Hydrodynamics of a Bose-Einstein condensate

Homework for the course “Quantum liquids" M1 ICFP 2014-2015
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A. Sinatra and K. Van Houcke

1 Derivation of the hydrodynamic equations
We have derived the time-dependent Gross-Pitaevskii equation, which describes a Bose-condensed atomic gas. Using
U = /N¢, one has
h2
ih O (7,t) = —2—A+U(F)+g\\I/(F,t)|2 (7). (1)
m
with ¢ the condensate wave function (which is supposed to be pure), N the number of atoms, g the coupling constant

characterising the interactions between the atoms, and U an external trapping potential.
We will rewrite this equation in its hydrodynamic form by taking

U = \/ﬁeiS/h (2)
with p the density and
., gradS
U= 3)

the velocity field of the superfluid.

1.1 Continuity equation
In quantum mechanics the probability current is defined as
- h -
1= U*grad¥ — c.c.} . (4)
The Schrodinger equation is such that it conserves the probability :
A W> +div[j]=0. (5)

1. Show that j = p@ by using Eqgs. (??),(??) and (??).
2. Start from Eq. (??) and derive the continuity equation for the superfluid.

1.2 Euler equation

We insert Eq. (??) in the non-linear Schrédinger equation.

1. Show that the imaginary part of Eq. (?7) gives the continuity equation. To do so, express first the kinetic energy
term —h2AW/(2m) as a function of :

Ayp, (gradp) - (gradS), AS, (grad S)?
and use the formulas given at the end.
2. Show that the real part of Eq. (??) reads

T I B APl
mo; U + grad [va +U + pg — %W =0 (6)
3. Show that )
grad [2m112] = m(7- grad)? (7)

and hence one gets the convective derivative of /.



4. The term in A/p/\/p is negligible for a condensate in the Thomas-Fermi limit, and so one gets
m |8, + (7- grad) | 7 = —grad [U + py] (8)
5. Give an interpretation to each of the terms of this equation. In particular, calculate the free energy of the gas in

the Thomas-Fermi approximation for U = 0 (and T = 0), and rewrite the Euler equation such that the pressure
term of the gas appears explicitly.

Linearisation of the equations and the speed of sound
1. Suppose that the trapping potential is perturbed weakly compared to its stationary value :
U(7,t) = Up(F) + U (7, 1). 9)

This perturbation causes small deviations of the density and velocity field of the gas with respect to their
stationary values :

!
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) = po(r) +dp(r,t) (10)

G
1) = 04 00(F ). (11)
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By neglecting the non-linear terms in dp and ¢ in the Euler equation and the continuity equation, derive two
linear evolution equations for §p and dv.

2. Take the time derivative of the linear equation for dp. Show that one can eliminate ¢ in the resulting equation.
On should find a closed relation for dp.

3. We now look at times after the perturbation has been applied to the gas such that dU(# ¢) = 0 around the
position 7. Show that the density perturbation induced in the gas propagates according to

2 —
9%0p 4o [9,00(7“)

o2 - grad&p} =0. (12)

4. If the condensate at rest would have a uniform density pg, what would be the type of waves that propagate
through the gas because of the perturbation U 7 Specify the dispersion relation of these waves. Express the
velocity c¢ of these waves in terms of py and g.

5. Numerical application : calculate the velocity ¢ for a gas of 2*Na atoms with density 4 x 102°/m3. One has
g=1.1x1075% in SI units. (1 u.m.a. = 1,56 x 10~27kg).
Hydrodynamic modes in an isotropic harmonic trap.

1. Consider the case of an isotropic harmonic potential
= [
Uo(7) = DU (13)

The density pg of the gas at rest satisfies po(7)g + Up(7) = p with p the chemical potential of the gas (one finds
the Thomas-Fermi limit again). Write the position variables in units of A;, r; = Aju;, @ = 1,2, 3, and derive that
propagation equation (??) becomes

0% f(u 2 0 0
e 0=t s <o (14

w
2
i=1,2,3
with u? = u? + ud + u3.
2. Since the gas has a finite volume the eigenfrequencies € of the modes of the propagation equation (??) form a

discrete set. Which eigenvalue equation must be satisfied by all eigenfrequencies Q2?7 Use the reduced form (?7)
of the propagation equation.



3. We look for a solution of the eigenvalue equation of the form
f(@) = Fi(u)Y™(0,9) (15)

where u is the modulus of @, the angles 6, ¢ are the polar and azimuthal angles of the spherical coordinates,
and where Y,(6, ¢) are the spherical harmonics. Which property of the system allows us to use this form ? Get
the eigenvalue equation for Fj(u). We remind that the action of the laplacian on a function f of the form (?7?)
is given by :
L 0Pf(u,0,¢)  20f(ub,6) I1+1),
ap) = Hhe) | 20000.0) W0AD pq, (16)
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4. We look for the solution Fj(u) by writing it as an expansion in the variable v :
Fi(u) = u(ag + agu® + ... 4+ agpu®* +...) (17)

with s a positive integer. When one inserts this form into the eigenvalue equation for F;(u), one should ensure
that a term in u*~2 should not appear. Derive from this that s = [.

5. Establish following recurrence relation for the coefficients agr by enforcing the disappearance of the coeflicient
of the term in u!*2 :

agkyo[(l+2k+2)(1+ 2k +1) +2(1+ 2k +2) —I(l+1)] =

ask (l+2k)(l+2k—1)+4(l+2k)—l(l+1)—2%§ . (18)

6. One can show that the series diverges for u = 1 if there are an infinite number of non-zero coefficients agy. Explain
why this is unacceptable physically. One must thus have a finite number of coefficients that are non-zero. Let’s
call n the smallest of the indices k such that aspyo = 0. Derive that

0 =w?(2n® +2nl+3n +1). (19)

7. Calculate the frequency of the breathing mode n = 1, [ = 0 and the dipolar mode n = 0, [ = 1 as a function of
w.

4 Formulas

div(b@) = a-gradb+ bdiva (20)
grad (@-@) = 2(@-grad)d+2a x (rotad) (21)
rot (gradb) = 0 (22)



