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1 Derivation of the hydrodynamic equations
We have derived the time-dependent Gross-Pitaevskii equation, which describes a Bose-condensed atomic gas. Using
Ψ =

√
Nφ, one has

i ~ ∂tΨ(~r, t) =

[
− ~2

2m
∆ + U(~r) + g|Ψ(~r, t)|2

]
Ψ(~r, t) . (1)

with φ the condensate wave function (which is supposed to be pure), N the number of atoms, g the coupling constant
characterising the interactions between the atoms, and U an external trapping potential.
We will rewrite this equation in its hydrodynamic form by taking

Ψ =
√
ρ eiS/~ (2)

with ρ the density and

~v =
~gradS
m

(3)

the velocity field of the superfluid.

1.1 Continuity equation
In quantum mechanics the probability current is defined as

~j =
~

2im

[
Ψ∗ ~gradΨ− c.c.

]
. (4)

The Schrödinger equation is such that it conserves the probability :

∂t|Ψ|2 + div[~j ] = 0 . (5)

1. Show that ~j = ρ~v by using Eqs. (??),(??) and (??).
2. Start from Eq. (??) and derive the continuity equation for the superfluid.

1.2 Euler equation
We insert Eq. (??) in the non-linear Schrödinger equation.

1. Show that the imaginary part of Eq. (??) gives the continuity equation. To do so, express first the kinetic energy
term −~2∆Ψ/(2m) as a function of :
∆
√
ρ , ( ~grad ρ) · ( ~gradS) , ∆S , ( ~gradS)2

and use the formulas given at the end.
2. Show that the real part of Eq. (??) reads

m∂t~v + ~grad
[

1

2
mv2 + U + ρg − ~2

2m

∆
√
ρ

√
ρ

]
= 0 (6)

3. Show that
~grad
[

1

2
mv2

]
= m(~v · ~grad)~v (7)

and hence one gets the convective derivative of ~v.

1



4. The term in ∆
√
ρ/
√
ρ is negligible for a condensate in the Thomas-Fermi limit, and so one gets

m
[
∂t + (~v · ~grad)

]
~v = − ~grad [U + ρg] (8)

5. Give an interpretation to each of the terms of this equation. In particular, calculate the free energy of the gas in
the Thomas-Fermi approximation for U = 0 (and T = 0), and rewrite the Euler equation such that the pressure
term of the gas appears explicitly.

2 Linearisation of the equations and the speed of sound
1. Suppose that the trapping potential is perturbed weakly compared to its stationary value :

U(~r, t) = U0(~r ) + δU(~r, t). (9)

This perturbation causes small deviations of the density and velocity field of the gas with respect to their
stationary values :

ρ(~r, t) = ρ0(~r ) + δρ(~r, t) (10)
~v(~r, t) = ~0 + δ~v(~r, t). (11)

By neglecting the non-linear terms in δρ and δ~v in the Euler equation and the continuity equation, derive two
linear evolution equations for δρ and δ~v.

2. Take the time derivative of the linear equation for δρ. Show that one can eliminate δ~v in the resulting equation.
On should find a closed relation for δρ.

3. We now look at times after the perturbation has been applied to the gas such that δU(~r, t) = 0 around the
position ~r. Show that the density perturbation induced in the gas propagates according to

∂2δρ

∂t2
− div

[
gρ0(~r )

m
~grad δρ

]
= 0. (12)

4. If the condensate at rest would have a uniform density ρ0, what would be the type of waves that propagate
through the gas because of the perturbation δU ? Specify the dispersion relation of these waves. Express the
velocity c of these waves in terms of ρ0 and g.

5. Numerical application : calculate the velocity c for a gas of 23Na atoms with density 4 × 1020/m3. One has
g = 1.1× 10−50 in SI units. (1 u.m.a. = 1, 56× 10−27kg).

3 Hydrodynamic modes in an isotropic harmonic trap.
1. Consider the case of an isotropic harmonic potential

U0(~r ) =
1

2
mω2r2. (13)

The density ρ0 of the gas at rest satisfies ρ0(~r )g+U0(~r ) = µ with µ the chemical potential of the gas (one finds
the Thomas-Fermi limit again). Write the position variables in units of λi, ri = λiui, i = 1, 2, 3, and derive that
propagation equation (??) becomes

∂2f(~u, t)

∂t2
− ω2

2

∑
i=1,2,3

∂

∂ui

[
(1− u2)

∂

∂ui
f(~u, t)

]
= 0 (14)

with u2 = u21 + u22 + u23.
2. Since the gas has a finite volume the eigenfrequencies Ω of the modes of the propagation equation (??) form a

discrete set. Which eigenvalue equation must be satisfied by all eigenfrequencies Ω ? Use the reduced form (??)
of the propagation equation.
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3. We look for a solution of the eigenvalue equation of the form

f(~u ) = Fl(u)Y m
l (θ, φ) (15)

where u is the modulus of ~u, the angles θ, φ are the polar and azimuthal angles of the spherical coordinates,
and where Y m

l (θ, φ) are the spherical harmonics. Which property of the system allows us to use this form ? Get
the eigenvalue equation for Fl(u). We remind that the action of the laplacian on a function f of the form (??)
is given by :

∆f(~u ) =
∂2f(u, θ, φ)

∂u2
+

2

u

∂f(u, θ, φ)

∂u
− l(l + 1)

u2
f(~u ). (16)

4. We look for the solution Fl(u) by writing it as an expansion in the variable u :

Fl(u) = us(a0 + a2 u
2 + . . .+ a2k u

2k + . . .) (17)

with s a positive integer. When one inserts this form into the eigenvalue equation for Fl(u), one should ensure
that a term in us−2 should not appear. Derive from this that s = l.

5. Establish following recurrence relation for the coefficients a2k by enforcing the disappearance of the coefficient
of the term in ul+2k :

a2k+2[(l + 2k + 2)(l + 2k + 1) + 2(l + 2k + 2)− l(l + 1)] =

a2k

[
(l + 2k)(l + 2k − 1) + 4(l + 2k)− l(l + 1)− 2

Ω2

ω2

]
. (18)

6. One can show that the series diverges for u = 1 if there are an infinite number of non-zero coefficients a2k. Explain
why this is unacceptable physically. One must thus have a finite number of coefficients that are non-zero. Let’s
call n the smallest of the indices k such that a2k+2 = 0. Derive that

Ω2 = ω2(2n2 + 2n l + 3n+ l). (19)

7. Calculate the frequency of the breathing mode n = 1, l = 0 and the dipolar mode n = 0, l = 1 as a function of
ω.

4 Formulas

div (b~a) = ~a · ~grad b+ b div~a (20)
~grad (~a · ~a) = 2 (~a · ~grad)~a+ 2~a× ( ~rot~a) (21)
~rot ( ~grad b) = 0 (22)
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