
Exam of “Quantum Fluids” M1 ICFP 2017-2018
Alice Sinatra and Alexander Evrard

The exam consists of two independant exercises. The duration is 3 hours.

1 Fluctuations of the number of particles in a Bose-Einstein
condensate

In this exercise we are interested in the fluctuations of the number of particles in a Bose-Einstein
condensate, for an ideal gas, then for an interacting gas using the Bogoliubov theory. It will be an
opportunity to find that the canonical ensemble and the grand canonical ensemble are equivalent
only if the fluctuations of the number of particles are small in relative values, which is not the case
in certain situations . . .

1.1 Ideal Bose gas

Let’s consider an ideal gas of bosons at thermal equilibrium in the grand canonical ensemble. The
energy and the number of particles are fixed on average and the parameters β = 1/kBT and µ are
fixed. We denote by {φλ} and ελ the eigenfunctions and eigenenergies specific to a particle. The
one-particle state of minimal energy φ0 (λ = 0) is assumed to be non degenerate.

1.1.1 Ideal gas of bosons in the grand canonical ensemble

(a) Let l be a microscopic state of the system of energy El and number of particles Nl. Write its
probability of realization Pl in the grand canonical ensemble.

(b) Each microscopic state l corresponds to a set of occupation numbers of the different one-particle
states

l↔ {n(l)
λ } (1)

where {n(l)
λ } is the number of particles in the one-particle state φλ when the system is in the

microscopic state l. Write the energy El and the number of particles Nl as a function of {n(l)
λ }.

(c) Show that Pl, now Pl({n(l)
λ }) or more simply P ({nλ}), is a product :

P ({nλ}) = ΠλPλ(nλ) (2)

Give the functions Pλ(nλ). What does the fact that P ({nλ}) is factored physically mean ?
(d) Qualitatively plot the probability Pλ(nλ) as a function of nλ. What is the most probable value

of nλ ?
(e) From Pλ(nλ), calculate the average occupation numbers n̄λ in the grand canonical ensemble.
(f) Again using Pλ(nλ), show that the variance of nλ is

(∆nλ)
2 ≡ n2

λ − (n̄λ)
2 = n̄λ(n̄λ + 1) (3)

(g) Suppose that each state λ is weakly populated : n̄λ � 1. Show that the fluctuations in the
mode are Poissonian (the variance is equal to the mean value).

(h) Suppose now that the one-particle ground state φ0 is macroscopically populated, that is, we
are dealing with a condensate. What can be said of (∆n0)

2 ? Comment.



1.1.2 Ideal gas of bosons in the canonical ensemble

We will now set the total number of particles to a specific value N , which better describes the
experimental situation.

(i) Let l be a microscopic state of the system of energy El (and number of particles N). Write its
probability of realization Pl in the canonical ensemble.

(j) Each microscopic state l is represented by a set of occupation numbers of the different one-
particle states

l↔ {nλ} with
∑
λ

nλ = N (4)

where we have imposed the additional constraint of the conservation of the total number of
particles. The gas is at a temperature below the critical temperature of Bose condensation. The
number of particles in the condensate is given by :

n0 = N −
∑
λ 6=0

nλ (5)

and it is not an independent variable. We thus have the one-to-one correspondence :

l↔ {nλ}λ 6=0 (6)

with the constraint
∑

λ 6=0 nλ < N .

Express El as a function of the nλ and show that the probability distribution of the occupation
numbers of one-particle excited states can be written as

P ({nλ}λ 6=0) = Θ(N −
∑
λ6=0

Nλ)× Πλ 6=0Pλ(nλ) (7)

where Θ is the Heaviside function Θ(x) = 1 for x ≥ 0 and Θ(x) = 0 for x < 0. Give the
functions Pλ(nλ) up to a proportionality factor.

(k) We now introduce an approximation justified in the presence of a condensate. We neglect the
possibility that the condensate is empty. This leads to

P ({nλ}λ 6=0) ' Πλ 6=0Pλ(nλ) (8)

From the expression of Pλ(nλ), show that one finds formally a grand canonical ensemble for the
non condensed particles with a chemical potential (equal to ε0) fixed by the condensate that
serves here as an infinite reservoir of particles.

(l) Show that, N being fixed, one has (∆n0)
2 = (∆n⊥)2 where N⊥ =

∑
λ 6=0 nλ.

1.1.3 Uniform case in 3D

In this section, the atoms are in a cubic box of size L (3-dimensional) with periodic boundary
conditions. So we have λ = k where k is a wave vector.
(m) Give the expression of φλ and ελ. Specify which values of the wave vector k are compatible

with the periodic boundary conditions.



(n) Show that

(∆n0)
2 =

∑
k 6=0

1

4 sh2(βεk/2)
(9)

(o) Show that by replacing the discrete sum over k by an integral in the thermodynamic limit, we
obtain a divergent integral.

(p) So we keep the discrete sum. The sum is dominated by the terms with βεk � 1, one can thus
linearize the hyperbolic sine function. Show that

(∆n0)
2 =

(
kBT

∆

)2 ∑
n∈Z3∗

1

(n2
x + n2

y + n2
z)

2
=

(
kBT

∆

)2

× 16, 53 . . . (10)

and give the value of ∆ as a function of the mass m of the particles and the size L of the box.
What is the physical meaning of ∆ ?

(q) Using the previous result and a result of the first subsection, show that, while remaining large
in the thermodynamic limit (N → ∞, V → ∞, N/V = constant), the fluctuations of the
number of particles in the condensate are smaller than in the grand canonical ensemble.

(r) Are the fluctuations of n0 larger or smaller than Poissonian fluctuations ?

1.2 The interacting gas

We now consider an interacting Bose gas in the canonical ensemble, the goal being to see how the
interactions will affect the result obtained in the previous subsection. We will use the Bogoboliubov
theory and we will consider from the start the case of a homogeneous system (cubic box of volume
V = L3 with periodic boundary conditions). We introduce ρ = N/V the density of particles and g
the coupling constant that characterizes the interactions between particles.

In the lectures, we introduced the ψ(r) =
√
Nφ0(r) field, whereN is the number of particles and φ0(x)

the condensate wave function obeying the Gross-Pitaevskii equation. We have seen that a fluctuation
δψ(r) of this field, developed on the eigenmodes of the linearized dynamics of the fluctuations, takes
the form

δψ(r) =
∑
k 6=0

(
bkUk + b∗−kVk

) eik·r√
V

(11)

where the amplitudes Uk, Vk and the mode energy εk are given by :

Uk − Vk =
1

Uk + Vk
=

(
εk
~2k2
2m

)1/2

and εk =

√
~2k2
2m

(
~2k2
2m

+ 2ρg

)
(12)

The modal amplitudes bk, b∗k simply evolve as bk(t) = e−
i
~ εkt bk(0). In the quantum version of the

theory, they are replaced by bosonic operators

bk → b̂k ; b∗k → b̂†k ; [b̂k, b̂
†
k′ ] = δk,k′ (13)

The field

δψ̂(r) =
∑
k 6=0

(
b̂kUk + b̂†−kVk

) eik·r√
V

(14)



then represents the particle field in modes orthogonal to the condensate mode φ0(r) = 1√
V

and

N̂⊥ =

∫
d3r δψ̂†(r)δψ̂(r) (15)

represents the operator number of non-condensed particles.

(s) From the equations (14) and (15), show that

N̂⊥ =
∑
k6=0

(U2
k + V 2

k )b̂†kb̂k + V 2
k + UkVk(b̂

†
kb̂
†
−k + b̂−kb̂k) (16)

In the quantum Bogoliubov theory, the system is described as a set of independent quasiparticles.
The operators â0 and â†0 of creation and annihilation of a particle in the condensate mode can
be eliminated from the Hamiltonian in favor of δN̂⊥ in the approximation of the “never empty
condensate”. Finally we get :

ĤBog = E0(N) +
∑
k6=0

εkn̂k with n̂k = b̂†kb̂k (17)

A microscopic state l of the system is then represented by the set of occupation numbers {nk}k6=0

of Bogoliubov modes (or Bogoliubov excitations) :

l↔ {nk}k 6=0 (18)

and the constraint on the total number of particles in the canonical ensemble imposes

n̂0 = N − N̂⊥ (19)

where n̂0 is the operator number of particles in the condensate. The system at equilibrium in the
canonical ensemble (in the approximation of a “never empty condensate”) is thus described by a
density operator of the form

ρ̂Bog =
1

Z
e−β

∑
k6=0 εk b̂

†
kb̂k (20)

(t) Using ρ̂Bog , calculate the average of the quasiparticle occupation numbers as a function of their
eigenenergy εk.

(u) Show that for all s ∈ N∗, 〈(b̂k)s〉 = 0, the average being taken in the state ρ̂Bog. You can take
the trace in the Fock basis |{nk}〉 (we remind that b̂k|nk〉 =

√
nk|nk− 1〉). Express the average

value of N̂⊥ in terms of the n̄k.
(v) Show that the variance of N̂⊥ is :

(∆N⊥)2 =
∑
k 6=0

(U2
k + V 2

k )2n̄k(n̄k + 1) + 2U2
kV

2
k

[
n̄2
k + (1 + n̄k)2

]
(21)

You can use the following result (Wick’s theorem) which states that for a density operator of
the form (20), where the b̂k are bosonic operators, and for operators Âi equal to b̂ki or b̂

†
ki
, one

has
〈Â1Â2Â3Â4〉 = 〈Â1Â2〉〈Â3Â4〉+ 〈Â1Â3〉〈Â2Â4〉+ 〈Â1Â4〉〈Â2Â3〉 (22)



(w) We introduce the dimensionless variable q defined by

~2k2

2m
= 2ρgq2 or, in an equivalent way ~ck = 2ρgq (23)

where c =
√
ρg/m is the speed of sound in the condensate. Show that at low k, for kBT � εk,

we have
Uk '

1

2

1

q1/2
, Vk ' −

1

2

1

q1/2
and n̄k '

kBT

2ρg

1

q
(24)

The dispersion relation k 7→ εk will be approximated by its low k expression.
(x) Show that if we replace the sum (21) by an integral over k in the thermodynamic limit, we

obtain a divergent integral.
(y) We keep the discrete sum but only retain the dominant terms in the low k expansion of the

summand. Show that

(∆N⊥)2 ' 1

2

(
kBT

∆

)2 ∑
n∈Z3∗

1

(n2
x + n2

y + n2
z)

2
(25)

(z) Deduce the value of (∆n0)
2, compare it with the case of the ideal gas, and conclude.

2 Cooling fermions using an adiabatic process
A very efficient way to cool down a gas of bosons well below degeneracy is evaporative cooling. This
technique consists in cutting the upper part of the energy distribution by removing the particles of
highest energy. Then it relies on elastic collisions between atoms to reach a new thermal equilibrium
at a lower temperature. Unfortunately it turns out not to be very efficient for a gas of fermions and
allows to reach only temperatures of typically 0.2TF , where TF is the Fermi temperature of the gas.
The goal of this exercise is to show another method which could cool fermions in two spin states | ↑〉
and | ↓〉 down to very low temperatures.

The key idea is to use a Feshbach resonance to change the s-wave scattering length a from positive
to negative. For a > 0, atoms form ↑↓ molecules of size much smaller than the typical intermolecular
distance. These molecules can then be considered as bosons. They can be cooled down efficiently
using evaporation and be condensed. Then a is changed adiabatically (here with entropy remaining
constant) towards negative values. Molecules dissociate and the condensate of molecules turns into
a cold degenerate Fermi gas.

2.1 Entropy of a perfect gas of trapped fermions

Let’s consider as ensemble of fermions of mass m in two spin states | ↑〉 and | ↓〉. The fermions are
trapped in an isotropic harmonic potential in 3D. Therefore the one-particle Hamiltonian is

h0 =
p2

2m
+

1

2
mω2r2 (26)

with p2 = p2x + p2y + p2z et r2 = x2 + y2 + z2. We neglect interactions between atoms. We use the
grand canonical ensemble of temperature T = 1/(kBβ) (kB is the Boltzmann constant) and chemical
potential µ to describe the gas. The grand potential is

J = −kBT
∑
λ

ln
(
1 + eβ(µ−ελ)

)
(27)



where the sum runs across all the eigenstates of the one-particle Hamiltonian h0.

(a) Write down the eigenenergies ελ of h0 and give the quantum numbers characterizing each ei-
genstate φλ. In the following we choose the origin of energies such that the minimal eigenenergie
ε0 is zero.

(b) Compute the density of states in the harmonic trap ρ(ε) and show that it is of the form

ρ(ε) = Aε2 (28)

where A is a constant to be expressed as a function of ω.
(c) Show that in the limit where kBT � ~ω, we can write

J = kBT

∫ ∞
0

dε ρ(ε) ln (1− n(ε)) (29)

where n(ε) is the average (fermionic) occupation number of a one particle state of energy ε,
and ρ(ε) is the density of states previously computed.

(d) Integrate J by parts and perform a low temperature expansion of J including terms up to order
four in T . Use the following relation∫ ∞

0

g(ε)dε

eβ(ε−µ) + 1
'
∫ µ

0

g(ε)dε+
π2

6
g′(µ)(kBT )2 +

7π4

360
g′′′(µ)(kBT )4 + . . . (30)

where g(ε) is a regular function of ε.
(e) Use S = −∂TJ |µ,ω to compute the entropy S of the gas as a function of µ, A and T .
(f) Use N = −∂µJ |T,ω, where N is the total number of fermions, to express the chemical potential

µ as a function of A and N , to lowest order (order zero in T ).
(g) Compute the Fermi energy εF in the harmonic trap as a function of N and A, and show that

S = kBNπ
2

(
T

TF

)
+O(T 3) (31)

where TF = εF/kB.

2.2 Entropy of an ideal gas of bosons

Let’s consider an ideal gas of spinless bosons. They are trapped and condensed (T � Tc where Tc is
the critical temperature). The goal of this section is to compute the entropy of the gas a function of
temperature. The one-particle Hamiltonian is still h0 (see (26)). The grand potential is this time

J = kBT
∑
λ

ln
(
1− eβ(µ−ελ)

)
(32)

where the sum runs across all the eigenstates of the one-particle Hamiltonian h0.

(h) Compute the density of states in the harmonic trap ρ(ε) for the gas of bosons and show that
it is of the form

ρ(ε) = ABε
2 (33)

where AB = A/2 and A is the constant computed in (b).



(i) Give the value of the chemical potential µ in the presence of a condensate for T � Tc.
(j) Explain why the ground state h0 can be neglected when computing the entropy.
(k) Show that in the limit kBT � ~ω, we can write

J = kBT

∫ ∞
0

dε ρ(ε) ln
(
1− e−βε

)
. (34)

(l) Integrate J by parts and express the entropy S of the gas as a function of AB, T and g4(1) =
ζ(4), where g is the Bose function

gα(z) =
1

Γ(α)

∫ ∞
0

dy yα−1
ze−y

1− ze−y
(35)

and ζ is the Riemann Zeta function. We remind that Γ(n+ 1) = n! for any integer n.
(m) Compute the critical temperature Tc in the harmonic trap as a function of the number of bosons

NB, the trapping frequency ω and ζ(3).
(n) Knowing that ζ(4) = π4/90, show that

S = NBkB

(
T

Tc

)3
2π4

45 ζ(3)
. (36)

2.3 Transform at constant entropy

We now want to estimate the efficiency of the whole fermion cooling process.

(o) We start from a condensate of molecules (a > 0) cooled down to T = 0.25Tc and we transform
the system to a gas of fermions by changing the sign of a at constant entropy. Compute the
final temperature of the fermions in unit of TF (ζ(3) = 1.202...).


