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1 The model
We consider a one-dimensional homogeneous gas of N bosons of mass m. The bosons are non-
relativistic, have no spin and interact through a two-body zero-range interaction potential Vij =
gδ(xi − xj), where xi and xj are the positions of the particles and g is a constant assumed to be
negative g < 0. The system is in equilibrium at a temperature T and consists of a box of length L
with periodic boundary conditions.

1.1 Solution via Bethe ansatz in free space

The model of N bosons in 1D which interact through an attractive Dirac potential is integrable via
Bethe ansatz. The solution in free space (without box quantization) is particularly simple and will be
the starting point of our study. One finds that in free space each eigenstate of the system is composed
of a collection of i fragments, with i an arbitrary integer from 1 to N . Each fragment is formed by
a certain number ni of bound atoms (called ni-mers), where ni may vary from 1 to N , and has a
well-defined center-of-mass momentum ki. The energy of the eigenstates becomes

E =

#fragments∑
i=1

[
E0(ni) +

~2k2i
2nim

]
with E0(n) = −

mg2

24~2
n(n2 − 1) (1)

Here E0(n) represents the internal energy of the n-mer and ~2k2i
2nm

its kinetic energy. We shall see that
the interaction energy, though taking into account, does not affect the spectrum. On the one hand,
the integrability imposes the scattering of n-mers to be purely elastic, while the interaction between
n-mers, on the other hand, does not affect the spectrum (1) because the n-mers that scatter are
asymptotically free.

In the following we will give the conditions under which we may use the same spectrum in presence
of the quantization box. To this purpose we will need tools to describe two limiting cases more easily :
the dimer on one hand and the N-mer with N � 1 on the other hand. We will also need a few results
from scattering theory in 1D.

1.2 The dimer

We wish to find a two-body bound state (a dimer) for two atoms in 1D that interact through an
attractive Dirac potential Vij = gδ(xi − xj) with g < 0.
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1. For cold atoms confined to one dimension, the constant g is related to the scattering length a
(this is the 1D equivalent of the s-wave scattering length in 3D) through the relation

g = − ~2

ma
(2)

Rederive the relation (2) between g and a up to a numerical prefactor by dimensional analysis.
Find the equivalent relation in 3D.

2. Write the Schrödinger equation Hφ(x) = Eφ(x) for the wave function φ(x) of the relative
motion of two atoms. One should make a appear in the Hamiltonian and redefine the energy
in a convenient way.

3. φ(x) has to be a continuous function. Explain why φ′(x) is discontinuous at x = 0 in our case.
4. Solve the Schrödinger equation and find the normalised wave function φ(x) of the bound state.
5. Calculate the spatial extension l of the dimer (half-width at 1/e of φ(x) relative to φ(0) ) and

its energy E as a function of a. One should find l = 2a.

1.3 Scattering problem

We still consider the two-body problem, but this time with a positive energy in order to calculate
the scattering amplitude of our attractive Dirac potential.

1. Write the Schrödinger equation Hφ(x) = Eφ(x) for the wave function φ(x) of the relative
motion of two atoms. One makes a appear in the Hamiltonian and one imposes E = ~2k2

m
.

2. We assume the ansatz of an incoming wave and a reflected wave for x < 0, and a transmitted
wave for x > 0 :

φ(x < 0) = Aeikx +Be−ikx ; φ(x > 0) = Ceikx (3)

Write the matching conditions at zero for φ and φ′.
3. Express B and C as a function of A and deduce the expression of the transmission and reflection

coefficients as a function of ka.
4. Derive that the scattering tends to total reflection at low energy ka� 1. As a consequence the

Born regime in 1D is reached at high energy 1
ka
� 1, in contrast to 3D.

5. Comment on the fact that it is not necessary to regularise the Dirac potential in 1D.

1.4 The N-mer with N � 1 in mean-field approximation

We wish to find the ground state of the N -mer with N � 1 in the mean-field approximation. Starting
from the Hamiltonian for N interacting atoms in 1D

H =
N∑
i=1

p2i
2m

+
1

2

∑
i 6=j

gδ(xi − xj) (4)

we consider the variational ansatz

|ψ〉 = |φ〉 ⊗ |φ〉 ⊗ . . .⊗ |φ〉 (5)

and minimise the mean energy E

E = N

∫
R
dx

{
~2

2m

∣∣∣∣dφdx
∣∣∣∣2 + g

2
(N − 1)|φ|4

}
(6)



1. We will factorise a prefactor of E by dimensional analysis. Introducing the function ψ and the
length ξ such that

φ(x) =
1√
ξ
ψ

(
x

ξ

)
(7)

calculate ξ in a way that the kinetic energy and the mean-field energy in (6) have the same
coefficient.

2. Reexpress the energy functional E in the following form

E[φ, φ∗] =
mg2

~2
N(N − 1)2ε[ψ, ψ∗] (8)

(we remind that g < 0) and give the expression of the functional ε[ψ, ψ∗] in which all the
constants have disappeared.

3. To take into account the constraint on the norm of ψ we will minimise the functional

F [ψ, ψ∗] = ε[ψ, ψ∗]− ν
∫
|ψ|2 (9)

where ν is a Lagrange multiplier.

Write the variation δF as function of the variations δψ and δψ∗, and find the differential
equation that is satisfied by the minimising function (or “minimiser”).

4. Show that one can rewrite the equation for the minimiser in the form

ψ′2 + ψ4 − 2|ν|ψ2 = 0 (10)

(one can limits oneself to ψ ∈ R) what is the sign of ν ?
5. Solve equation (10) by quadrature. One has

∀x ∈]1,∞[
d

dx
[arcosh(x)] =

1√
x2 − 1

(11)

6. Starting from the result, reintroducing dimensionfull quantities and approximating N − 1 by
N for N � 1, one finds :
(a) The wave function in mean-field approximation of the N -mer

φ0(x) =
1

2ξ1/2
1

cosh
[
x−x0
2ξ

] (12)

which is a bright soliton.
(b) The chemical potential in mean-field approximation of the N -mer

µcm
0 = −1

8

mg2

~2
N2 (13)

(c) The internal energy of the mean field of the N -mer

Ecm
0 = − 1

24

mg2

~2
N3 (14)



1.5 In a box with periodic boundary conditions

If one introduces a quantization box the problem becomes more involved, though still integrable by
Bethe ansatz. Here we restrict ourselves to a simple limiting case in which the spectrum remains
approximatively of the form (1) with the additional quantization condition.

ki =
2πq

L
with q ∈ Z (15)

1. The first validity condition is that the internal structure and the energy of the bound states
must be only slightly perturbed by the presence of the box. For this one requires that the
extension of the n-mers should be smaller than L.

Using the results of the previous sections, show that for n � 1 the extension of the n-mer is
much smaller than that of the dimer, l. In what follows we can thus restrict ourselves to

L

l
� 1 (16)

We now wish to show that the liquid-gas transition takes place in the non-degenerate regime.
2. Starting from E0(N) calculate the chemical potential µ0 of the N -mer. One neglects 1 compared

to N2.
3. Calculate the Fermi energy EF of a fictitious gas of non-interacting fermions in 1D having the

same density as our gas of bosons as a function of ρ = N/L.
4. Show that

L

l
= π

(
|µ0|
EF

)1/2

(17)

5. Explain why one expects that the critical temperature of the liquid-gas transition is of the
order of (or a fraction of) |µ0|.

6. Taking kBTc ' |µ0|, show that condition (16) implies that the liquid-gas transition takes place
in the non-degenerate regime

ρλ� 1 with λ =

√
2π~2
mkBT

(18)

which will be the second validity condition of our study.
7. A third condition for using the spectrum (1) of the free space is that the energy shifts due to

elastic collisions between n-mers, which are non-zero in the box, are negligible compared to
the kinetic energy of the n-mers. We limit ourselves to clarifying this condition in the purely
atomic phase. Show that the inequality

λ

l
� 1 (19)

guaranties that the scattering between thermal atoms is correctly described by the Born ap-
proximation.

8. Show that the inequality (19) is verified for temperatures of the order of kBTc ∼ |µ0| when
N � 1.



9. Knowing that one is in the Born regime, explain why the interaction energy of an atom with
the rest of the gas is ρg.

10. Show that
ρ|g|
kBT

=
1

π
(ρλ)

(
λ

l

)
(20)

which is � 1 under the conditions (18) and (19).

2 The liquid-gas transition
Under the conditions (16), (18) and (19) which we have identified, we can consider each configuration
(eigen state) of the system as an ensemble {Nn} of Nn indistinguishable n-mers in equilibrium in
the non-degenerate regime with

∑N
n=1 nNn = N .

2.1 Calculation of the critical temperature

1. Calculate the partition function of an atom in equilibrium in a 1D box with periodic boundary
conditions as a function of λ and L. Consider the limit L � λ. Replace the obtained sum by
an integral. Evaluate the integral.

2. Similarly, calculate the partition function of one n-mer (of mass nm) in equilibrium in a 1D
box with periodic boundary conditions as a function of E0(n), β = 1

kBT
, λ, n and L. Note that

the internal and external partition functions factorise.
3. Write the partition function of an ideal gas of Nn indistinguishable n-mers in equilibrium in

the non-degenerate regime.
4. The partition function of the system is a sum of partition functions Zconf of the different

configurations
Z =

∑
conf

Zconf (21)

Write Z by replacing Zconf by its expression.

If N is not too big, one can do a numerical study of the system by summing the configurations.
For N = 100 and L = 100l one then finds that the free energy F = −kBT lnZ as a function
of T/TF (with TF = EF/kB) suddenly changes its slope at Tc ' 105TF . One also finds that
for T > Tc the system is essentially composed out of atoms with few dimers, and for T > Tc
the system is essentially composed out of a big n-mer with few atoms. We will estimate Tc by
considering two pure phases : one atomic phase for T > Tc and a phase with one N -mer for
T < Tc.

5. Show that one thus obtains the following equation for the critical temperature (βc = 1/kBTc) :

e−βcE0(N)L
√
N

λc
=

1

N !

(
L

λ

)N
(22)

6. Take the logarithm and expand for big N , under the hypothesis that ln(L/λc) = O(ln(N)), to
arrive at

1

3
βc|µ0| − ln

(
e

ρλc

)
= O

(
lnN

N

)
(23)



7. Show the following implicit equation by neglecting the terms which vanish for large N

2

3
βc|µ0|+ ln

(
2

3
βc|µ0|

)
= ln

(
πe2|µ0|
6EF

)
(24)

8. Show that one then has
2

3
βc|µ0| = W

(
πe2|µ0|
6EF

)
(25)

where W is the Lambert function, which is the inverse function of x 7→ xex for x ≥ −1. For the
parameters N = 100 and L = 100l this gives an analytical estimate for the critical temperature
T analy
c ' 106TF which is very close to the numerical value Tc ' 105TF .

2.2 Can one neglect the fraction of atoms in the liquid phase ?

As in section 1.4, we will describe the liquid phase within the mean field approximation and we
will determine its elementary excitations. The starting point is the time-dependent Gross-Pitaevskii
equation for the mean field wave function φ(x, t) of the N -mer :

i~∂tφ(x, t) = −
~2

2m
∂2xφ(x, t)− |g|N |φ(x, t)|2φ(x, t)− µcm

0 φ(x, t) (26)

1. As usual in the Bogoliubov method, derive the coupled linear system giving the time derivative
of the fluctuations δφ(x, t) and δφ∗(x, t) (considered as independent variables), around the
stationary solution φ0(x) ∈ R (that, as we saw, is a bright soliton localized around x = x0).

2. We look for eigenmodes of the form δφ(x, t) = U(x)e−iωt and δφ∗(x, t) = V (x)e−iωt, with ω > 0.
Give the differential system obeyed by U(x) and V (x).

3. Far from the soliton, one can replace φ0 by 0 in the differential system. Show then that for
~ω > |µcm

0 | (you will take for granted that there are no solutions for ~ω < |µ0cm|) U(x) is a
sum of plane waves of wavenumber k, and V (x) is zero. Deduce that the Bogoliubov dispersion
relation is

εk =
~2k2

2m
− µcm

0 (27)

4. Deduce from this result that the excitation spectrum is gapped. Give the gap and its physical
interpretation.

5. Of which kind are the excitations predicted by the Bogoliubov approach ? Does this approach
describe all the excitations in the system ?

6. Calculate the mean number of Bogoliubov excitations at a temperature T in the regime
β|µcm

0 | � 1 and L� λ.
7. Deduce that at the critical temperature Tc, that one will characterize using equation (23), the

fraction of atoms in the liquid phase is given by(
Nat

N

)
T=Tc

=
(ρλc)

2

e3
(28)


