \frac{\hbar\Gamma}{2}$

240 *µK* pour *Na*.

Magneto-optical trap

Cooling further to reach the degenerate regime

• Laser beams + magnetic field \rightarrow Magneto-optical trap $T \sim 1 \text{mK}$ (limit : $T_{rec} = \frac{\hbar^2 k^2}{2M}$)

- Magnetic trap: In a space-dependent magnetic field $E_m(B) = -\vec{\mu} \cdot \vec{B} = g\mu_B m_j |\vec{B}|, \rightarrow$ Force Atoms can be trapped in a minimum of $|\vec{B}|$
- Evaporative cooling: Radio frequency $\nu_{rf} = (E_{\uparrow} E_{\downarrow})(r)/\hbar$ to flip the spin and eject fastest atoms

TOOLBOX

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

How to "see" a condensate ?

Sizes : ideal gas condensate a_0 and thermal cloud \boldsymbol{X}

${f a_0}=\left(rac{\hbar}{m\omega} ight)^{1/2}$	F	$m\omega)^{1/2}$	
$\frac{1}{2}m\omega^2 \langle \mathbf{X}^2 \rangle = \frac{\langle \mathbf{P}^2 \rangle}{2m} = \frac{1}{2}k_B T$	$\mathbf{X} = \left(\frac{k_B T}{m\omega^2}\right)$	$\Big)^{1/2}$	$\mathbf{P} = \left(k_B T m\right)^{1/2}$
$\frac{\mathbf{X}}{\mathbf{a}_0} = \frac{\mathbf{P}}{\mathbf{p}_0} = \left(\frac{k_B T}{\hbar \omega}\right)^{1/2}$	$\simeq N^{1/6}$	à la tr	ansition

Atomic BEC 1995-2007

1995 First observation of BEC in atomic gases in JILA and MIT ... Nobel Prize 2001: E. Cornell, C. Wieman, W. Ketterle

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Energy scales

Typical numbers for a BEC

Size: $\Delta x = 100 \,\mu$ m

Number of atoms: $N = 10^6$

Temperature T = 100 nK $(\lambda_{th} = \sqrt{\frac{2\pi\hbar^2}{mk_B T}})$

 $\begin{array}{l} {\rm Density} \ \rho = 10^{19} \ {\rm at/m^3} \\ (\rho \lambda_{th}^3 > 1) \end{array}$

Lifetime $\tau = 100 \text{ s}$

Figure for Na atoms from Burnett et al., Nature (2002)

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Elements already condensed

1	ы Н	KA		P	eri	00	lic	: T	a	ble	e		BA	IYA	YA	YLA.	ука	0 Z He	
2	a Li	4 Be		of	of the Elements 📑									°c	7 N	ő	9 F	10 Ne	
3	n Na	12 Mg	ШB	IVB	Y8	WB	V18		- YII -		18	IIB	i© IAI	ia Si	i5 P	16 S	17 -CI	it Ar	
+	19 K	20 Ca	21 Sc	22 Ti	23 Y	24 Cr	ಜ Mn	25 F0	27 00	28 Ni	es Cu	eo Zn	isi Ga	æ G¢	39 As	34 Se	35 Br	≫ Kr	
\$	ar Rb	38 Sr	39 Y	≁0 Zr	⊰ı Nb	42 Mo	e Tc	44 Ru	45 Rh	e Pd	47 Ag	es Cd	aa Lin	50 Sn	51 Sb	52 To	50 	54 Xe	
6	55 Cis	se Ba	જ *La	72 Hf	73 Ta	24 W	75 Re	76 Os	77 Ir	78 Pt	29 Au	ao Hg	81 11	82 Pb	ea Bi	84 Po	85 At	85 Rn	
7	er Fr	88 Ra	eo +Ac	104 Rf	165 Ha	106 Sg	107 NS	108 HS	109 Mt	110 110	89 111	112 112	510 1113						
										·									
^ե։ Տվ	antha eries	nide	Se Ce	59 Pr	so Nd	ei Pm	se Sm	63 Eu	છ Gđ	ss ТЪ	⁴⁴ Dy	67 Ho	es Er	⁶⁹ Tm	70 ҮЬ	21 Lu			
• A0 Se	atinio erles	e	90 Th	91 Pa	۳ ۲	93 Np	94 Pu	95 Am	ор Ст	97 8k	98 C1	99 Es	Fm	101 Md	102 No	100 Lr			

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

Bose versus Fermi statistics

$$ho \lambda_{th}^3 \sim 1$$
 ; $\lambda_{th} = \sqrt{rac{2\pi \hbar^2}{mk_B T}}$

In an harmonic potential: $U(\vec{r}) = \frac{1}{2}m\omega^2 r^2$

$$N = \left(\frac{k_B T_c}{\hbar \omega}\right)^{1/3} 1.202$$

$$E_F = (6N)^{1/3} \hbar \omega$$

BEC and degenerate Fermi gas in an harmonic trap

- Non condensed cloud: $\frac{1}{2}m\omega^2 X^2 = \frac{1}{2m}P^2 = \frac{1}{2}k_bT$
- BEC Narrow peek both in real space and in momentum space
- Fermi gas: Pauli exclusion principle \rightarrow Fermi pressure

condensed fraction

Jila (1996) and Institut d'Optique (2004)

For an ideal gas

$$\frac{N_0}{N} = 1 - \left(\frac{T}{T_C}\right)^3 \qquad \qquad k_B T_C = \hbar \bar{\omega} \left(\frac{N}{1.202}\right)^{1/3}$$

Effect of interactions (mean field in the trap)

 $\frac{\delta T_C}{T_C} \simeq \mathbf{C} \, \mathbf{a} \, ; \qquad \qquad \mathbf{C} < \mathbf{0} \\ \quad \mathbf{C} < \mathbf{0} \\ \quad \mathbf{C} > \mathbf{C} = \mathbf{C} \, \mathbf{$

Thomas-Fermi profile

Interactions affect strongly the condensate shape

(日)

Simplest description of a BEC with interactions

• *N* particles in one mode

All the atoms share the same one-body wavefunction $\phi(x, t)$.

$$i\hbar\partial_t\phi = \left[-rac{\hbar^2\Delta}{2m} + U(x) + gN|\phi(\vec{r},t)|^2
ight]\phi$$

Time-dependent Gross-Pitaevskii equation

Interactions

s-wave collisions between ultra-cold atoms modeled by a contact potential $g = \frac{4\pi\hbar^2}{m}a$, a=s-wave scattering length

Matter waves Solitons

Non-linear Shrödinger equation with a < 0 (attractive interactions) in a 1D geometry has solitonic solutions.

(ENS) A magnetic field is used to change the sign of a before releasing the condensate in a 1D waveguide + expelling potential.

Sound Waves in a uniform BEC

Initially $\vec{v} = 0$ and $\rho = \rho_0$. Sudden switch-on of a perturbing potential δU

Linearized equations: $\rho = \rho_0 + \delta \rho$, $\vec{v} = \delta \vec{v}$

$$\frac{\partial \vec{v}}{\partial t} = -\frac{\text{grad}}{m} [\delta U + g \delta \rho] \qquad ; \qquad \frac{\partial \delta \rho}{\partial t} + \text{div}[\rho_0 \vec{v}] = 0$$
$$\delta \mathbf{U} = \mathbf{0} \qquad \rightarrow \qquad \frac{\partial^2 \rho}{\partial t^2} - \text{div}[\frac{\rho_0 g}{m} \text{grad} \delta \rho] = 0$$
$$\rho_0 = \text{const} \qquad \rightarrow \qquad \frac{\partial^2 \rho}{\partial t^2} - \frac{\rho_0 g}{m} \Delta \delta \rho = 0$$
$$\Delta \delta \rho - \frac{1}{\mathbf{c}^2} \frac{\partial^2 \rho}{\partial t^2} = 0$$

Speed of sound: $c = \sqrt{\frac{g\rho_0}{m}} = \sqrt{\frac{\mu}{m}}$

CES TOOLBOX

Sound waves in the BEC

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

between images $\delta t = 1.3$ ms. $c \sim 2$ cm/s

What happens when we set a BEC into rotation ?

For a rigid body:

$$\vec{v} = \vec{\Omega} \times \vec{r}$$
 $\vec{url} \, \vec{v} = 2\vec{\Omega}$ $\oint \vec{v} \cdot \vec{dr} = \int_{S} (\vec{url} \vec{v}) \cdot \vec{n} = 2\,\Omega\,S$

For a condensate:

$$\psi(\vec{r}\,) = \sqrt{\rho(\vec{r}\,)} e^{i\phi(\vec{r}\,)} \qquad \vec{v} = \frac{\hbar}{m} \operatorname{grad} \phi \qquad \operatorname{curl} \vec{v} = 0 \quad (\text{if } \phi \text{ is regular})$$

When set into rotation the superfluid creates Vortices !

Phase singularities

$$\oint \vec{\mathbf{v}} \cdot \vec{d\mathbf{r}} = \frac{\hbar}{m} \oint \operatorname{grad} \phi = \frac{\hbar}{m} 2\pi s = s \frac{h}{m} \qquad s \in \mathbb{Z}$$

Density of vortices
$$\frac{N_v}{S} = 2\Omega \frac{m}{h}$$
.

Vortex lattices in the ENS experiment

• **Experiment**: Instability $\Omega > 0.75\omega$, crystallisation of a lattice

Madison et al. PRL (2000)

• Classical field Simulation $i\hbar \frac{\partial \psi}{\partial t} = (-\frac{\hbar^2 \Delta}{2m} + V(\vec{r}) + g|\psi|^2)\psi$

$$t = 0$$
 $t = 468\omega^{-1}$ $t = 740\omega^{-1}$ $t = 4000\omega^{-1}$

 $\rightarrow\,$ Non linear multi mode physics

Lobo et al. PRL (2004)

Tune the atomic interactions

From **ideal gas** to a **strongly interacting** system using an external magnetic field (Feshbach resonance)

Superfluidity in the BEC-BCS crossover

Fermi gas in two spin states with attractive interactions

 Direct evidence of superfluidiy across the BEC-BCS regimes

TOOLBOX

 Regular lattice ↔ constant vorticity: h/2m per vortex

Zwierlein et al. Nature (2005) (MIT W. Ketterle)

Shape the trapping potential

It is possible to **confine the movement** of the atoms in **1D** or **2D**: change the spatial dimension

Proliferation of vortices associated to the BKT transition in 2D

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

ENS Hadzibabic et al. Nature (2006)