PHYSIQUE QUANTIQUE

Master "Physique et Applications" de Sorbonne Université
Parcours Physique Générale, 2018-2019

Alice Sinatra, CM

Laboratoire Kastler Brosssel, Ecole Normale Supérieure, Tél : 01 44 32 25 72, alice.sinatra@lkb.ens.fr

Clément Sayrin, TD1

Laboratoire Kastler Brosssel, Collège de France, Tél : 01 44 27 11 99, clement.sayrin@lkb.ens.fr

Jérôme Tignon, TD2

Laboratoire Pierre Aigrain, Ecole Normale Supérieure, Tél : 01 44 32 33 54, jerome.tignon@lpa.ens.fr

6 septembre 2018

Table des matières

1	Pré	requis : Formulation générale de la mécanique quantique
	1.1	Le vecteur d'état et l'espace de Hilbert
		1.1.1 Les "bra" et les "kets"
	1.2	Opérateurs et grandeurs physiques
		1.2.1 Exemples d'opérateurs auto-adjoints
	1.3	Équation aux valeurs propres et fluctuations
	1.4	Théorème spectral
		1.4.1 Spectre discret, spectre continu, cas général
		1.4.2 Projecteurs et relation de fermeture
		1.4.3 Représentations "position" et "impulsion"
	1.5	Postulats de la mécanique quantique
	1.6	Conséquences physiques
		1.6.1 Caractère intrinsiquement probabiliste de la theorie
		1.6.2 Non-commutativité des opérateurs
	1.7	Structure de l'espace de Hilbert pour plusieurs degrés de liberté
2	Thé	eorie des perturbations stationnaires
	2.1	Principe de la méthode
	2.2	Perturbation d'un niveau d'énergie au premier ordre : cas non dégénéré
	2.3	Perturbation d'un niveau d'énergie au premier ordre : cas dégénéré
	2.4	Modification des états propres au premier ordre : cas non dégénéré
	2.5	Perturbation d'un niveau d'énergie au second ordre : cas non dégénéré
	2.6	Exemples de comparaison de la solution perturbative avec la solution exacte
		2.6.1 Potentiel harmonique de raideur modifiée
		2.6.2 Système à deux niveaux : cas non dégénéré et cas dégénéré
3	Exe	emples de solution de l'équation Schödinger
	3.1	Problèmes à une dimension
		3.1.1 Etalement du paquet d'ondes : points de vue de Schödinger et de Heisenberg
		3.1.2 Potentiel périodique
		3.1.3 Application d'une force constante en présence du potentiel périodique : oscillations
		de Bloch
	3.2	Problèmes à trois dimensions
		3.2.1 potentiel central
4	Δtο	ome d'hydrogène
-	4.1	Modèle de Bohr de l'atome d'hydrogène (rappel)
	4.2	Résolution de l'équation radiale pour l'atome d'hydrogène
	4.3	Fonctions propres et spectre
	4.4	Séries spectrales
	4.5	Règles de sélection pour les transitions dipolaire électriques

5	Thé	orie générale du moment cinétique	7
	5.1	Définition d'un moment cinétique : règles de commutation	7
	5.2	Valeurs propres de \hat{J}^2 et \hat{J}_z	7
	5.3	Composition de moments cinétiques	7
		5.3.1 Composition de deux spins $1/2$: triplet et singulet	7
		5.3.2 Cas général	7
6	Que	elques théorèmes utiles	8
	6.1	Théorème Hellmann-Feynman	8
	6.2	Théorème du viriel	8
	6.3	Théorème de Ritz et méthode variationnel	8
		6.3.1 Autre démonstration du théorème du viriel, en utilisant le théorème de Ritz	8
7	App	olications de la théorie des perturbations à l'atome d'hydrogène	9
	7.1	Correction relativiste à l'énergie cinétique	9
	7.2	Effet Stark pour le niveau $n=2$	9
	7.3	Couplage spin-orbite	9
	7.4	Structure fine du niveau $n=2$	9
	7.5	Règles de sélection en présence de structure fine	9
8	Thé	eorie des perturbations dépendant du temps	10
	8.1	Transitions entre deux états discrets : principe de la méthode	10
	8.2	Comparaison avec le calcul exacte (oscillations de Rabi)	10
	8.3	Exemples physiques de perturbation oscillante	10
		8.3.1 Spin $1/2$ dans un champ magnétique tournant	10
		8.3.2 Atome a deux niveaux : absorption et émission induite	10
	8.4	Etat couplé à un continuum d'états. Règle d'or de Fermi et son domaine de validité	10
		8.4.1 Application de la règle d'or au calcul d'un section efficace	10
		8.4.2 Exemple de l'émission spontanée	10
9	Part	ticules Identiques	11
	9.1	Position du problème	11
	9.2	Postulat de symmétrisation	11
		9.2.1 Exemples de construction d'états	11
		9.2.2 Principe d'exclusion de Pauli	11
	9.3	Conséquences physiques	11
		9.3.1 Interférence des amplitudes	11
		9.3.2 Systèmes à plusieurs particules : statistiques quantiques	11
10		vaux Dirigées	12
		Jonction de Josephson	12
		Niveaux de Landau et effet Hall quantique	12
		Déplacement lumineux et diffraction de Bragg	12
		Symétries et Moments cinétiques	12
		Effet Zeeman sur la raie 1s-2p de l'atome hydrogène	12
		Etat discret couplé à un continuum : un modèle exactement soluble	12
	10.7	Atome d'hélium	12