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B cell receptors (BCRs) play a crucial role in recognizing and fighting foreign antigens.
High-throughput sequencing enables in-depth sampling of the BCRs repertoire after
immunization. However, only a minor fraction of BCRs actively participate in any given
infection. To what extent can we accurately identify antigen-specific sequences directly
from BCRs repertoires? We present a computational method grounded on sequence
similarity, aimed at identifying statistically significant responsive BCRs. This method
leverages well-known characteristics of affinity maturation and expected diversity. We
validate its effectiveness using longitudinally sampled human immune repertoire data
following influenza vaccination and SARS-CoV-2 infections. We show that different
lineages converge to the same responding Complementarity Determining Region 3,
demonstrating convergent selection within an individual. The outcomes of this method
hold promise for application in vaccine development, personalized medicine, and
antibody-derived therapeutics.

adaptive immune system | antigen specificity | repertoire sequencing | influenza vaccine | COVID-19

B cells in the adaptive immune system express receptors on their surface that bind
antigens to initiate an immune response (Fig. 1). Identifying B cell receptors (BCRs)
that respond to specific antigens is an important goal for describing the dynamics of B
cell immunity following vaccination, with potential applications in vaccine development
(1–6), personalized medicine (7–9), and antibody-derived therapeutics (10–14).

The initial diversity of immune receptor repertoires is generated through the random
assembly of genomic templates complemented by deletions and insertions at the gene
junctions. This initial diversity is further enhanced by affinity maturation. Upon antigenic
stimulation, B cells that recognize an antigen migrate to germinal centers, where they
acquire somatic hypermutations in their antigen receptor, and undergo selection for
antigen binding. This process ultimately results in B cells that better recognize the
antigen. Since B cells are released to the periphery throughout, affinity maturation
produces lineages of related B cells that can be identified by sequence similarity of
their antigen receptor (15–17). As a result, cells carrying different but similar sequences
are involved in neutralizing the same antigen with different potencies. In addition,
several distinct founder B cells specific to the same antigen can seed distinct but related
lineages (18). It is still unclear how affinity maturation further diversifies and focuses the
responding repertoire.

Recent advances in high-throughput sequencing technologies make it possible to
directly profile the immune repertoire by sequencing the B cell DNA or messenger RNA
(mRNA) taken from blood or tissue samples (RepSeq) (19–25). The experiments provide
a list of unique sequences with their relative abundances. However, exploiting repertoire
information for decoding the immune response is hindered by both our inability to
reliably predict the specificity of a given BCR to a given antigen and the fact that only a
small fraction of the repertoire is involved in any infection (Fig. 1A). Existing methods
for identifying responding BCRs combine traditional sorting assays and sequencing
(11, 26–29) with computational analyses (30). Approaches based on machine learning
(31–36), network analysis (37–39), publicness across multiple individuals (40–42), or
using structural information (43–47), have also been proposed to focus on the disease-
specific subrepertoire. Longitudinal sampling of repertoires after a strong antigenic
stimulation, such as a vaccine or disease (3, 48, 49) is an agnostic way to study the response
that does not require prior knowledge about the identity of the triggering antigens, and
can identify a polyclonal response against multiple epitopes. Such approaches have also
been successfully applied to T cell repertoires (50–53) where the identity of epitopes can
sometimes be reverse-mapped using specificity databases (54). These methods directly
rely on BCR abundance measured in the repertoire, offering alternatives to traditional
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Fig. 1. Identifying responding antibodies from repertoires. (A) B cell reper-
toires exploit a diverse set of antigen receptors (antibodies) with different
antigen specificities. Upon an immune challenge, antigen-specific B cells
proliferate and mutate. The question addressed here is how to identify these
responding clones from repertoire data. (B) We exploit bulk BCRs immune
repertoire sequencing data (48) that covers the V, D, and J segments of the
BCRs heavy chain to detect influenza–responding B cells without knowing
the epitope, using the repertoire sampled at a single timepoint. Five healthy
humans were vaccinated in late spring of 2012 with the 2011 to 2012 trivalent
seasonal flu vaccine. Blood samples were collected before (days −5, −3, and
0) and after (1, 4, 7, 9, and 11) vaccine administration.

screening assays. However, they require to obtain blood samples
from individuals prior to the immune challenge, which is not
always practical.

We propose a computational approach for identifying clusters
of expanded BCRs from the repertoire measured at a single
time point, by combining information about sequence similarity
and convergent selection. Such convergence has previously been
exploited to identify responding receptors in the context of T cell
repertoires and is the basis of the ALICE software tool (55).
However, affinity maturation and lack of human leukocyte
antigen restriction make the problem very different for B cells.
We illustrate our method on data from recent studies that track
the unbiased B cell responses of 5 healthy individuals after
influenza immunization with the 2011 to 2012 trivalent seasonal
flu vaccine in late spring of 2012 (48) (Fig. 1B), and 18 recent
COVID-19 patients at the peak of infection (3). This allows us
to study the multiplicity, diversity, and convergent selection of
distinct lineages toward viral antigens with great details.

1. Results

1.1. Computational Identification of Responding Clones from
a Single Timepoint. When a B cell is involved in an immune
response, its BCR undergoes proliferation and mutations. This
process yields many copies of the original BCR, while also
producing mutated receptors with similar sequence and antigen
specificity as the ancestral BCR. At the repertoire level, we expect
two main effects: elevated frequencies of responding receptors,
and the formation of extensive clusters of similar sequences. These
clusters may arise both from the expansion of a single BCR
lineage and from the convergent selection of multiple lineages
with distinct progenitors (Fig. 2A).

We first examined the profile of clonotype frequencies in the
BCR heavy chain (IgH) repertoires of five healthy individuals
who had received the 2011 to 2012 trivalent seasonal flu
vaccine (see Methods and Dataset S1 for details), both before
the vaccine (day 0), and at the peak of the response (day 7)
(48). A clonotype is defined by the unique amino acid sequence
coding for the Complementarity Determining Region 3 (CDR3)
of the heavy chain. While other parts of the sequence also
determine specificity, focusing the most variable region gives

us more statistical power to detect convergent selection. The
comparison of the distributions of clonotype abundances shows
very little change between before vaccination and at the peak
of the response (Fig. 2B), challenging the expectation that the
postvaccination repertoire should be dominated by a few large
responding clonotypes.

We next consider the number of neighbors in amino acid space
as a measure of sequence similarity. For each CDR3 amino
acid sequence found in the repertoire, we count the number
of distinct IgH nucleotide sequences whose CDR3 differ by
exactly one amino acid. Accounting for the multiplicity of
nucleotide sequences helps capture the diversity of convergent
synonymous variants in the response. In contrast to frequencies,
the distribution of the number of neighbors does change
significantly (Fig. 2C ) from day 0 to day 7, in agreement with
the expectation that mutations and convergent selection can
create clusters of related sequences. To explore how much of
this observation is due to mutations versus convergent selection,
we applied a similar approach to lineages. We inferred lineages at
days 0 and 7 using HILARy software (15), and called two lineages
neighbors if the average distance between their sequences was
below or equal to 2. By contrast to the case of single clonotypes,
we did not observe a clear separation between the distributions
of the numbers of lineage neighbors at the two time points (SI
Appendix, Fig. S2). The signal contained in lineage convergence
does not have the statistical power to detect the response, meaning
that mutations are essential. However, it does not rule out the
existence of convergent selection, as we will see later.

We use the observation of Fig. 2C to introduce two approaches
to identify antigen-specific B cell receptors. The approaches
extend previous ideas proposed for T cells (55) to the context
of affinity maturation. The first, called fast-STAR (fast Single
Timepoint Antibody Recognition) prioritizes computational
speed and performs efficient thresholding to output sequences
with a high confidence level as responders. The second, less
specific method, called full-STAR, assigns a score to each
sequence based on a probabilistic approach.

Specifically, fast-STAR calls an IgH CDR3 amino acid
sequence a responding clonotype (a “hit”) if its number of
neighbors, normalized by the total number of unique nucleotide
sequences, is higher than a certain threshold. This threshold is
set to 9.6 · 10−4 to obtain a false-discovery rate of ≈5%, as
estimated by taking the ratio of the number of hits at days −3
and 0 (only false positives) with the number of hits at day 7
(true positives and false positives), averaged over all 5 subjects.
Sequences above the threshold are then grouped by single-linkage
clustering, where two amino acid sequences are linked if they
have Levenshtein distance 1 or lower. Clusters with fewer than
10 sequences are filtered out to mitigate the effect of potential
sequencing errors. As a result, fast-STAR only keeps a small
number of hits.

This method results in very high specificity but low sensitivity.
In addition, it does not exploit the knowledge that certain
sequences are expected to have more neighbors than others due
to biases in the generation probability. Full-STAR overcomes
these limitations by setting a personalized sequence-dependent
threshold for the number of neighbors based on the expectation
computed from the previously proposed OLGA method (56),
which estimates the probability of observing any given sequence
in a random repertoire (Methods). We can use two methods to
estimate the number of neighbors using OLGA: either exactly, by
summing the probabilities of generation of each possible neighbor
for each observed sequence, or approximately, by exploiting
the fact that neighboring sequences have similar probabilities
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Fig. 2. Similarity network analysis of antibody clonotypes. (A) During affinity maturation, distinct naive B cells proliferate and mutate upon recognition of the
antigens, giving rise to distinct cell lineages (Left). At the sequence level (Right), we construct a graph where each node is an IgH nucleotide sequence, and
edges connect sequences that differ by at most one amino acid in their CDR3. This may lead to distinct lineages being merged into the same functional cluster
(e.g. the pink cluster). The idea of STAR is to identify sequences with high connectivity in the graph (highlighted), which indicates either convergent selection or
belonging to a large lineage, or both. (B) Distribution of the CDR3 amino acid sequence count for all subjects (background lines) and their average (thick lines),
at days 0 and 7. The two distributions are similar. (C) The distribution of the number of amino acid neighbors shows a marked difference between days 0 and 7
(same color convention as B). (D) The distribution of neighbors at day 0 is well described by a computational model of random repertoire generation (56) (see
main text).

of generation (SI Appendix, Fig. S1) to reduce computational
time (Methods and SI Appendix, Fig. S3). OLGA’s prediction
for the distribution of neighbors using the second approximate
method agrees well with that measured at day 0 (Fig. 2D),
and so subsequently we will only use that method. Responding
sequences are identified as having more neighbors than expected
by the model, with significance computed using the Poisson
distribution. The threshold on the resulting P-value is controlled
for multiple testing by the Benjamini–Hochberg procedure by
setting a false discovery rate of 0.5%.

1.2. Clones Identified by STAR Recapitulate the Immune Re-
sponse Dynamics. We applied both fast-STAR and full-STAR
to the IgH repertoires of all 5 subjects at each timepoint
(Dataset S1). Although neither pipeline used any information
about the time course of clonal abundances, they could both
detect a marked increase of the number of hits following vaccina-
tion, with a peak on day 7 and rapid decay after that (Fig. 3 A and
B). This response peak is consistent with previous observations
based on longitudinal analysis (48), and is characteristic of a
memory recall response following vaccination. The fast-STAR
method, which is more conservative and robust, even finds no
hits at all for all the subjects prior to day 7. This suggests that
the pipeline specifically identifies responding clonotypes. The
most common isotype found in the repertoires is IgM, except
at day 7 where it is still substantially represented (SI Appendix,
Fig. S4A). However, almost all clonotypes identified by fast-
STAR in subject 1 were IgG (SI Appendix, Fig. S4B), while
full-STAR hits were IgA or IgG (SI Appendix, Fig. S4C ), with

most IgA found before the response peak. This serves as further
validation that the clonotypes identified by STAR are involved
in the memory recall response, and suggests that those identified
by full-STAR also include previously expanded clones associated
to distinct immune challenges.

Clonotypes identified by STAR on day 7 can be used to
retrospectively study the dynamics of the response. Examining
the frequency–time courses of single clonotypes identified as
responding at day 7 shows a consistent pattern across all subjects,
with no detected presence before day 7, and a sharp peak at day
7 followed by rapid decay (Fig. 3 C and D). This again validates
the approach, as neither pipeline used frequency information. To
go beyond single clonotypes, we aggregated the frequencies of all
clonotypes identified as responsive, and plotted their cumulative
frequency as a function of time for both pipelines (Fig. 3 E and
F ). These time traces show again a marked peak on day 7 for
both pipelines. The less conservative full-STAR captures a larger
fraction of the responding repertoire, identifying as much as 75%
of the repertoire being involved in the response at its peak.

In addition, we directly validated the ability of some of our hits
to bind the virus. In ref. 57, 21 antibodies belonging to 5 distinct
lineages found to be expanded in subject 1, and separately single-
cell sequenced, were tested for affinity against the vaccine as
well as various viral strains using enzyme-linked immunosorbent
assays. Among those 5, 2 lineages contained vaccine-binding
antibodies, only one of which, called L1 and containing 5
antibodies, was also present in the bulk longitudinal data analyzed
in the current paper. These 5 antibodies use 4 distinct CDR3s.
All of them belonged to the cluster of hits identified by STAR in
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Fig. 3. Results and validation. (A and B) Number of putative responding sequences identified by (A) fast-STAR and (B) full-STAR for each day and each subject.
We observe very few hits on the days before vaccination and a large peak on day 7. (C and D) Frequency–time traces of the top-scoring sequences identified on
day 7 for each subject found by (C) fast-STAR (with largest number of neighbors) and (D) full-STAR (with lowest P-value). Note that the best-scoring clonotype is
the same for the two methods for all subjects except subject 5. (E and F ) Sum of the frequencies of all responding clonotypes according to (E) fast-STAR and (F )
full-STAR.

subject 1 (Fig. 4A), providing direct evidence that this group of
antibodies specifically target the viral proteins.

As a final validation test, we compared our putative influenza-
responding clonotypes to those reported in ref. 58, independently
obtained from subjects vaccinated with the inactivated influenza
vaccine. In ref. 58, the authors computationally identified
responsive sequences as those that significantly expanded between
a pre- and postvaccination timepoint. We evaluated the overlap
between the IgH amino acid CDR3 sequence of their 1,513
vaccine-responding candidate antibodies, and our STAR hits.
In general, overlap of responding clonotypes between distinct
datasets is known to be low because of their rarity (42), and we do
not expect our list of responding clonotypes to be able to classify
specific from nonspecific sequences in other individuals. While
we found a small overlap of 2 sequences with our fast-STAR
hits, and 9 with our full-STAR hits, these numbers are much
larger than expected by chance: we evaluated the overlap between
STAR hits and a control dataset of healthy individuals (24),
and we found 2 · 10−4 for fast-STAR and 0.03 for full-STAR,
after normalizing for dataset size. Applying a Poisson test to
these overlaps gave a P-value of respectively P = 3 · 10−8 and
P = 10−19 (Methods).

1.3. Convergent Selection. The sequences identified by fast-
STAR can be organized as clusters of closely related sequences
(SI Appendix, Fig. S5). Three our of five subjects (1, 2, and 5) have
a single cluster, suggesting an immunodominant response against
a single epitope, while the other two (3 and 4) have four and three
clusters respectively, suggesting a polyclonal response. To better
understand the structure of the repertoire response in sequence
space, we analyzed in more detail the sequence structure of fast-
STAR hits found in subject 1. These hits formed a single cluster
of densely connected and highly conserved sequences (Fig. 4A
and weblogo therein).

We wondered whether this diversity of similar CDR3 amino
acid sequences arose from a single lineage, or from distinct
selection events originating from different naive sequences. To
explore this question, we applied HILARy software (15) to
separate the main cluster of subject into 23 different lineages,
and RAxML (59) to reconstruct the corresponding phylogenetic
trees (Fig. 4B). We observe one predominant lineage, a few
smaller lineages (6 of which are represented), and some isolated
sequences. Each lineage was associated with a unique V gene
(given by MiXCR (60), ignoring allelic variants), and each
V gene represented by a single lineage. The same CDR3
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A

B

C

D

Fig. 4. Convergent antibody response toward a conserved IgH CDR3 motif. (A) Graph structure of fast-STAR hits found in subject 1. Each node is an amino
acid IgH CDR3 sequence. Node size is proportional to the number of distinct IgH nucleotide sequences with that CDR3, and color indicates the number of
distinct V genes used. An edge is drawn between two CDR3 if they differ by one amino acid. The blue circle indicates the four amino acid CDR3s identified in the
experimental testing as responding. Top: sequence logo of the sequences of the cluster. Height corresponds to the entropy of the amino acid choice at each
site, and relative letter size to amino acid frequencies. (B) Reconstructed lineage trees of the main cluster of fast-STAR hits in subject 1. Branch length represents
numbers of mutations, and node sizes frequencies of individual nucleotide sequences. The root is the unmutated naive sequence reconstructed from genomic
templates. Each color represents a distinct amino acid CDR3 sequence (legend in C). (C) Number of distinct nucleotide sequences with the same amino acid
CDR3, grouped by V gene usage. Each CDR3 sequence can be formed using distinct V genes, and within each V gene group, up to hundreds of nucleotide variants.
(D) Frequency–time course of the most abundant nucleotide sequences associated with the amino acid CDR3 sequence CKSLLTTIPEKWFDPW. Sequences with
different V genes are shown in different colors. Each sequence corresponds to a distinct B cell clone that expanded independently at day 7.
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amino acid sequences appear multiple times in distinct lineages,
with different V genes, suggesting independent expansion and
evolution of distinct B cell clones. The most frequent CDR3
amino acid sequence could be formed by all 23 different V
genes (Fig. 4C ). This diversity of V gene assignment was not
a spurious consequence of misassignment due to hypermutations
and trimming of the 3′ end of the V gene, since the observed
hypermutation rate (3 base pairs on average over the sequenced
V region) was small compared to the pairwise distance between
nearby V genes over the same region after trimming (SI Appendix,
Fig. S6). It could also not be explained by hybridization of distinct
gene rearrangements during PCR, based on the analysis of unique
molecular identifiers appended to both ends of the gene products
during repertoire profiling (Methods).

To further test the hypothesis of independent expansion of
distinct B cell clones, we examined the frequency dynamics
of individual IgH nucleotide sequence variants coding for
the top-scoring amino acid CDR3 of subject 1 (CKSLLT-
TIPEKWFDPW) (Fig. 4D). For illustration purposes, we took
the most frequent nucleotide sequences (frequency≥ 2.5·10−4),
and color coded time traces by the germline V gene the sequences
use. All traces show a clear and independent expansion between
days 4 and 7. By contrast, randomly picked sequences with the
same frequency at day 7 do not show the same stereotyped
behavior (SI Appendix, Fig. S7). This observation supports the
notion that multiple lineages independently converged toward
a shared functional outcome. The fact that multiple distinct
V genes are represented excludes the possibility of an artifact
due to sequencing errors or hypermutations. This observation
provides direct evidence for antigen-specific convergent selection
of multiple lineages and introduces potentially a novel feature for
investigating and exploiting antigen-specific receptors.

1.4. Application to COVID-19 Repertoires. To assess the gen-
eralizability of our computational pipeline, we applied the
same methodology to a distinct dataset from subjects naturally
infected with COVID19. We used IgH repertoire data collected
from Galson et al. (40), comprising samples from 18 subjects
at the infection peak. Note that no longitudinal data were
available, providing a test case for our method. We applied
the STAR pipelines to identify candidate CDR3 amino acid
heavy chain BCR sequences responding to COVID-19 (full list
in Dataset S2). Applying fast-STAR we obtained an average of
131 hits (range 0 to 661), while with full-STAR we obtained an
average of 10,169 (range 918 to 27,024). The clusters obtained
with fast-STAR for each patient are shown in SI Appendix,
Fig. S8. In certain patients (10 out of 18), a polyclonal response
was not detected, indicated by either zero or only one cluster.
This observation may be attributed, in part, to variations in
sequencing depth, as detailed in Dataset S2. Conversely, some
patients exhibited an exceptionally diverse response, with up to
11 clusters observed in the case of patient 10. Notably, the highly
conservative fast-STAR pipeline did not detect any shared hits
between different patients.

The source study did not test antibodies for specificity, making
a direct validation of our candidate COVID-specific sequences
difficult. Nonetheless, to assess the specificity of our method,
for each subject, we evaluated the overlap between our hits
and a comprehensive COVID19 database containing known
antibodies associated to various variants of the SARS-CoV-2
virus (61). For each subject, we compared the fraction of full-
STAR hits within the full repertoire to the fraction of full-STAR
hits among sequences from the repertoire that were also found

in the COVID19 database. We found a significant enrichment
of hits in the part of the repertoire that overlapped with the
database in 11 out of the 18 subjects that we analyzed (Fig. 5).
Dataset S1 shows the number of sequences from the COVID-19
database (40) found in each patient and how many of them were
isolated by the full-STAR method. This application demonstrates
the versatility of our pipeline in identifying responsive BCR
sequences, including in the context of a natural infection.

2. Discussion

The main interest of STAR is its ability to detect responding
clonotypes from a single repertoire snapshot, without the
need of longitudinal data. This method outperforms the naive
approach of selecting clones with the highest frequencies as the
likely responders. We validated our results using a variety of
tests, including binding assays and an analysis of overlap with
previously published influenza datasets. We could not validate
all of our predicted hits for influenza responding BCR since the
data we used (48) only had BCR heavy chain sequences. Without
paired light and heavy chain, we cannot directly test for binding.
We nevertheless verified that paired BCR sequences validated
in the original study were among our predicted hits. We also
demonstrated the effectiveness of our method by applying it to
COVID-19 data. Although we did not conduct experimental
tests on isolated sequences, we found that some of the BCRs
we identified as responding using our method were present in
the COVID-19 database (61) and were identified as responders
to COVID-19 epitopes (Fig. 5). In particular, in 11 out of 18
patients, the overlap with the database is statistically significant.
The method can easily be applied to paired chain data which will
allow for full experimental validation.

Our approach is inspired by the ALICE method developed
for T cells (55). Both methods share the idea of examining
amino acid sequence neighbors as a measure of similarity, and,
in the case of full-STAR, to compare the number of neighbors
to an expectation computed using a generative model of receptor
sequences. The key difference arises from the nature of T cell
responses, which do not form lineages. In T cells the emergence
of clusters of neighboring sequences can only occur through the
convergent selection for a common function of distinct lineages,
while for B cells this effect is confounded by hypermutations,
which create neighbors in sequence space belonging to the same
lineage. Distinguishing the two effects is in general difficult, in
particular, because it is often hard to separate distinct lineages
that have the same or similar CDR3 (15, 17, 62–64).

The STAR pipelines can in principle be extended to light-chain
or paired-chain repertoire data. However, the low diversity of the
light chain, both in terms of sequence length and variability,
makes it less informative than the heavy chain. High-throughput
paired-chain data (with at least 100,000 unique sequences)
would ideally be the most informative; however, most single-
cell sequencing data are restricted to relatively small dataset
(a few thousands), where the neighbors are only sparsely sampled,
making the method inapplicable. When both massive bulk single-
chain repertoire (>100,000) and a smaller number (1,000 to
10,000) of single-cell data are available, hits identified by our
method from the bulk data can be matched with paired chains
from the single-cell data to infer the full antibody sequence, which
can be subsequently tested for binding or neutralization.

Our findings highlight the importance of focusing on days
close to the peak of infection, particularly day 7 in the
case of influenza, for robust identification of responsive BCR
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Fig. 5. COVID19 specific sequences. (A) Number of hits obtained with fast-STAR per patient. (B) Number of hits obtained with full-STAR per patient. (C)
Percentage of hits obtained with full-STAR in the entire dataset for each patient versus the percentage of hits obtained with full-STAR in the subsample of
the dataset with SARS-CoV-2 specific sequences taken from the COVID19 antibody database, with significance. The nonsignificant patients are labeled with ns
(P > 0.05), one star corresponds to a P value P ≤ 0.05, two stars P ≤ 0.01, three stars P ≤ 0.001 and four stars P ≤ 0.0001.

sequences. The algorithm’s efficacy decays rapidly after the peak,
underscoring the sensitivity of our method to the precise day
when the sample is taken. Future investigations could explore
the decay dynamics following the peak, and its implications for
long-term immune responses.

While our pipeline exhibits promising results, certain limita-
tions should be acknowledged. Fast-STAR is very specific, but
likely misses a large fraction of responding clones. Full-STAR
is more comprehensive, but may contain a substantial number
of false positives, even if those contribute moderately to the
cumulative frequency. The sensitivity of both methods strongly
depends on sequencing depth, which must be sufficient to sample
enough neighbors of responding sequences. Further experimental
tests should be applied to the candidate sequences proposed by
STAR to properly assess their function. The algorithm relies
on a computational null model that assumes independence
between B cells and ignores their possible lineage relationship.
Because memory B cells have undergone hypermutations, we
expect them to violate this assumption even in the absence of an
immune challenge. In practice, this means that the null model
should systematically underestimate the number of neighbors.
Luckily, this effect is compensated by another inaccuracy. The
approximate expected number of neighbors we use in full-STAR
is actually an overestimation compared to the exact computation,
because many amino acid neighbors are not proper antibody
sequences and thus have extremely low probabilities, which is
not accounted for in the approximation. As a result of these
two errors canceling each other, the approximate estimate is in
fact more accurate than the exact one. A multiplicative factor
may be manually added to the exact estimate to correct for the
error (SI Appendix, Fig. S3). However, future progress should
rely on refining the null model to incorporate the generation of
correlated lineages and thus provide a more accurate model of the
human B cell repertoire before immunization. A more detailed
treatment of the expected dynamics of B cell clones in absence of
stimulation could also help improve the null model predictions.

We developed and validated our method in the context of
immunization, and showed that it could also be applied to the case
of a natural infection. Future research could test its applicability to
other immune contexts, such autoimmune diseases (65), allergies
(66), or chronic infections such as HIV (67). Compared to an
acute challenge, the signal may be too weak to detect a response,
unless repertoires are collected during a burst. Chronic disorders
are expected to produce a higher number of highly mutated
lineages (68), which may be more easily detected by the method.

The notion of convergent selection demonstrated here is
related to that of public repertoires, defined as the set of receptors
shared between individuals afflicted with the same condition
(40–42). While many receptors are shared by chance due to
their high generation probability, even in healthy individuals
(42, 69), individuals with a common condition tend to share
more receptors, owing to the shared selective pressures that they
are subjected to. This can lead to the sharing of the same CDR3
with different V genes across individuals infected with COVID
(42). Here, we show that convergence can happen even in the
same individual. Because of this shared convergent selection, one
could expect the clusters of reactive BCRs identified by STAR to
overlap between patients. However, we found no such sharing
among COVID19 or influenza-vaccine patients. This implies
that, while there exists a public repertoire responding to the
same disease or vaccine, the primary immune response remains
predominantly private. It is however unclear what individual
biological factors could explain this observation. We were careful
to check that the data were free from alignment errors (SI
Appendix, Fig. S6) and hybridization artifacts during library
preparation (Methods), both of which could have confounded
our result. However, we cannot rule out other artifacts in the
data, and further investigation is needed to fully confirm that
conclusion. Understanding how to combine information from
both private and public contributions to the response could help
design better predictors of immune status.

3. Methods

We develop our method using data from mRNA-based heavy chain sequencing
of the BCRs of 5 healthy human subjects vaccinated against influenza (48).
The sequences were tagged with unique molecular identifiers (UMI) to correct
for the PCR amplification bias. Preprocessed data were aligned to V, D, and
J templates with MiXCR (60), and then filtered to remove singletons. Each
repertoire contained on average 3.2 × 105 (range 15,035 to 814,033) unique
UMI sequences, 6.0 × 104 (range 3,767 to 121,608) unique nucleotide
sequences, and 5.2 × 104 (range 3,367 to 101,254) unique amino acid CDR3
sequences, refer to SI Appendix, Table S1 for more details.

Since our analysis reports convergence of the CDR3 with different V
genes, we checked that this effect was not due to hybridization during PCR
amplification. The UMI is composed of a 8-nt UMI on the 3′ end (UMI3),
and another 8-nt UMI on the 5′ end (UMI5). Since the CDR3 and J genes
are on the 3′ side of the read, in the case of hybridization we expect that
the CDR3 sequence to be strongly linked to UMI3. Hybridization during
PCR would result in the same CDR3 nucleotide sequence and UMI3 to be
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associated with many distinct UMI5. A given CDR3 nucleotide sequence is
often represented by multiple RNA molecules and thus distinct UMI3s and
UMI5s. However, hybridization during PCR amplification would create an even
larger diversity of UMI5 for each UMI3, resulting in an overall larger UMI5
diversity. We checked the UMI diversity of the most abundant CDR3 nt sequence,
TGCAAGTCTCTGTTGACTACTATTCCGGAAAAGTGGTTCGACCCCTGG. We found 7,835
distinct UMI3 and 7,111 distinct UMI5. We thus conclude that the diversity of
UMI5 is consistent with that of UMI3, and thus that hybridization is negligible.

In each repertoire, for each amino acid heavy-chain CDR3 sequence we
counted the number of its neighbors using ATrieGC software (15), which uses
indexing trees to efficiently span neighbors. Each neighbor is weighted by its
multiplicity in termsof uniquenucleotide sequencesthat havethecorresponding
amino acid CDR3.

The expected number of neighbors for each sequence s is computed using the
software OLGA (56), which gives the probability of occurrence of an amino acid
sequence (called Pgen), i.e. the sum of probabilities of all nucleotide sequences
translating into that amino acid sequence. We sum that probability (Pgen) over
all amino acid sequences s′ that belong to the ensemble of neighbors of the
query sequence s to obtain the probability that a random nucleotide sequence
translates into a neighbor s′ of s. We multiply this cumulative probability by the
total number N of unique nucleotide sequences in the dataset, which gives the
expected number � of nucleotide sequences translating into neighbors of s, in
a dataset of size N. Mathematically:

�(s) = N
∑

s′∈V(s)
Pgen(s′), [1]

where �(s) is the expected number of neighbors of the CDR3 amino acid
sequence s, V(s) is the set of neighbors of s (one amino acid difference), N the
total number of unique nucleotide sequences of the repertoire, andPgen(s′) the
generation probability of a CDR3 amino acid sequence s′ as given by the OLGA
model. Because of the high number of neighbors for each sequence, applying
the formula above directly is computationally too expensive. It may be estimated
using a synthetic dataset generated by OLGA, with a Monte-Carlo sample of 108

sequences. We can then count the number of neighbors of each s in this synthetic
dataset, normalized by 108, and multiplied by N, the size of the real dataset. In
practice, we used an approximation where we assume Pgen(s) ≈ Pgen(s′), as
justified bySI Appendix, Fig. S1, which yields�(s) ≈ �̂(s) = 19L(s)NPgen(s),
where L(s) is the CDR3 length of s. The results of the Monte-Carlo estimate of
the exact formula, and of the approximate formula that we used in the paper,
are compared with the prevaccination data in SI Appendix, Fig. S3.

The full-STAR pipeline compares the expected number of neighbors �(s)
with the observed one, denoted by n(s). The P-value is computed as the
probability to find at least as many neighbors as observed, where that number

is assumed in the null model to follow a Poisson distribution of mean �̂(s),

p =
∑
∞

n=n(s)
e−�̂(s)
n! �̂(s)n. From the operational point of view, the full-

STAR method is identical to the ALICE software introduced for TCR (55), with
the difference that ALICE uses a Monte-Carlo estimate of �(s) instead of the
�̂(s) approximation. Another difference with ALICE is the motivation for why
responding clonotypes should have more neighbors than expected (Discussion).
The fast-STAR method differs from both ALICE and full-STAR in that it does not
compare the number of neighbors to a sequence-specific expected value, but to
a repertoire-wide baseline.

Poisson tests performed on the overlap with independent influenza (58)
and COVID19 (61) datasets were performed in the following way. The expected
overlap of our list of STAR hits with a control (non-disease-specific) dataset
was computed, and turned into a coincidence probability xnull = nnull/Nnull,
where Nnull the size of the control dataset. Then the P-value on the observed
overlap of the list with the disease-specific dataset, nspecific, is then computed

as p =
∑
∞
n=nspecific

e
−xnullNspecific

n! (xnullNspecific)
n, where Nspecific is the size of

the disease-specific dataset.
The lineages are inferred using HILARy software (15), and the corresponding

trees are reconstructed with RAxML (59) and represented with iTOL (70).

Data, Materials, and Software Availability. The trivalent vaccine influenza
bulk data (48) and the single-cell data (57) are available on the Euro-
pean Nucleotide Archive with accession number, Sequence Read Archive:
PRJNA512111, BioProject—PRJNA512111 (71). The vaccine influenza single-
cell RNA sequencing and V(D)J data of ref. 58 have been deposited in NCBI’s
Gene Expression Omnibus and are available at the GEO Series accession number
GSE175524 (72). The raw COVID-19 BCRs sequence data (40) are available on the
European Nucleotide Archive under BioProject Accession PRJNA638224 (73).
The sequences of the antibodies tested for being COVID-19 specific are available
at https://opig.stats.ox.ac.uk/webapps/covabdab/ (74). The code to reproduce
fast and full STAR is freely available at https://github.com/statbiophys/STAR (75).
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