
“Quantum Fluids" exam, M1 ICFP 2014-2015

A. Sinatra and K. Van Houcke

Total time : 3 hours, calculators and cell phones are not allowed

1 Part I : Phase dynamics in a bosonic Josephson junction

1.1 The relative phase distribution
In the course we have introduced so-called “phase states" for which the relative phase of two superfluids is
well-defined. The state |ϕ〉 defined in the following way has a relative phase of 2ϕ :

|ϕ〉 = |N :
1√
2

(
eiϕφa + e−iϕφb

)
〉 (1)

where we have put N particles in the same superposition of the two wave functions φa et φb with a relative
phase equal to 2ϕ. We assume N to be even in the whole exercise.

φa φb

Figure 1 – Doubl-well potential

The wave functions φa and φb respectively represent de ground state of a Bose-Einstein condensate in the left
and right well of a double-well atomic trapping potential. To describe the system at zero temperature (which we
assume throughout this exercise), we will restrict ourselves to these two modes. The Fock states |Na, Nb〉 having
exactly Na particles in the wave function φa and Nb particles in the wave function φb thus form a complete
basis for the considered Hilbert space.
By passing through second quantisation notation (a† and b† create a particle in the wave function φa and φb)
one can express the phase state as a superposition of the Fock states

|ϕ〉 =
1√
N !

(
eiϕa† + e−iϕb†√

2

)N
|0〉 =

N∑
Na=0

cNae
i(Na−Nb)ϕ|Na, Nb〉 (2)

where Nb = N −Na and the coefficients cNa =
√

1
2N

(
N
Na

)
involve the binomial coefficients.

1. Let n̂ = N̂a − N̂b be the difference operator of the numbers of particles in the two wells. Show that

eiαn̂|ϕ〉 = |ϕ+ α〉 (3)

What can one conclude from this relation ?
2. In contrast to what we did in the course, we will not define a phase operator here. Instead we will introduce

a phase distribution for the different states of the two condensates. Show first that

〈ϕ|ϕ′〉 = [cos(ϕ− ϕ′)]N (4)

What can one conclude for the “width of the phase state" in the limit of large N ? In other words, what
is the dependence of 〈ϕ|ϕ′〉 on (ϕ− ϕ′) for large N ?
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3. Each state with N particles of the two condensates can be expressed in the over-complete basis of phase
states

|ψ〉 = A
∫ π/2

−π/2

dϕ

π
c(ϕ)|ϕ〉 (5)

where A is a normalisation constant.
Show that in the limit of large N the coefficients c(ϕ) are given by the formula

c(ϕ) = A−1
N∑

Na=0

(cNa)−1e−i(Na−Nb)ϕ〈Na, Nb|ψ〉 (6)

Use the relation ∑
m∈Z

eimx = 2π δ(x) pour x ∈ [−π, π] (7)

4. By approximating 〈ϕ|ϕ′〉 '
√

2π/Nδ(ϕ− ϕ′) for large N , show that in order to have∫ π/2

−π/2

dϕ

π
|c(ϕ)|2 = 1 (8)

the normalisation constant A has to be

A '
(
Nπ

2

)1/4

(9)

We will interpret |c(ϕ)|2 as a probability distribution for the relative phase between the two condensates.
5. By using the asymptotic expression of the binomial coefficients for large N(

N

Na

)
' 2N√

πN/2
e−

(Na−Nb)
2

2N (10)

calculate the distribution P (n) of the relative number of particles n = (Na −Nb) in the phase state (2).
Calculate the mean value of n and the standard deviation.

1.2 Blurring of the phase after interruption of the tunnel coupling
Suppose that, thanks to the tunneling effect, the two condensates are initially prepared in a state |ψ(t = 0)〉
where the distribution of the relative phase is given by a Gaussian with width ∆ϕ

c(ϕ, t = 0) = G0 exp

(
− ϕ2

4 ∆ϕ2

)
with

1√
N
� ∆ϕ� 1 (11)

and G0 a constant.
1. By neglecting the width of the phase state with respect to ∆ϕ since ∆ϕ � 1/

√
N , show that the choice

(11) corresponds to taking a Gaussian distribution for the relative number of particles

〈Na, Nb|ψ(0)〉 = N exp

(
− (Na −Nb)2

4 ∆n2

)
(12)

with ∆n∆ϕ = 1/2. One has to change the sum into an integral for which one takes the boundaries to
infinity. You can use ∫ ∞

−∞
dx e−ax

2+bx =

√
π

a
eb

2/(4a) for Re(a) > 0 (13)

2. At t = 0 one interrupts the tunnel coupling between the two condensates by, for example, increasing the
barrier between the two wells. As we will show later in section 1.4, the system initially in the state |ψ(0)〉
will then evolve according to the Hamiltonian

H =
~χ
4

(N̂a − N̂b)2 (14)

where one has assumed that the interactions between the atoms are repulsive.

Express the coefficient 〈Na, Nb|ψ(t)〉 as a function of 〈Na, Nb|ψ(0)〉 and calculate |c(ϕ, t)|2 up to a norma-
lisation constant by changing the summing into an integral and taking the integration limits to infinity.
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3. Show that the phase distribution |c(ϕ, t)|2 remains gaussian and that the variance ∆ϕ2 as a function of
time takes the form

∆ϕ2(t) = ∆ϕ2(0) + α∆n2t2 (15)

Give the expression for the coefficient a.
4. Point out the correspondence between our problem and the problem of spreading of a gaussian wave packet

for a free particle. What corresponds in our case to “effective mass" of the particule ?
Evaluate the blurring time of the relative phase tbr after which

∆ϕ2(tbr) ' 1 (16)

as a function of χ and ∆n2.

1.3 Evolution at long times : Schrödinger cats
In this section we take as initial state a phase state, defined in section 1.1

|ψ(0)〉 = |ϕ〉 (17)

Suppose that immediately after the preparation of the state (17) at t = 0 one interrupts the tunnel coupling
such that the system evolves according to the Hamiltonian (14) :

|ψ(t)〉 = e−i
χ
4 n̂

2t|ψ(0)〉 with n̂ = N̂a − N̂b (18)

1. Show that for n even one has the identity

e−i
π
8 n

2

=
1√
2

(
e−i

π
4 + ei

π
2 (n+ 1

2 )
)

(19)

2. Show that at the time tc
tc =

π

2χ
(20)

the initial phase state evolves into a Schrödinger cat state which is a superposition of two states with
different phase. Remember that N is even.

3. Represent schematically the distribution of the phase |c(ϕ)|2 with ϕ ∈ [−π2 ,
π
2 [ at three times : t = 0,

t = tc et t = 2tc. Which state does one obtain at t = 2tc ?

1.4 Non-linear Hamiltonian and numerical application
In this section we derive the expression (14) for the Hamiltonian in case of two condensates without tunnel
coupling and in the presence of repulsive interaction between the atoms. One supposes that the two wells a
and b are identical and one calls Ha(N̂a) the Hamiltonian of a pure condensate with Na atoms in well a and
similarly for b.

1. Explain why in absence of the tunnel coupling one can write the following for the system with the two
condensates

H(N̂a, N̂b) = Ha(N̂a) +Ha(N̂b) (21)

2. One considers the states |ψ〉 of the two condensates with the same average number of particles in each
well and with weak relative fluctuations in the particle number

∆Na
〈Na〉

=
∆Nb
〈Nb〉

� 1 and 〈Na〉 = 〈Nb〉 =
N

2
(22)

Carefully show that the two initial states respectively considered in section 1.2 and in section 1.3 satisfy this
constraint, and explain why this remains true at each time when the system evolves with the Hamiltonian
(14).
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3. One expands the Hamiltonian (21) around Na = 〈Na〉 = N/2 and Nb = 〈Nb〉 = N/2 up to order two.
Explain how one gets

H(N̂a, N̂b) = E0 +
~χ
4
n̂2 avec n̂ = N̂a − N̂b (23)

and relate the coefficient χ to a derivative of the chemical potential µa (here µa = µb) of a condensate in
the well a or b.

4. In the Thomas-Fermi limit one has for a harmonic isotropic well with frequency a

µa(Na) =
~ω
2

(
15Na

as
aho

)2/5

(24)

where as is the s-wave scattering length characterising the interaction between two atoms, aho is the
extension of the ground state of the harmonic oscillator in the well, and Na is the number of atoms.

Estimate the time tc (20) at which one obtains a cat for for 〈Na〉 = 〈Nb〉 = 500, as = 5 nm considering

rubidium atoms and ω/(2π)=50 s−1. Remember that aho =
√

~
mω with m the mass of a rubidium atom,

m = 87× 1.66× 10−27kg et ~ ' 10−34 m2 kg s−1.
Estimate also the blurring time tbr (16) by taking ∆n(0) =

√
N .

2 Part II : Fluctuations in a gas of bosons cut into two pieces

One considers an ideal gas of bosons with mass m and trapped in an isotropic harmonic potential in three
dimensions. The one-particle Hamiltonian takes the form

ĥ1 = −~2∆

2m
+

1

2
mω2r̂2 . (25)

One cuts the trapped gas into two (to the left and to the right of the plane x = 0) and one measures the
fluctuations of the difference of particle number NG − ND (see Figure 2). One describes the system in the
grand-canonical ensemble.

G D

x

Figure 2 – One cuts the trapped gas into two (to the left ( gauche) and to the right (droite) of the plane x = 0)
and one measures the fluctuations of the difference of particle number NG −ND.

2.1 Exact solution
1. The one-particle operator for which the mean value gives the spatial density of the gas can be written as

Â(r) =
∑
i

|i : r〉〈i : r| (26)
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where the index i sums over all the particles of the system. It is implied that |i : r〉〈i : r| is the operator
|r〉〈r| for the particle i and the identity for all the other particles.

Express the operators N̂G et N̂D that count the number of particles in the half-space to the left and to
the right of the plane x = 0 as integrals of Â(r).

2. Explain why 〈NG −ND〉 = 0.
3. The correlation functions g(1)(r, r′) and g(2)(r, r′), respectively involving one-particle and two-particle

operators, are defined by

g(1)(r, r′) =

〈∑
i=1

|i : r 〉〈i : r′|

〉
(27)

g(2)(r, r′) =

〈∑
i=1

∑
j 6=i

|i : r 〉〈i : r| ⊗ |j : r′〉〈j : r′|

〉
. (28)

Physically g(1)(r, r′) represents the spatial coherence between the points r and r′ in the gas, while g(2)(r, r′)
gives the probability to find a particle at r and one at r′.
Show that

Var(NG −ND) = 〈N〉+ 2

[∫
G

d3r

∫
G

d3r′ g(2)(r, r′)−
∫
G

d3r

∫
D

d3r′ g(2)(r, r′)

]
(29)

where
∫
G

and
∫
D

denote the integrals over the half-space on the left and on the right, and where N̂ =

N̂G + N̂D is the total number operator.
4. Let {|λ〉} be the eigen basis of ĥ1 with ĥ1|λ〉 = ελ|λ〉. One can show that in the grand-canonical ensemble

the mean value of a one-particle operator Â =
∑
iA(i) is given by

〈A〉 =
∑
λ

〈Nλ〉〈λ|A|λ〉 (30)

with 〈Nλ〉 the average occupation number of the state λ.
Show that the spatial density ρ(r) and the function g(1)(r, r′) can be obtained by taking the matrix
elements of the one-body density operator ρ̂(1) which was introduced in the course

ρ̂(1) =
1

z−1eβĥ1 − 1
(31)

with z = eβµ the fugacity.
5. In the grand-canonical ensemble one can show that

g(2)(r, r′) = g(1)(r, r′)g(1)(r, r′) + g(1)(r, r)g(1)(r′, r′) (32)

We will then calculate the function g(1)(r, r′).
Express g(1)(r, r′) as a power series in the fugacity z.

6. The expression

g
(1)
1P (r, r′) = 〈r′|e

−βĥ1

Z
|r〉 (33)

represents the function g(1) for a single particle in a harmonic potential with Z the partition function for
one particle.
(a) Calculate Z for a particle in an isotropic harmonic potential in 3D. Express the result as a function

of
η ≡ β~ω =

~ω
kBT

(34)
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(b) We give the expression for the function g(1)1P for one particle in a harmonic potential (see Landau vol.
V, § 30)

g
(1)
1P (r, r′) =

(
1√

2π∆x

)3

e
− 1

2∆x2

(
r + r′

2

)2

e
−∆p2

2~2
(r− r′)2

(35)

with

∆x =

√
~
mω

1√
2thη2

; ∆p =
√
~mω

1√
2thη2

(36)

Use these results to express the function g(1)(r, r′) of the system with 〈N〉 particles as a power series
in the fugacity z.

7. After redefining the fugacity z → z̃ in a convenient way, show that

〈N〉 =

∞∑
l=1

z̃l

(
1 + coth lη2

2

)3

(37)

Explain why the new definition of the fugacity is useful.
In a similary way (you are not asked to do this) one finds :

Var(NG −ND) = 〈N〉+

∞∑
s=1

csz̃
s (38)

with

cs =

s−1∑
l=1

1− 4

π
arctan

[
th
lη

2
th

(s− l)η
2

]1/2
(
1− e−ηs

)3 (39)

et c1 = 0.

The equations (37), (38) and (39) constitute the exact solution of our problem. We will use these results later
in section 2.3.

2.2 Pure condensate regime T = 0

At zero temperature all the particles are in the condensate. We thus have 〈N0〉 = 〈N〉 et 〈Nλ6=0〉 = 0.

1. Starting from the equations (30) and (32) calculate the functions g(1)(r, r′) and g(2)(r, r′) in the grand-
canonical ensemble in this regime as a function of the ground-state wave function φ0.

2. Calculate Var(NG −ND) in this regime.

2.3 Approximate formulas for kBT � ~ω
In this part we consider the limit of large number of particles and a temperature kBT � ~ω, which is typically
the case experimentally. We can thus derive simple approximate formulas which will allow us to make analytic
predictions and understand the physics of the problem.

2.4 Non-condensed regime T > Tc

In this subsection we will see that for T > Tc the variance of the difference of particle numbers on the left and
on the right is only slightly super-poissonian.

1. In absence of the condensate with N � 1 and kBT � ~ω, one can expand the expressions for 〈N〉 and
Var(NG −ND) by taking the limit η → 0 in each term of the sum. Show that to lowest order one obtains

〈N〉 =

(
kBT

~ω

)3

g3(z̃) (40)

with gα(z) =
∑∞
l=1

zl

lα the Bose function with index α.
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2. Derive the expression for the critical temperature Tc for condensation as a function of 〈N〉 and ω.
3. Take the same limit η → 0 in the expression (38) for Var(NG−ND). Keep the dominant order and express

Var(NG −ND)/〈N〉 as a function of z̃ and T/Tc.
4. One has ζ(2)/ζ(3) ' 1.37 with ζ(α) = gα(1) the Riemann function with argument α. Show that for T = Tc

Var(NG −ND)/〈N〉 is slightly bigger than one, so that the variance of the difference of particle numbers
is only slightly super-poissonian.

2.5 Condensed regime T < Tc

In this subsection we will see that for T < Tc the variance of the difference of particle numbers on the left and
on the right is strongly super-poissonian.

1. The exact results (37)-(39) cannot be used easily in the condensed regime because the sums converge very
slowly for z̃ ' 1. Show that one can rewrite these results in following equivalent form

〈N〉 = 〈N0〉+

∞∑
l=1

z̃l

[
−1 +

(
1 + coth(lη/2)

2

)3
]
, (41)

and

Var(NL −NR) = 〈N〉+ c∞〈N0〉+

∞∑
s=1

(cs − c∞)z̃s (42)

where 〈N0〉 is the average number of particles in the condensate and where we have introduced c∞ ≡
lims→∞ cs. One has (you are not asked to show this)

c∞ '
2 ln 2

η
. (43)

2. Show that the term between brackets that appears in the sum in (41) goes to zero for l→∞.
3. In the equation (41) we can now put z̃ = 1 and take the limit η → 0 in each term of the sum. Keep the

leading term in 1/η and show that one finds the usual expression for the condensed fraction

〈N0〉
〈N〉

' 1− T 3

T 3
c

. (44)

4. The same procedure can be used to treat the sum (last term) in (42). The calculation is analogous to the
one in question 3 of the section 2.4. In fact the term containing c∞ is sub-leading in 1/η with respect to
cs. Show that for η → 0 one gets

∞∑
s=1

(cs − c∞) ∼ 〈N〉ζ(2)− ζ(3)

ζ(3)

T 3

T 3
c

(45)

5. The second term in (42) remains to be rewritten by eliminating 〈N0〉 in favour of 〈N〉 and T/Tc. Show
that one thus obtains the following simple formula (valid for T < Tc)

Var(NL −NR) ' 〈N〉
[
1 +

ζ(2)− ζ(3)

ζ(3)

T 3

T 3
c

+ 2 ln 2

(
kBTc
~ω

)(
1− T 3

T 3
c

)
T

Tc

]
. (46)

6. Indicate whether the following statements about the three terms inside the brackets in the expression (46)
and Var(NL −NR) are correct or not :
(a) The first term (i.e. the “1”) is of quantum origin
(b) The first term is present even at T = 0.
(c) The second term is a contribution only from the non-condensed particles.
(d) The second term is smaller than one.
(e) The third term is zero in absence of the condensate.
(f) The third term diverges for T = Tc.
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(g) The third term is zero for T = 0.
(h) The third term involves at the same time the condensed fraction and the non-condensed particles.
(i) For T < Tc the expression for Var(NL −NR) given in (46) is positive.
(j) For fermions one would have the same expression for Var(NL−NR) but with an opposite sign in the

first term.
7. In Figure 3 we show Var(NL−NR) divided by 〈N〉 as a function of T/Tc. By keeping only the third term

between the brackets in (46), estimate for which value of T/Tc Var(NL−NR) is maximum. Compare with
the figure. One has 2−2/3 ' 0.63.

8. Still keeping only the third term between the brackets in (46), express the maximum value of Var(NL−NR)
as a function of ~ω and kBTc.

9. How does this maximum value depend on 〈N〉 ?
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Figure 3 – Variance ofNL−NR (divided by 〈N〉) as a function of the temperature (divided by Tc). 〈N〉 = 13000.
Solid line : exact result. Dashed line : approximation for kBT � ~ω. (The two lines lie almost on top of each
other).
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