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SUMMARY

Epistasis is the phenomenon by which the effect of a
mutation depends on its genetic background. While
it is usually defined in terms of organismal fitness,
for singleproteins, itmust reflectphysical interactions
among residues. Here, we systematically extract the
specific contribution pairwise epistasis makes to the
physical affinity of antibody-antigen binding relevant
to affinity maturation, a process of accelerated
Darwinian evolution. We find that, among competing
definitions of affinity, the binding free energy is the
most appropriate to describe epistasis. We show
that epistasis is pervasive, accounting for 25%–35%
of variability, of which a large fraction is beneficial.
This work suggests that epistasis both constrains,
through negative epistasis, and enlarges, through
positive epistasis, the set of possible evolutionary
paths that can produce high-affinity sequences dur-
ing repeated rounds of mutation and selection.

INTRODUCTION

To ensure a reliable response and neutralize foreign pathogens,

the adaptive immune system relies on affinity maturation. In this

process, antibody receptors expressed by B cells undergo an

accelerated Darwinian evolution through random mutations

and selection for affinity against foreign epitopes (Cobey and

Wilson, 2015). Mature antibodies can accumulate up to 20% hy-

per-mutations from their germline sequence (Marcou et al.,

2018), leading to up to a 10,000-fold improvement in binding af-

finity (Eisen and Siskind, 1964). Affinity maturation also produces

broadly neutralizing antibodies that target conserved regions

of the pathogen, of particular importance for vaccine design

against fast evolving viruses (Corti and Lanzavecchia, 2013).

Despite extensive experimental and theoretical work, the key de-

terminants of antibody specificity and evolvability are still poorly

understood, mainly because the sequence-to-affinity relation-

ship is difficult tomeasure comprehensively or to predict compu-

tationally (Esmaielbeiki et al., 2016).
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A major confounding factor in characterizing the sequence

dependence of any protein function, including affinity, is the

pervasiveness of epistasis, the phenomenon by which different

mutations interact with each other (Phillips, 2008). Theory

(Carter et al., 2005; Good and Desai, 2015; Paixão and Barton,

2016) and genomic data (Breen et al., 2012) suggest that inter-

and intragenic epistasis play a major role in molecular evolution

by constraining the set of accessible evolutionary trajectories

toward adapted phenotypes (Weinreich et al., 2006; Poelwijk

et al., 2007; Gong et al., 2013; Anderson et al., 2015; Podgor-

naia and Laub, 2015), enhancing evolvability through stabiliza-

tion of mutations (Bloom et al., 2006, 2010), or slowing down

adaptation by the law of diminishing returns (Chou et al.,

2011; Kryazhimskiy et al., 2014). Evidence for epistasis in anti-

body affinity includes direct observations of co-operativity

between mutations (Midelfort et al., 2004; Koenig et al.,

2015), the dependence of mutational effects on sequence

background (Boyer et al., 2016), and statistical co-variation of

residues in large sequence datasets (Mora et al., 2010; Asti

et al., 2016).

Intragenic epistasis has mostly been studied either by

measuring the fitness of all possible mutational intermediates

between two variants (Weinreich et al., 2006; Schenk et al.,

2013; Szendro et al., 2013; de Visser and Krug, 2014) or by

comparing the effect of mutations in different backgrounds (Jac-

quier et al., 2013; Bank et al., 2015; Boyer et al., 2016). Many

such studies rely on a particular measure of fitness rather than

a well-defined physical phenotype. Deep mutational scans

(DMS) (Fowler and Fields, 2014; Sarkisyan et al., 2016) can

comprehensively map out the epistatic landscape of many ge-

netic variants (Araya et al., 2012; Olson et al., 2014; Podgornaia

and Laub, 2015). However, most DMS methods do not measure

the biophysical quantity of interest directly (Vodnik et al., 2011),

introducing both non-linearities and noise that could bemisinter-

preted as epistasis.

Here, we analyze the detailed epistatic landscape of an anti-

body’s binding free energy, which we define as the logarithm

of the Tite-Seq measurement of the dissociation constant, to

its cognate antigen (the 4-4-20 antibody fragment against fluo-

rescein), using data previously obtained by Tite-Seq, a recently

introduced DMS variant that accurately measures protein bind-

ing affinity in physical units of molarity (Adams et al., 2016). By

comparing to a simple additive model of mutations on the
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Figure 1. Additive Model of Binding Affinity

(A) 4-4-20 scFv antibody sequence. Six comple-

mentarity determining regions (CDR: 1L, 2L, 3L,

1H, 2H, and 3H) are particularly important for

antibody binding affinity. A library of antibody se-

quences with mutations in 10 amino acid regions

around the CDR1H and CDR3H domains were

expressed using yeast display.

(B) Using Tite-Seq, the binding constants Kd of all

600 single codon mutants, 1,100 random double

codon mutants, and 150 random triple codon

mutants, were measured.

(C) TheKd of singlemutants for 1H and 3Hdomains

were used to create position weight matrices

(PWMs) to predict the affinity of double and triple

mutants. Kd measurements were restricted to the

reliable measurements interval of 10�9.5 to 10�5M.

WT sequences are marked with purple dots, opti-

mized 4M5.3 (RRID: Addgene_41844) mutations

are marked in green dots.

(D) Comparison between the PWM prediction and

the measurement of Kd on double and triple mu-

tants. PWM predictions outside of our reliable

readout interval (10�9.5 to 10�5 M) were evaluated

at the interval boundaries. The PWMs explained a

significant portion of the variance, as quantified by

the explained variance R2 (p < 10�61 for CDR1H,

p < 10�48 for CDR3H, F test for reduction in vari-

ance due to PWM). PWMs trained from the bind-

ing free energy, F = lnðKd=c0Þ, outperformed

PWM trained from Kd (Figure S3) as well as

models without boundaries (Figure S4).
binding free energy, and carefully controlling for measurement

noise and nonlinearities, we find that epistasis significantly con-

tributes to the antibody’s affinity. This epistasis is not uniformly

distributed but instead favors certain residue pairs across the

protein. We use our results to analyze how epistasis both con-

strains and enlarges the set of possible evolutionary paths lead-

ing to high-affinity sequences.

RESULTS

Position Weight Matrix Model of Affinity
We analyzed data from (Adams et al., 2016) (https://github.

com/jbkinney/16_titeseq), where Tite-Seq was applied to mea-

sure the binding affinities of variants of the 4-4-20 fluorescein-

binding scFv antibody, henceforth called ‘‘wild-type.’’ Libraries

were generated by introducing mutations to either the CDR1H

or CDR3H domains restricted to 10 amino acid stretches called

1H and 3H (Figure 1A). All single amino acid mutants, 1,100

random double amino acid mutants, and 150 triple amino

acid mutants were generated in multiple synonymous variants

and measured (Figure 1B). Using a combination of yeast

display and high-throughput sequencing at various antigen

concentrations, Tite-Seq yielded the binding dissociation con-

stant Kd (in M or mol/L) of each variant with the fluorescein

antigen.

We first tried to predict the Kd of double and triple mutants

from single mutant measurements. Mutations are expected to

act on the binding free energy in an approximately additive

way (Wells, 1990; Olson et al., 2014). One may thus write the

free energy of binding, F = lnðKd=c0Þ (defined up to constant in
units of kBT), as a sum over mutations in themutagenized region,

s = ðs1;.;slÞ:

FðsÞzFPWMðsÞ=FWT +
Xl

i =1

hiðsiÞ; (Equation 1)

where FWT is thewild-type sequence energy, and hisi is the effect

of a mutation at position i to residue si. The elements of the po-

sition-weight matrix (PWM) hiðsiÞ are obtained from the Kd of sin-

gle mutants shown in Figure 1C. Since Tite-Seq measurements

are limited to values of Kd ranging from 10-9.5 to 10-5, for consis-

tency PWMpredictions outside this rangewere set to the bound-

ary values. The PWM was a fair predictor of double and triple

mutants (Figure 1D), accounting for 62% (p < 10-61, F test) of

the variance for 1H mutants and 58% (p < 10�48, F test) of the

variance of 3H mutants. In contrast, a simple model based on

BLOSUM62 scores (quksza et al., 2017) achieved far lower R2

scores of 22 and 3% for the CDR-1H and 3H domains, respec-

tively Figure S1).

The unexplained variance missed by the PWM model may

have four origins: convolution with expression, nonlinear effects,

measurement noise, and epistasis. Tite-seq was developed

specifically to separate the measurement Kd and expression.

From Pearson’s correlation between expression and log(Kd),

we find that expression explains 6% and 12% of the R2 for

CDR1H and CDR3H, respectively (Figure S2). Furthermore,

the residual from the PWM prediction, F � FPWM, had almost

no correlation with expression (R2 < 0.1% for 1H, R2 < 0.2%

for 3H, Figure S2). Log transformed expression values yielded

similar but smaller contributions. The second ‘‘non-linear
Cell Systems 8, 86–93, January 23, 2019 87
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effects’’ case corresponds to the hypothesis of additivity not

being valid for F = lnðKd=c0Þ but for some other non-linear trans-

formations of F. Such a non-linearity, also called ‘‘scale,’’ can

lead to spurious epistasis (Fisher, 1918; Phillips, 2008). We first

checked that additivity did not apply to the untransformed

dissociation constant, Kd: a PWM model learned from Kd

instead of F could only explain 34% of the variance of all 1H

and 3H multiple mutants, down from 62% when learning

from F (Figure S3). Refitting Tite-seq values with no boundary

constraints yielded much worse PWM models, largely attribut-

able to poor estimates of poorly binding antibodies (Figure S4).

We then looked for the nonlinear transformation E(F) that would

give the PWM model with the best predictive power (STAR

Methods; Figure S5). This optimization yielded only a modest

improvement to 65% of the explained variance. In addition,

the optimal function E was very close to the logarithm (R2 =

97%, Figure S6). Since nonlinear effects do not play a signifi-

cant role, henceforth, we only consider the PWM model defined

on the free energy.

Epistasis Affects Affinity
To identify epistasis, we estimated the difference between the

measured binding free energies of double and triple mutants,

F(s), and the PWM prediction, FPWMðsÞ (Figure 2A). However,

these small differences can be confounded by measurement

noise (Figure S7), which can bemistaken for epistasis. To control

for this noise, we defined Z-scores between two estimates of the

free energy, Fa and Fb, as Z = ðFa � FbÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2a + s2b

q
, where s2a and

s2b are their estimates of uncertainty. Uncertainty was either

measured as variance from replicate measurements and

synonymous mutations or as the sum of variances from additive

PWM contributions depending on context. We first computed

Z-scores between independent estimates of the same free

energy using synonymous variants (Zerror, STAR Methods).

Excluding mutants at the reliable readout boundary (10�9:5

M%Kd%10�5M), we found that the distribution of Zerror was

normal with variance z1 (Figure 2B, orange line), as expected

from Gaussian measurement noise. A comparison between

Tite-seq measurements and clones Kd measured from flow cy-

tometry was also approximately normal with variance z 1 (Fig-

ure S8), meaning that Tite-Seq introduced no systematic errors

in addition to those estimated from replicates.

We then estimated the effect of epistasis by calculating

Z-scores (Zepi) from the difference between the PWM predic-

tion, FPWM (Equation 1), and the measured F. The resulting dis-

tributions of Z-scores (Figure 2A, blue and red lines) had much

larger variances than expected from measurement noise (stan-

dard deviation 1.76 for 1H and 3.18 for 3H), indicating strong

epistasis. These epistatic effects were on average slightly bene-

ficial (positive Z): 18% of double mutants inside the reliable

readout boundaries (10�9:5M%Kd%10�5M) showed significant

beneficial epistasis (Zepi>1:64, corresponding to p < 0.05 in a

one-sided Z test), and 12% significant deleterious epistasis

(Zepi<� 1:64). Comparing the variance of Zepi with that of

Zerror gives a large fraction of the unexplained variance that is

attributable to epistasis, 1� VarðZerrorÞ=VarðZepiÞ= 60% for 1H

and 88% for 3H. While clones at the reliable readout boundaries

under-estimated measurement error, their inclusion yielded
88 Cell Systems 8, 86–93, January 23, 2019
more extreme results (Figure S9). PWMs trained from optimal

transformations had almost no effect on epistasis estimates

(Figure S10).

To determine whether certain positions along the sequence

concentrated epistatic effects, we computed the mean squared

Z-score for all double mutations at each pair of positions

(excluding median boundary values), revealing a complex and

heterogeneous landscape of epistasis (Figures 2C and S11 for

the epistasis magnitude superimposed on the wild-type’s

crystal structure). CDR3H, which interacts directly with the

antigen, is observed to have more epistatically interacting sites

than CDR1H. Interestingly, the three most epistatic pairs in

3H—between positions 101, 106, and 108—are mutated in the

previously described super-optimized 4M5.3 antibody (Boder

et al., 2000) (mutations shown in green in Figure 1B), consistent

with previous suggestions that positions 101 and 106 interact

together and with position 108 via hydrogen bonds (Midelfort

et al., 2004; Adams et al., 2016). Epistasis is usually expected

between residues that are in contact in the protein structure (Ro-

mero et al., 2013; Morcos et al., 2011; McLaughlin et al., 2012;

Zhang et al., 2013; Melamed et al., 2013), as for instance

between positions 101 and 106. However, the mean squared

Z-score is only weakly correlated with residue distance (r =

�0.13, p = 0.22 for 1H, r = �0.27, p = 0.022 for 3H, Figure S12).

Additionally, while distance to antigen has been shown to predict

how strongly mutations affect binding affinity (Brenke et al., 2012;

Kepler et al., 2014), we did not detect a strong relationship be-

tween epistatic contributions and distance to antigen (r = �0.24,

p = 0.511 for 1H, r = 0.19, p = 0.603 for 3H, Figure S12F). This

may be due in part to this study’s mutated region being too close

to the antigen to detect an association: 12 out of the 20 mutated

residues are within 10 Å of the antigen and all 20 are within 16 Å.

We next looked for evidence of ‘‘sign epistasis,’’ where one

mutation reverses the sign of the effect of another mutation (Fig-

ure 2A). Sign epistasis can constrain evolution by blocking paths

to fit sequences (Weinreich et al., 2006; Poelwijk et al., 2011;

Weinreich et al., 2005). We defined a Z-score for a single muta-

tion A quantifying the beneficial effect of that mutation relative to

the noise, ZA = ðFWT � FAÞ=sA, where FWT and FA are the wild-

type and mutant-free energies and s is the measurement error

estimated as before. Since we are only interested in the sign

of the effect, we kept single mutants at the reliable readout

boundary. An equivalent Z-score was defined for a mutation A

in the background of an existing mutation B: ZAjB = ðFB �
FABÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2A + s2AB

q
, where FAB is the free energy of the double

mutant AB. Significant sign epistasis was defined by ZAjBZA < 0

and
��ZAjB

��; jZAj>1:64, and reciprocal sign epistasis by the addi-

tional symmetric condition A4B.

With a 5% false discovery rate (Benjamin Hochberg proced-

ure), we found 52 significant sign epistasis examples. These

are listed in S1_table_sign_epistasis.csv and summarized in

Tables S1 and S2. Deleterious sign epistasis was exceptional,

with 3 instances in 1H and 6 in 3H. These cases, as well as the

four most significant cases of beneficial sign epistasis are de-

picted in Figure S13. These mutants represent evolutionary tra-

jectories blocked due to the poor binding affinity of their single

mutations. Among caseswhere both singlemutationswere dele-

terious, we found 4% (p < 10�15, binomial test) of mutants in 1H
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Figure 2. Quantification of Epistasis

(A) Epistasis is defined as deviation from the PWM

model, which assumes an additive effect of single

mutations on the binding free energy F = lnðKd=c0Þ
expressed in units of kBT. Deleterious epistasis

occurs when the measured energy exceeds the

PWM prediction. Beneficial epistasis occurs when

the energy is less than the PWM prediction. Sign

and reciprocal sign epistasis examples are shown

for a beneficial interaction.

(B) Distribution of Z-scores, defined as the

normalized deviation from the PWM prediction,

Zepi = ðFPWM � FÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 + s2PWM

q
, where s2 and

s2PWM are the estimated errors on F and FPWM.Kd at

boundaries are removed. Positive Z-scores indi-

cate epistasis increased affinity. The Z-score

standard deviation was much higher than ex-

pected from measurement errors (Z error) for

CDR1H (1.78, p < 10�16, Levene’s test) and

CDR3H (3.18, p < 10�48), meaning that the

discrepancy between the PWM and measurement

is mainly due to true epistasis.

(C) Standard Z-score deviation for each pair of

positions along the sequence. This deviation is

higher at pairs of positions mutated in the super-

optimized 4M5.3 antibody (green dots) in 3H (p =

0.005, Mann-Whitney), but not in 1H (p = 0.36).

(D and E) A model of biochemical epistatic in-

teractions between polar, nonpolar, acidic, and

basic residues was fitted to the data using LASSO

regularization and tested by cross-validation,

yielding (D) 34 beneficial, and (E) 32 deleterious

interaction terms. Line width denotes interaction

strength.

(F) Number V of amino-acid sequences of the 1H

(blue) and 3H (red) regions with dissociation con-

stant below Kd, as estimated by the PWM model

(dark color) or the epistatic model (light color).

Epistasis enlarges the number of variants with

good affinity for both 1H and 3H.

(G) Mutational flux A (defined as the average

number of random mutation events from all

possible sequences to cause the dissociation

constant to cross Kd), normalized by V, showing

that epistasis also increases the accessibility of

the region of good binders in sequence space.

Differences between the PWM and epistatic

models were robust to errors in the estimate of

the interaction parameters (p < 10�5, Jackknife

analysis).
and 0.8% (p < 10�7, binomial test) in 3H with significant benefi-

cial epistasis versus 0.06% expected by chance (the null expec-

tation, which takes into account the constraint that ZA + ZBjA =

ZB + ZAjB, is defined in the STARMethods); 1% (p < 10�15, bino-

mial test) were reciprocal in 1H, and 0.4% (p < 10�10, Binomial

test) in 3H, versus 0.01% expected by chance. To evaluate

how these epistatic interactions may affect affinity maturation,

we estimated how often ‘‘viable’’ double mutants were sepa-

rated from the wild-type by nonviable single mutants, where

viability is defined by Kd < 10�6 M (Batista and Neuberger,

1998; Foote and Eisen, 1995; Roost et al., 1995), forming

possible roadblocks to affinity maturation. This strong instance

of ‘‘rescue’’ epistasis occurred in roughly half of the mutants

with beneficial sign epistasis (Tables S1 and S2).
Modeling Epistasis and Its Impact on Affinity Maturation
To integrate the observed epistatic interactions into a predictive

model of affinity, we introduced a model of binding free energy

as the following:

FðsÞzFpairwiseðsÞ=FPWMðsÞ+
X
i<j

Jijðsi; sjÞ; (Equation 2)

where Jij is the interaction strength between residues at posi-

tions i and j. To avoid overfitting and allow for independent vali-

dation (in the absence of a sufficient number of triple mutants),

we grouped residues into 4 biochemical categories (Voet and

Voet, 2011) (polar, nonpolar, acidic, and basic; STAR Methods)

and let the entries of J only depend on that category.
Cell Systems 8, 86–93, January 23, 2019 89



We trained the model on the 1,208 1H or 1,216 3H double and

triple mutants, using a Lasso penalty to control for overfitting.

The optimal penalty was set by 10-fold cross-validation, i.e. by

maximizing the explained variance of a subset comprising 1/10

of the mutants by using a model trained on the remaining 9/10,

averaged over the 10 subsets (Figure S14A; STAR Methods). In-

teracting pairs with posterior probabilities >0.95 as determined

by Bayesian Lasso (Park and Casella, 2008) are shown in Figures

2D and 2E.

Out of the 360 possible terms, 52 1H and 45 3H interaction

terms were identified by this method. Although these interac-

tions, whose number is limited by the number of measured var-

iants, only modestly improved the explained variance relative to

the PWM in all multiple mutants (from 62% to 64% for 1H and

from 58% to 60% for 3H), it substantially improved the affinity

prediction of the mutants with significant epistasis (R2 from

27% to 50% in 1H and from 13% to 44% in 3H, Figures S14B

and S14C). In contrast, a null linear regression model based on

the Miyazawa-Jernigen matrix had negligible improvement on

R2 (Figure S15) (George et al., 2017) Notably, two mutations of

the super-optimized 4M5.3 antibody are predicted by the model

to have epistatic interactions, a slightly deleterious effect be-

tween A101 and L108, and a strongly beneficial one between

S102 and L108. While these results show some generalizability

of biochemical properties, the corresponding model only ac-

counts for a small fraction of the variance explainable by epis-

tasis. A more sophisticated approach may be warranted for fully

predicting epistatic contributions.

Next we used our models to estimate the diversity, or ‘‘degen-

eracy,’’ of antibodies with good binding affinity. Specifically, we

evaluated the degeneracy volume V of high-affinity sequences

as the number of sequences with Kd < B, using either the

PWM (Equation 1) or pairwise (Equation 2) models, and using a

combination of exhaustive and Monte-Carlo sampling (STAR

Methods). Compared to the coarse-grained pairwise model

trained previously, the interaction strength Jwas learned directly

for each residue pair, without grouping by biochemical category

and with no Lasso penalty. The volume of 1Hmutants was larger

than that of 3H mutants (Figure 2F), in agreement with the fact

that CDR3H plays a more important role in binding affinity. Epis-

tasis increased the recognition volume for both domains, consis-

tent with the previous observation that epistatic effects are, on

average, more beneficial than deleterious. To explore the diver-

sity of evolutionary paths leading to recognition, we computed

the neutral mutational flux A in and out of the high-affinity region

as the probability that a random mutation in a high-affinity

sequence (Kd < B) causes loss of recognition (Kd > B), summed

over all high-affinity sequences (STAR Methods). Again, our

models show increasedmutational flux due to epistasis, even af-

ter normalizing by volume, A/V (Figure 2G). The effect is small,

but only reflects the impact of epistasis from the limited,

randomly chosen set of double mutations that we measured,

which comprises only �7% of all possible double mutations of

a 10 amino acid sequence (1,058 for CDR1H, and 1,066 for

CDR3H, out of 16,245). We speculate that differences in flux

arising from all epistatic interactions may be up to 15-fold stron-

ger. Adding explicit selection to the mutational model would also

affect the results but would require that additional assumptions

are made about how binding affinity and selection are linked.
90 Cell Systems 8, 86–93, January 23, 2019
The neutral mutational flux analysis allows for comparisons

that do not depend on such an explicit model of selection.

We checked that these differences were robust to sampling

noise and overfitting by performing a jackknife analysis (p <

10�5) for the difference in A and V between the PWM and pair-

wise models, STAR Methods, and verified that similar conclu-

sions were obtained based on the optimized nonlinear transfor-

mation (Figure S16).

DISCUSSION

By analyzing massively parallel affinity measurements obtained

by Tite-Seq, we obtained a detailed picture of epistasis in a

well-defined physical phenotype—the binding free energy of

an antibody to an antigen. Here, we define the free energy as

the logarithm of the dissociation constant as measured by

Tite-Seq and the yeast display assay. While our analysis of epis-

tasis strictly applies to that measured phenotype and not directly

to the free energy, these two quantities are believed to be equiv-

alent (VanAntwerp and Wittrup, 2000). We showed that antibody

sequences contain many epistatic interactions, and that many of

these interactions increase affinity. Our approach involves first

training an additive (PWM) model as a baseline, and identifying

departures from that model as epistasis. In this comparison, a

crucial step was to correct for the two issues of scale and mea-

surement noise.

The first issue, identified by Fisher (Fisher, 1918) and also

called unidimensional epistasis (Szendro et al., 2013), is the

idea that an epistatic trait becomes additive upon a different

parametrization (Sailer and Harms, 2017a). For instance, protein

stability, which often determines fitness, is a nonlinear function

of the folding free energy difference, which is expected to be

roughly additive (Bloom et al., 2005; Bershtein et al., 2006; Jac-

quier et al., 2013; Gong et al., 2013; Serohijos and Shakhnovich,

2014; Bank et al., 2015; Sarkisyan et al., 2016). This leads to both

a law of diminishing returns (Bank et al., 2015) and robustness to

mutations when the protein is very stable (Bloom et al., 2005). To

disentangle these potential artifacts, we defined our PWMon the

binding free energy, which we expect to be additive in sequence

content, and we checked that this parametrization was close to

minimizing epistasis.

To tackle the second and perhaps more important issue of

noise, especially in the context of deep mutational scans where

many variants are tested (Araya et al., 2012), we developed a

robust methodology based on Z-scores to identify epistatic in-

teractions as significant outliers. This analysis showed that the

variability in binding free energy consists of�60% of additive ef-

fects, �25%–35% of epistatic effects, and the rest of experi-

mental noise, making the epistatic contribution to the phenotype

substantial compared to that of single mutations. A large fraction

of that epistasis was beneficial, in contrast with previous reports

of mostly negative epistasis owing to the concavity of the scale

(Bershtein et al., 2006; Schenk et al., 2013; Bank et al., 2015),

which we here circumvent by directly considering the free

energy.

Epistasis is key to understanding the predictability and repro-

ducibility of evolutionary paths (L€assig et al., 2017; Kryazhimskiy

et al., 2014). Previous studies have shown that much of the

unexplained phenotypic variance could be explained by



second-order epistatic terms, although specific evolutionary tra-

jectories may be sensitive to higher order epistatic terms (Sailer

and Harms, 2017b; Poelwijk et al., 2017). Our results show how

second-order epistasis could constrain the space of possible hy-

per-mutation trajectories during affinity maturation, with impor-

tant consequences for antibody and vaccine design, as the

importance of eliciting responses of antibodies that are not just

strongly binding but also evolvable is being increasingly recog-

nized (Wang et al., 2015). Targeting epistatic interactions may

provide an alternative strategy for optimizing antibody affinity:

among the 2 epistatic hotspots in CDR1H and the 11 in

CDR3H that we identified
�
hZ2

epii
1
2 > 3

�
, 4 involved positions

mutated in the super-optimized 4M5.3 antibody sequence,

with a higher epistatic contribution than expected by chance.

This is consistent with a previous study where an antibody with

multiple conformations acquired mutations that stabilized the

antibody structure, resulting in a single conformation (Wede-

mayer et al., 1997). We also identified 3 cases of beneficial

sign epistasis, in which the double mutant was fit despite the sin-

gle mutant being deleterious. For instance, the D108E mutations

in 4M5.3 is deleterious by itself but is rescued beyond the wild-

type value by the S101A mutation (Midelfort et al., 2004), which

occurred first in the directed evolution process (Boder et al.,

2000).We report 15 extreme cases of viable (Kd < 10�6M) double

mutants whose single-mutant intermediates are nonviable,

possibly blocking affinity maturation. However, our analysis of

the volume and mutational flux of the region of low binding free

energies in sequence space suggests that epistasis facilitates

the evolution of high-affinity antibodies (Figures 2F and 2G).

Therefore, we speculate that interactions with the non-mutated

parts of the sequence and evolution of the antigen binding

partner can either add further constraints or open up addi-

tional paths.

Antibodies pose unique questions about the evolvability of

evolution (Wagner and Altenberg, 1996). What sort of sequence

space would favor quick accessibility while maintaining a small

number of viable sequences (Perelson and Oster, 1979)? A land-

scape could contain small, permeable, easily evolvable recogni-

tion spaces, or could contain large, hard to access, and robust

sequences depending on the prevalent epistatic contributions

(Carter et al., 2005). Such a bias could suggest that the tradeoff

of an epistatic landscape would include fast initial evolution, fol-

lowed by slow incremental evolution (Good and Desai, 2015).

Our observations, deviating around a viable antibody variant,

support a model where epistasis plays a lesser role in deter-

mining binding affinity than PWM terms, but could still have far

ranging impacts. These impacts would include fast initial or

slow long-term evolution, the blocking of paths to beneficial mu-

tations, while paradoxically increasing the accessibility of anti-

gen recognizing sequences.

Taken together, our results show the importance of taking into

account epistasis when predicting antibody evolution and guid-

ing vaccine design. We note that, while the yeast display system

we studied is highly correlated to alternative measures of affinity

(Gai and Wittrup, 2007), antibodies could behave differently un-

der alternative environments. Specifically, a soluble antibody

may experience different interactions with the environment and

be subject to different constraints than an antibody expressed
on a cellular surface. Nevertheless, our systematic approach

for identifying and quantifying epistasis, which controls for scale

and noise, can be used by other investigators to analyze deep

mutational scans of protein function in awide variety of biological

contexts.
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STAR+METHODS
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Thierry

Mora (tmora@lps.ens.fr).

METHOD DETAILS

Position Weight Matrix
The amino-acid sequence of the 10 amino acid stretches of the CDR1H or CDR3H domains are denoted by s = ðs1;.;s10Þ. The cor-

responding 30-long nucleotide sequences are denoted by v. The binding free energy F(s) of an amino-acid variant is obtained as the

mean over 3 replicate experiments, and over all its synonymous variants:

Values of Kd as Measured by Tite-Seq for Variants of the 4-4-20 Fluorescein-Binding Antibody (RRID: Addgene_41845) (Adams

et al., 2016) can be found at https://github.com/jbkinney/16_titeseq.

The scripts used for the analyses presented here are available at https://github.com/rhys-m-adams/epistasis_4_4_20.

FðsÞ= 1

NðsÞ
X
a

X
v˛SaðsÞ

lnðKdðv; aÞ=c0Þ; (Equation 3)

where SaðsÞ is the set of measured nucleotide sequences that translate to s in replicate a, and NðsÞ=P
a
jSaðsÞj is a normalization

constant.

The elements of the PWM are defined as hiðqÞ = Fðsði;qÞÞ � FWT, where sði;qÞ is the single mutant mutated at position i to residue q,

and hiðqÞ= 0 when q is the wild-type residue at position i.

Optimal Nonlinear Transformation of the Free Energy
To test whether transforming F through a nonlinear function E(F) before learning the PWM could improve its predictive power, we

defined the nonlinear additive model:

FðsÞzf ½EPWMðsÞ�; EPWMðsÞ=EWT +
X
i

~hiðsiÞ; (Equation 4)

where f =E�1 is the inverse function of E, ~hiðqÞ = Eðsði;qÞÞ � EWT, and E(s) is evaluated similarly to Equation 3:

EðsÞ = ð1=NðsÞÞP
a

P
v˛SaðsÞ

E½lnðKdðvÞ=c0Þ�.

To find the transformation E that gives the highest explained variance while avoiding overfitting, we aimed tominimize the following

objective function:

O½E�=
X
S

½EPWMðsÞ � EðsÞ�2 +a

Z
dFjE00ðFÞj2; (Equation 5)

where the sum in s runs over double and triple mutants, and a is a tunable parameter.

Numerically, we parametrize the function E(F) as piecewise linear: EðFÞ=Ei3ðFi + 1 � FÞ=dF +Ei + 13ðF � FiÞdF for Fi % F%Fi +1,

where Fi are equally spaced grid points along F, dF = Fi +1 � Fi, and Ei the value ofE at these points. The smoothing penalty is approx-

imated by a sum over the squared discretized second derivative:Z
df jE00ðFÞj2z

X
u

ðEi + 1 +Ei�1 � 2EiÞ2
.
dF3:

We minimize O½E�zO½E1;$;EN� as a quadratic function of its arguments ðEiÞ, while imposing boundary constraints on the PWM

prediction and the requirement that E is a increasing function of F (i.e. Ei +1 >Ei), using the python package cvxopt (Andersen

et al., 2013).

The hyper-parameter a is evaluated by maximizing the generalized cross-validation of the coefficient of determination

R2 = 1�hP
s˛S

�
E\S
PWMðsÞ � E\SðsÞ�2
Vars˛S½E\SðsÞ� i

S

; (Equation 6)

where E\S andE\S
PWM are learned through optimizing Equation 5, but after removing from the dataset a subsetS of themultiplemutants

comprising one tenth of the total. The average is over ten nonoverlapping subsets S.

This method was first tested on simulated data. Each PWM element ~hiðqÞ was drawn from a normal distribution of zero mean and

variance 1, and then EPWMðsÞwas computed for each of the antibody sequences present in our data. Our simulated ‘‘measurement’’

was defined as a function of a noisy realization of E =EPWM + 3(where 3is some Gaussian noise) in four different ways: linear F=E,
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exponential F=exp(E), high-frequency F=2E+sin(2E), and logistic F=1/[1+exp(�E)]. 3was drawn from a centered normal distribution

with 1/2 the standard deviation of EPWM. Fwas then truncated to the 200th lowest and 200th highest values, to mimick the boundary

cutoff in our measurements. Comparing our original EPWM to our fit Ê shows that our method is able to infer the true PWMmodel and a

smooth nonlinearity from noisy data (Figure S5).

We then applied the method to the experimental data. The cross-validation R2 is represented as a function of the smoothing

parameter a in Figure S6A, and the corresponding optimal function E(F) in Figure S6B. The comparison between measurement

and the PWM model is shown in Figure S6C.

Z-Scores
We used synonymous mutants to estimate our measurement error. The mean free energy of a nucleotide sequence is defined as the

mean over replicate measurements: FðvÞ = hlnðKdðv; aÞÞia, and the standard error s(v) is defined accordingly as the pooled error over

replicates. Antibodies with Kd or single mutant PWM contributions having median values at the boundary values of 10�9.5 or 10�5

were excluded from the analysis since these values artificially cluster at the boundary, leading to underestimates of error.

The error Z-score was calculated between pairs of nucleotide sequences with the same amino acid translation: Zerrorðv; v0Þ =
ðFðvÞ� Fðv0ÞÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðvÞ2 + sðv0Þ2

q
.

Epistatic Z-scores were estimated by calculating the measurement error over both replicates and synonymous variants, as in

Equation 3:

s2ðsÞ=

P
a

P
v˛SaðsÞ

½lnðKdðv; aÞ=c0Þ � FðsÞ�2

NðsÞðNðsÞ � 1Þ (Equation 7)

and the pooled standard error for a PWM prediction, calculated as the sum of measurement errors from single mutations:

s2
PWMðsÞ=

X
i

s2
i ðsiÞ; (Equation 8)

where siðqÞ = sðsði;qÞÞ, and siðqÞ= 0 when q is the wildtype residue at i. The epistatic Z-score is defined as:

ZepiðsÞ= FPWMðsÞ � FðsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2ðsÞ+ s2

PWMðsÞ
p : (Equation 9)

Null Model for Sign Epistasis
To calculate p-values for sign epistasis, we used the following null model for sets of four Z-scores satisfying ZA + ZBjA = ZB + ZAjB.
Calling x1 = ZA; x2 = ZBjA; x3 = � ZAjB; x4 = � ZA, the condition becomes that each xi has zero mean and variance one, with the

constraint
P4

i =1xi = 0. The distribution with maximum entropy satisfying these requirements is a centered multi-variate Gaussian

uniquely defined by its covariance matrix hx2i i= 1 and hxixji=�1=3 for isj. The p-value for sign epistasis, ZA > 1:65 and ZAjB < 1:65,

was estimated by Monte Carlo sampling under a Gaussian distribution as

Prðx1>1:65&x2>1:65Þ+
Prðx3>1:65&x4>1:65Þ�
Prðx1>1:65&x2<� 1:65&x3>1:65&x4<� 1:65Þ
= 5:6$10�4

, and the

probability for reciprocal sign epistasis as

Prðx1>1:65&x2<� 1:65&x3>1:65&x4<� 1:65Þ= 9:8$10�5. The threshold of 1.65, in contrast to the previous threshold of 1.64, was

determined by applying the Benjamin-Hochberg method for limiting false discovery to 0.05.

Epistatic Model
The epistatic terms of the pairwise model were made to depend on the biochemical categories of the interacting residues, Jijðsi;sjÞ =
~JijðbðsiÞ;bðsjÞÞ, with b(s)=nonpolar for s=AFGILMPVW, b(s)=polar for s=CNQSTY, b(s)=acidic for s=DE, and b(s)=basic for s=HKR. A

fifth category was added to correspond to the wildtype residue, so that ~Jijðwildtype;bÞ = ~Jijðb;wildtypeÞ = 0. The model was trained

by minimizing the mean squared error with a regularization penalty over all matrices ~Jijðb;b0Þ:
X
s

h
FðsÞ � Fpairwise

�
s; ~J

�i2
+ l

X
ijbb0

��~Jijðb;b0Þ��: (Equation 10)

The Lasso penalty lwas learned by 10-fold cross-validation, and energy terms found in less than 2 sequences were excluded from

the fit. Posterior values for ~J terms were calculated using Bayesian Lasso (Park and Casella, 2008).

The volume and mutational flux were defined as:

VðBÞ=
X
s

QðB� KdðsÞÞ (Equation 11)
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AðBÞ=
X
s

QðB� KdðsÞ Þ 1

19[

X
s
0 jdðs;s0 Þ= 1

Q
�
Kd

�
s

0	� B
	
; (Equation 12)

where t(x) is the Heaviside function, i.e. t(x)=1 if xR0 and 0 otherwise; d(s,s’) is the Hamming distance between two sequences; and

[=10 is the sequence length. The normalization 193[ corresponds to the number of mutants s’ at Hamming distance 1 from s. The

sums over s in Equations 11 and 12 have 2010 elements and are computationally intractable. To overcome this, we approximated the

sum using a mixture of Monte-Carlo and complete enumeration, depending on the distance of s from the wildtype. Calling Cd the set

of sequences s at Hamming distance d from wildtype, we used:

X
s

gðsÞz
Xl

d =0

jCdj��� ~Cd

���
X
s˛ ~Cd

gðsÞ (Equation 13)

where g(s) is a function of s to be summed such as in V or A in Equations 11 and 12, and ~Cd is a random subset ofCd of size minðjCdj;

PdÞ, with Pd =



l
d

�
3



PP=



l
d

�
R
�

+ 1, where P is the maximum number of sequences one is willing to sample completely at

each d to perform the estimation, and where jCdj =



l
d

�
19d. For small d, when jCdj%Pd, the enumeration is complete, while for

large d and jCdj>Pd, the sum is estimated from a uniformly distributed Monte Carlo sample of Cd.

QUANTIFICATION AND STATISTICAL ANALYSIS

All analyses were performed using Python 3.6. Standard statistical tests such as F-test for model comparison (Figures 1C and 1D),

Kolmogorov-Smirnov test for normality (Figure 2B), Levene’s test for equal variance (Figure 2B), Mann-Whitney test for equal

epistatic contributions by residue position (Figure 2C), and Binomial test for enrichment of sign epistasis (Method Details: Null model

for sign epistasis) were performed using the scipy.stats module. Bayesian Lasso (Figures 2D and 2E), cross-validation (Figures 2D

and 2E), and jackknifing (Figures 2F and 2G) estimates of probabilities are described in Method Details, were implemented using

Python 3.6, and can be found at https://github.com/rhys-m-adams/epistasis_4_4_20.

DATA AND SOFTWARE AVAILABILITY

The scripts used for the analyses presented here are available at https://github.com/rhys-m-adams/epistasis_4_4_20. The original

data is stored in BioProject PRJNA344711, and its original analysis including Kd measurements can be found at https://github.com/

jbkinney/16_titeseq.
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