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Throughout the whole exam we consider a 1D gas of N non-relativistic spinless bosons of mass m. The gas is confined
in a box [0, L] and we consider periodic boundary conditions.
The system is described by the Hamiltonian

Ĥ0 =

N∑
i=1

p̂2i
2m

+
1

2

∑
1≤i 6=j≤N

V (x̂i − x̂j) (1)

where p̂i is the momentum operator of the i-th particle, x̂i is the position operator and V (x̂i − x̂j) the interaction
potential. We assume that the system is in thermal equilibrium.

1 Effect of dimensionality on Bose-Einstein condensation
We will show that the dimensionality of space has an important impact on the phenomenon of Bose-Einstein conden-
sation. More specifically, for one-dimensional systems there is no condensation in the thermodynamic limit.
In this section, we consider an ideal gas, V (x̂i − x̂j) = 0, described by the Hamiltonian

Ĥ0 =

N∑
i=1

p̂2i
2m

(2)

We will describe the system in equilibrium in the grand canonical ensemble with chemical potential µ and temperature
T .

1.1 Saturation of the population of the excited states
1. The eigenstates of the single-particle Hamiltonian are plane waves with wave vector k :

φk(x) =
eikx√
L

(3)

What are the allowed values for k given the periodic boundary conditions ? What are the single-particle eigen
energies εk as a function of k ?

2. Write down the single-particle ground-state wave function φ0 and its energy.
3. Let N ′ denote the total population of all excited states. Express N ′ as a sum of the mean occupation numbers
Nk of the states φk. We remind that Nk = [eβ(εk−µ) − 1]−1.

4. Explain why the value

N ′max =
∑
k 6=0

1

eβ(εk−ε0) − 1
(4)

is an upper bound of N ′.
5. For a large enough system size the introduction of the density of states ρ(ε) allows one to replace the sum over

states by an integral ∑
k

f(εk) →
∫
dε ρ(ε) f(ε) (5)
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Show that for our one-dimensional system

ρ(ε) =
L

π

√
m

2~2
1√
ε

(6)

6. Show that the integral for N ′max obtained in this way diverges. Is this an ultraviolet or an infrared divergence ?
7. We thus need to keep the sum in the calculation of N ′max. To calculate the dominant contribution to the sum we

use the approximation

Nk '
kBT

εk − µ
(7)

(so-called classical field approximation) valid for Nk � 1. Show that one then obtains

N ′max =
L2

λ2dB

π

3
(8)

where λdB =
√

2π~2

mkBT
is the thermal de Broglie wavelength, and where we have used the identity

∑∞
n=1

1
n2 = π2

6 .

8. Let ρ = N/L be the total number density and ρ′ the number density for all the bosons in excited states. Express
ρ′maxλdB as a function of L and explain why there is no Bose-Einstein condensation in the thermodynamic limit,
defined by L→∞, N →∞, ρ = constant, T = constant.

9. Write down the mean occupation number N0 of the lowest energy state φ0 and N1 of the first excited state φ1
in the classical field limit as a function of kBT , |µ| and ε1.

10. Show that N0 � N1 ⇔ |µ| � ε1 ⇔ ρλdB � ρ′maxλdB . One can thus have BEC condensation in a 1D system
with finite size.

1.2 Spatial correlation function
We remind the expression for the correlation function :

g(1)(x, x′) = 〈A〉 with A =

N∑
i=1

|i : x〉〈i : x′| =
N∑
i=1

A(i)

which gives the coherence between x and x′. We have seen that one has in the grand-canonical ensemble :

〈A〉 =
∑
k

Nk〈k|A|k〉 =
∑
k

Nkφ
∗
k(x)φk(x

′)

with |k〉 an eigenstate of the single-particle Hamiltonian, ĥ1|k〉 = εk|k〉.
11. Express g(1)(x, x′) as a sum over k, as a function of εk, µ, x, x′ and kBT .
12. For L� λdB and in the classical field limit we give the result (you are not asked to prove it)

g(1)(x, x′) = ρe−|x−x
′|/lC with lC =

ρλ2dB
2π

(9)

Deduce from this result that the coherence length lC is infinitely small compared to the size of the system in the
thermodynamic limit.

13. Show that for a degenerate system, ρλdB � 1, one has a coherence length lC � λdB . How does then lc in this
regime compare to the coherence length of a non-degenerate gas.

14. Show that for a finite-sized system ρλdB � ρ′maxλdB implies lC � L.

2 Superfluidity and condensation of the ideal gas
In this section we consider the ideal gas (2) and we study the response of the system to a moving perturbation. We wish
to point out the difference between the superfluid fraction and the condensed fraction. We focus on the degenerate
regime ρλdB � 1 ⇔ eβµ → 1−. We consider again the “classical field approximation” for the occupation numbers
which is good in the limit Nk � 1 :

Nk '
kBT

εk − µ
. (10)

Again, sums cannot be replaced by integrals.



2.1 Calculation of the normal fraction fn

We add a stirring potential to the Hamiltonian (2) that breaks translational invariance and moves with a velocity vrot :

Ŵ (t) =

N∑
i=1

W(x̂i − vrott). (11)

The normal fraction fn for the system with finite size is defined as :

fn = lim
vrot→0

lim
W→0

〈P̂ 〉
Nmvrot

(12)

where we have introduced the total momentum operator of the gas :

P̂ =

N∑
i=1

p̂i. (13)

and the thermal average 〈P̂ 〉 is taken in the presence of the perturbation.
To eliminate the time dependence of the stirring potential, it is convenient to introduce a change of reference frame.
We introduce the time-dependent unitary transformation

Û(t) = eiP̂ vrott/~ (14)

This unitary transformation causes the state vector of the system |ψ̃(t)〉 ≡ Û(t)|ψ(t)〉 to evolve according to the
Hamiltonian

H̃ = Ĥ0 + Ŵ (t = 0)− P̂ vrot (15)

where Ĥ0 is defined by (2) and Ŵ (t) is defined by (11).
The equilibrium state of the gas in the presence of the perturbation is described by the density operator in the
grand-canonical ensemble :

σ̂ =
1

ZGC
e−β(H̃−µN̂) with H̃ given by (15) and ZGC = Tr e−β(H̃−µN̂) (16)

In the calculation of fn we can directly take the limit W → 0 in σ̂ and hence in H̃.

15. Write down the single-particle wave functions 〈x|k〉 for the eigenstates of the Hamiltonian H̃.
16. Write down the corresponding single-particle energies εk.
17. What are the allowed values of the wave vector k that satisfy the periodic boundary conditions ?
18. Express the mean value 〈P̂ 〉 as a function of the mean occupation numbers Nk of the single-particle eigenstates.
19. Use the classical field approximation (10) to express the mean particle numbers 〈N̂〉 ≡ N as a sum over all

states. Show that

N =
mL2kBT

2π2~2
∑
n∈Z

1

(n− ṽ)2 + ν20
, (17)

with ṽ = vrot/v1 and ν20 = −µ/E1 − ṽ2 with v1 and E1 respectively the velocity and energy of a particle in the
first excited state of Ĥ0 in the box.

20. Use the Poisson summation formula : ∑
n∈Z

f(n) =
∑
n∈Z

f̂(2πn), (18)

where f(x) is a function and f̂(q) its Fourier transform, and show that

N =
mL2kBT

~2
1

2πν0

sinh(2πν0)

cosh(2πν0)− cos(2πṽ)
(19)

We remind that the Fourier transform of
f(x) =

1

π

a

a2 + x2
(20)

is
f̂(q) = e−a|q| . (21)

for a > 0.



21. In a similar way one can obtain following result (don’t prove this) :

〈P̂ 〉 = Nmvrot −
mLkBT

~
sin(2πṽ)

cosh(2πν0)− cos(2πṽ)
. (22)

Show that the normal fraction fn defined in (12) is given by

fn = 1− ν0
sinh(2πν0)

. (23)

2.2 Comparison with the non-condensed fraction fnc

22. Use the previous result (19) for N to calculate the non-condensed fraction in the limit vrot = 0

fnc =
N −N0

N
(24)

23. In view of the results of the first part, what is the physical meaning of the limit ν0 � 1 ?
24. Show that in this limit to second order in ν0 one finds a very simple relation between fn and fnc which indicates

that the condensate of the 1D ideal gas is not entirely superfluid.

3 The interacting gas
We consider an inter-particle interaction potential V with zero range

V (xi − xj) = gδ(xi − xj) (25)

where δ is the Dirac distribution and g > 0 is the coupling constant.
We will calculate the normal fraction of the interacting gas in a regime in which one can use the Bogoliubov approach.
We admit that the Bogoliubov approach remains valid in the absence of a true condensate provided that the system
is (i) in the weakly interacting regime :

ρξ =

√
~2ρ
mg
� 1 where ξ is the healing length (26)

and (ii) at a low enough temperature for the density fluctuations to be small.

kBT � kBTfd = ρg × ρξ =
√

~2ρ3g
m

(27)

25. Show that in the regime of weak interactions (26) one always has kBTfd � kBTdeg where kBTdeg is the tempera-
ture for degeneracy which corresponds to ρλdB = 1. The fact whether there is a real condensate or not depends
on the system size (see first part of this exam).

We will show that the 1D case is very peculiar because the statistical weight in equilibrium of having a spontaneously
moving condensate (i.e. even in the absence of the stirring potential) is not negligible.
To calculate the normal fraction we use a result which was proven in one the tutorials

fn =
〈P̂ 2〉0
NmkT

(28)

where the index 0 indicates that the mean is taken in the thermal state in absence of the stirring potential. In what
follows we will calculate this mean value (28). We will calculate it first for a moving condensate with wave vector k0
(the condensate wave function is a plane of wave vector k0), and then take the average over all possible values of k0.

3.1 Calculation of the main value of P̂ 2 for a moving condensate
In this part we use the Bogoliubov approach which is obtained for a moving condensate with wave vector k0.

k0 =
2πn

L
= wave vector of the moving condensate (29)



After introducing the appropriate quasi-particle modes the Hamiltonian takes the form 1

ĤBog = E[φ] +
∑
k 6=0

εk b̂
†
k b̂k, (30)

where b̂k and b̂†k are bosonic quasi-particle operators such that [b̂k, b̂
†
k] = 1, n̂k ≡ b̂†k b̂k is the number operator for

quasi-particles, and E[φ] is the Gross-Pitaevskii energy functional.

E[φ] = N

∫
dx

[
~2

2m

∣∣∣∣dφdx
∣∣∣∣2 + g

2
N |φ|4

]
. (31)

The quasi-particle energies εk differ from the energies ε(0)k obtained for the case when the condensate is at rest. In
particular one has

εk = ε
(0)
k + ~kv0 with v0 =

~k0
m

(32)

In thermal equilibrium the system is described by the density operator

σ̂k0Bog =
e−βĤBog

Zk0
(33)

26. Calculate the partition function Zk0 = Tr
[
e−βĤBog

]
as a function of β, εk and E[φ].

27. Show that
〈b̂†k b̂k〉 ≡ nk = f(εk) with f(ε) =

1

eβεk − 1
. (34)

Hint : consider the derivate of the partition function Zk0 with respect to Ak ≡ βεk.
28. Show that

〈n̂2k〉 − n2k = nk(nk + 1) (35)
〈n̂kn̂k′〉 − nknk′ = 0 for k 6= k′ (36)

Hint : consider the second derivatives of the partition function Zk0 with respect to Ak ≡ βεk and Ak′ ≡ βεk′ .
29. In case the condensate is at rest we have shown in one of the tutorials that the total momentum operator of the

gas in the Bogoliubov approximation is given by

P̂ (0) =
∑
k 6=0

~kb̂†k b̂k (37)

Show by using Galilean invariance that the total momentum operator of the gas with a condensate moving with
wave vector k0 (29) takes the form

P̂ (k0) = ~k0N +
∑
k 6=0

~kb̂†k b̂k (38)

30. Express the mean value of (P̂ (k0))2 over the thermal distribution (33) as a function of nk of (34).
31. We assume now that v0 � c, with c the sound velocity c2 = ρg

m . Expand the nk in the expression for 〈(P̂ (k0))2〉
obtained in the previous question up to first order in v0. Use the relation

f ′(ε
(0)
k ) = −βn(0)k (1 + n

(0)
k ) (39)

where the function f(ε) is defined by (34), f ′ is its derivative and

n
(0)
k = f(ε

(0)
k ) (40)

32. Rewrite the result of the previous question in such a way that following quantity appears :

f (0)n ≡
∑
k 6=0 n

(0)
k (n

(0)
k + 1)~2k2

NmkBT
(41)

1. We have left out a constant, which is a quantum correction to the ground-state energy, but which does not depend on k0 and thus
does not play any role here.



33. Up to terms of order O[(f
(0)
n )2] show that the result can be written as

〈(P (k0))2〉 = NmkBTf
(0)
n +N2

s ~2k20. (42)

where we have introduced the number of bosons in the superfluid fraction for the condensate at rest

Ns = N(1− f (0)n ) (43)

34. By taking k0 = 0 in (42) give the physical meaning of f (0)n defined in (41).

35. Would it be compatible with Bogoliubov theory to include higher order terms in f (0)n ?

3.2 Statistical mixture of moving condensate and calculation of the ‘real’ mean value
of P̂ 2

In the so-called multi-valley Bogoliubov approach one approximates the true density operator of the gas in thermal
equilibrium with a statistical mixture of moving condensates, each moving condensate being dressed by its Bogoliubov
modes in thermal equilibrium. The statistical weight of the condensate with wave vector k0 is given by the partition
function Zk0 calculated in the previous subsection (question 26).
34. We remind that the wave function of the condensate is a normalised plane wave with wave vector k0. Calculate

the Gross-Pitaevskii energy E[φ] (31) of the condensate as a function of N , ~, k0, m, the coupling constant g
and the density ρ.

35. Express the ratio Zk0/Z0 of the wave functions of a moving condensate and a condensate at rest as a function
of k0, β, εk and ε(0)k .

36. Show that this ratio can be written as :

Zk0
Z0

= e−βN~2k20/(2m) exp

−∑
k 6=0

ln
[
1 + n

(0)
k

(
1− e−β~kv0

)] (44)

37. Expand the expression between curly brackets {. . .} in (44) up to second order in v0. We remind that ln(1+x) =
x − x2/2 + O(x3) for x → 0. Verify that the first order contribution is zero after summing over k and that the
inclusion of the second order contribution leads to

Zk0
Z0

= e−βNs~2k20/(2m), (45)

by using the result (41) and the definition (43).
38. We now go to the thermodynamic limit, N → +∞ while ρ = N/Ld constant with d the dimensionality of space.

Show (in an easy way) that in one dimension the statistical weight of the moving condensates is not negligible
in this limit. This shows that the condensate can spontaneously be moving in thermodynamical equilibrium.

39. Does the previous reasoning also work in three dimensions ?
40. We now return to 1D. Average the result (42) over the statistical weight (45). We now take the thermodynamic

limit so that we can replace the sum over k0 by an integral. We remind that∫ +∞
−∞ dxx2e−x

2/(2σ2)∫ +∞
−∞ dx e−x2/(2σ2)

= σ2 (46)

for σ > 0. Derive the ‘true’ value of 〈P̂ 2〉, and the ‘true’ value of the normal fraction in 1D according to the
definition (28). This result is very simple..


