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Viruses like influenza have long coevolved with host immune systems, gradually shaping the evolutionary
trajectory of these pathogens. Host immune systems develop immunity against circulating strains, which in turn
avoid extinction by exploiting antigenic escape mutations that render new strains immune to existing antibodies
in the host population. Infected hosts are also mobile, which can spread the virus to regions without developed
host immunity, offering additional reservoirs for viral growth. While the effects of migration on viral persistence
have been investigated, we know little about how antigenic escape coupled with migration changes the survival
and spread of emerging viruses. By considering the two processes on equal footing, we show that on short
timescales an intermediate host mobility rate increases the survival probability of the virus through antigenic

escape. We show that more strongly connected migratory networks decrease the survival probability of the virus.
Using data from high traffic airports, we argue that current human migration rates are beneficial for viral survival.
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I. INTRODUCTION

Viruses and their hosts have coevolved since the earliest
form of cellular life [1]. In humans and other jawed ver-
tebrates, infected hosts produce a specific adaptive immune
response through the activation and proliferation of specific B
and T cells that prevent viral spreading and kill infected cells.
Once the infection has been cleared, hosts retain an immune
memory in the form of memory B and T cells, enabling rapid
response in the case of reinfection [2,3]. This long-lasting
immune protection places strong selective pressures on cir-
culating pathogenic strains, driving the coevolution of viral
surface proteins in the face of ever-adapting immune protec-
tions [4-8].

The evolution of the influenza virus is an example of
the coevolutionary feedback experienced by viruses and the
population of its host immune systems [8—11]. Globally cir-
culating influenza strains compete for hosts, which produces
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a selective force acting on the genetic variation within the
influenza population [12,13]. Together, selection and viral
mutations occurring at high rates fuel the rapid emergence
of new antigenic variants which in turn lead to the evolution
of host immune systems that acquire protection [5,8,14,15].
Recent in-laboratory expression of historical 20th century
influenza strains shows that the virus did undergo antigenic
escape [15,16].

The influenza virus has been stably evolving in humans for
a long time [10], finding itself now in a coevolutionary steady
state [17]. While selection pressures acting on influenza B
strains have led to the coexistence of two stable lineages,
Victoria and Yamagata, the evolution of influenza A/H3N2
has resulted in one stable lineage since the late 1960s. Dimen-
sionality reduction of strains within influenza A/H3N2 [18,19]
shows that the antigenic escape is well described in terms of a
one-dimensional traveling antigenic wave [19-24].

Antigenic wave descriptions of coevolution assume a
single well-mixed host population, ignoring spatial effects.
Large-scale spatial models of epidemiology have been instru-
mental in guiding policies and explaining epidemic dynamics
[25-28], but usually do not include antigenic escape. Host
migration is known to be an important factor in influenza
spreading [12,29-32]. The effect of fragmenting a popula-
tion into many subpopulations is known to strongly affect
the persistence of species in different ecological scenarios
[33,34], and a similar fragmentation of potential hosts can

Published by the American Physical Society
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FIG. 1. Schematic illustrating the different spaces encompassed by the model. (a) Network space. Demes of constant population sizes
communicate through host migration. (b) Antigenic space. Within each deme, the dynamics follow the model described in Egs. (1) and (2).
(c) Geographical space. The connectivity of demes within the network is facilitated by the movement of infected people in geographic space.
In Sec. III E we connect the spaces in (a) and (b) to the geographic space described in (c).

change epidemiological features of a disease, such as the
epidemic threshold [35]. However, few models capture all
three features—epidemiological dynamics, antigenic escape,
and the spatial structure of populations—explicitly. Refer-
ences [36,37] treat epidemiological dynamics and antigenic
escape together in a well-mixed population, while Ref. [38]
explores the evolutionary impact of punctuated antigenic es-
cape. Others treat population structure and epidemic dynamics
[35,39] or network structure and evolutionary impact without
a host-disease model [40,41]. Ecologists have studied “eco-
evo coupling” with great interest in the past few decades as
mounting evidence shows the importance of such phenom-
ena, but often in well-mixed populations and at steady state.
Finally, spatial models of stochastic evolution have coupled
small population sizes with spatial structure, allowing indi-
viduals to migrate between spatially distinct patches which we
call demes, and explored the role of migration on population
survival [42-45], but these models have not been applied to
coevolutionary settings.

Here we focus on antigenic escape in a stochastic coevo-
lutionary model to study the effects of host migration on the
survival of a new viral strain following its outbreak. We ask
how the interplay between host spatial migration and evolu-
tion within an abstract antigenic space influences the survival
probability of the virus (Fig. 1).

II. MODEL

We describe viral-immune coevolution in terms of a
stochastic model of antigenic drift coupled to epidemiological
dynamics [24] in a population of identical hosts structured in
demes. We focus on mutations that are neutral besides their
interaction with the immune system and do not affect life-
history traits like transmission or recovery rates. Nevertheless,
these mutations can reduce the binding affinity between

antibodies and antigens, effectively allowing the evolved
strains to escape host immunity.

Individuals are well-mixed within each deme, and demes
are coupled by migration between them [Fig. 1(a)]. We de-
scribe the interactions between viruses and hosts with a
susceptible-infected-recovered (SIR) model. To effectively
describe the space of all possible antigenic strains, we intro-
duce a one-dimensional antigenic space [46] and label the
viral strains and host immunity by a continuous antigenic
coordinate x. While antigenic space is generally of higher di-
mension, canalized evolution makes it effectively one dimen-
sional [18,19] if we ignore rare splitting events [22,23]. The
density of hosts infected by strain x at a given time ¢ in deme i
is n;(x, t), and the fraction of hosts in deme i who are suscep-
tible to x is denoted by S;(x). Upon introduction into a deme
that is entirely susceptible to strain x [S;(x, t) = 1], the virus
will grow exponentially with a characteristic transmission rate
B. An infected host will mount an adaptive immune response
and clear the infection with a recovery rate y or die with rate
« such that on;(x, t)/0t = [BSi(x,t) — v — a]n;(x, t). For in-
fluenza infections in otherwise healthy human hosts, recovery
is the most common outcome, so we set &« = 0.

A viral strain x accumulates many antigenic mutations
that are small in magnitude such that it effectively diffuses
through the antigenic space with a diffusion coefficient D =
(8x)?/28t, where 8x is the typical effect size of a single muta-
tion occurring on a typical timescale §¢. The viral population
density in antigenic space changes due to fitness, migration,
and mutations,

on;(x,t
% =[BSi(x,t) —y —aln; + Z(Kijnj — Kjin;)
J#
ani
+ DW + o /&), ey
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where K;; is the migration rate from deme j to deme i and
&;(t) is a Gaussian white noise of unit amplitude. Unless
specified otherwise, K;; is symmetric so that all demes have
equal size at steady state. The parameter o corresponds to
the standard deviation of the reproductive number (see the
Appendix E).

In response to the viral strains, hosts evolve a population-
level immune density in each deme i, A;(x, ¢). For numerical
simplicity, we assume that each deme has a constant number
of hosts, N,. Each host has M immune protections and a
host infected by an unrecognized strain x randomly replaces
an existing protection with immunity to x, leading to the
dynamics

1
Ohi(x,1) = M—Nh[ni(x,t) — Ni(®)hi(x, 1)], @

where N;(t) = f n;(x, t)dx is the total number of infected
hosts in deme i. We assume immunity decays exponentially
with antigenic distance, with characteristic length ry. The
population-level immune coverage is defined as

ci(x,t) = / hi(y, t)e "1y, A3)

The probability for a potential host to be susceptible to x is
then given by the probability that none of their M memories
protect them from strain x,

Six, 1) = [1 = eix, O], “

This model was previously studied at steady state in
the case of a single deme [24]. It was shown to converge
to a stationary solution in a frame moving with constant
speed. The speed, size, and width of the wave depends on
the cross-reactivity range of the immune protection. Two
tractable regimes emerge when two timescales of the problem
are well separated: the typical escape time of a mutat-
ing virus and the basic doubling time of the virus in the
absence of immunity, k = rg(ﬁ — o — y)/D. For relatively
small ratios of these timescales (k < 10%), the coevolutionary
dynamics is described by a Fisher-Kolmogorov-Petrovsky-
Piskunov wave, and for large ratios (k > 10%) it is described
by a linear-fitness wave. Our simulations were done close
to the crossover regime, with parameter choices resulting
ink ~ 10,

In this paper we want to study the outbreak of a new
strain to which the population is entirely susceptible. To
do so, we initiate all the simulations with no immune
coverage h;(x,t =0) =0 and with a small number of in-
fected hosts appearing in a single deme, n;(x,# = 0) > 0 and
n#l(x,t =0)=0.

III. RESULTS
A. One deme

To build intuition, we first study the simplest model that
includes a single deme, eliminating spatial structure entirely.
To study the effect of antigenic mutations on the outbreak
dynamics, we numerically integrate Eqgs. (1) and (2). Our ini-
tial antigenic distribution is isogenic with Ny = 100 infected
individuals, all carrying the ancestor strain x = 0, n(x,t =
0) = Noé(x). We find that the survival of the viral population

is highly sensitive to noise stemming from population number
fluctuations [Fig. 2(a)]. The total number of infected individ-
uals

Ni(t) = /nl(x,t)dx (®)]

follows two possible scenarios during an initial outbreak.
After quickly rising to an outbreak peak, the infected host
count either falls to zero as hosts gain adequate immune
protection, leading to extinction (stochastic fade out) [47-50],
or rebounds if the viral population antigenically drifts suffi-
ciently far from the ancestor strain to escape host immunity
[Fig. 2(a)].

The escape probability depends on the total number of
hosts, as we see by increasing the number of hosts in a
one-deme case [Fig. 2(b)]. As N, — oo, the viral survival
probability in one deme approaches 1 because the virus has
more time to develop crucial escape mutations before exhaust-
ing its supply of susceptible hosts.

Survival of the viral population also depends on the anti-
genic diversity of an outbreak, depicted schematically in
Fig. 2(c). The variance of the density of infected hosts n; (x, ),
Vi(t) = (x?); — (x)], where averages are taken over vari-
ants in deme 1 according to measure n(x,t)/N;(t), gives
an estimate of the diversity of variants in the population.
Outbreaks with greater diversity have better access to novel
mutations and are more likely to escape. Seeding outbreaks
with Gaussian distributed initial n(x,r = 0) with different
values of V(t =0), we record the diversity at time 7 of
the outbreak peak, V(7). We find a linear dependence be-
tween the escape probability and the diversity at the outbreak
peak [Fig. 2(d)], showing that antigenic diversity influences
viral survival.

B. Two demes

To see how the coupling of mobility and antigenic diver-
sity influences viral escape, we turn to a two-deme system,
with a constant migration rate k between the two demes. The
off-diagonal elements of the migration matrix k = Kj;, = Ky
in Eq. (1) set the timescale over which the dynamics in the
two demes equilibrate. We initialize our simulations with
No = 100 infected individuals in deme 1, as in the one-deme
case, and none in deme 2.

At zero migration rate, individuals are unable to move
between demes and the epidemiological dynamics in each
deme are decoupled, replicating the case of a single deme
discussed above. For infinite migration rates, spatial varia-
tion in the number of infected hosts is removed by rapid
host movement and the combined population behaves as a
single well-mixed population with twice the number of sus-
ceptible hosts. By calculating the proportion of trajectories
in which the virus successfully escapes as a function of the
spatial migration rate, we recover the expected behavior for
small and large migration rates [Fig. 3(a)]. We also find
that an intermediate migration rate maximizes the proba-
bility that the virus escapes host immunity, showing there
is a preferred migration ratio that facilitates viral survival.
The viral survival probability shows exactly the same depen-
dence on the migration rate when we artificially forbid back
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FIG. 2. For one deme, diverse pathogen populations better evade host immunity by accessing novel antigenic mutations. (a) Total number
of infected hosts N () = [ n(x, t)dx for 200 replicate realizations of the model dynamics with an isogenic initial antigenic distribution.
All replicates follow a similar trajectory until the accumulation of population size noise leads to one of two outcomes: pathogen escape
or extinction. The timing of the peak of the outbreak is denoted by T'. (b) Escape probability as a function of the number of susceptible hosts.
When the number of hosts is large, the probability of escape approaches 1. (c) Cartoon of the density of infected hosts in antigenic space n(x, t)
during the early outbreak. The area under the curve gives the total number of infected individuals N(z) plotted in (a), while the variance of
the antigenic density V (¢) gives a measure of the diversity of antigenic strains within the population. (d) Probability of antigenic escape as a
function of antigenic diversity at the time of the outbreak peak. We generate trajectories with different levels of antigenic diversity by starting
with a Gaussian infected density, with different initial variances. We measure the diversity at the peak of the outbreak V(7') [time T in (a)].
Larger initial variance leads to an increased diversity at the outbreak peak. We quantify this relationship with a linear fit p = po +m x V(T')
(dashed line) with slope m. The dependent variable in the linear regression V (T') is measured from simulations and can be tuned by changing
the diversity of the initial pathogen population V (0). The other parameters are 8 = 2.5, =0,y = 1,D = 0.01,0 =2,M = 15, N, = 2x 10,
and ry = 3. The analysis was performed over 10* statistical replicates for (b) and 3 x 10* replicates were used for (d). The initial variances were
linearly spaced between 1072 and 10~ with six initial variances being used in total.

migration of infected individuals from deme 2 to 1, Ky =k p1 and py,

and K, = 0 [Fig. 3(a), triangles], suggesting that the suc- e 1—(1— 1 — 6
cess of the secondary epidemics in deme 2 is key to the .p escape ( .Pl)(. .Pz)- . ©)
virus survival. In the short-time or low migration limit, we estimate the

To better understand, quantitatively, the interplay of mi-  €scape probability in deme 1, p;, directly from one-deme

gration and antigenic escape, we consider the timescales of ~ Simulations. The survival probability in deme 2, p,, is the
outbreak peaks in the two demes for the simpler case of sym- probability that the pathogen escapes due to its increased
metric migrations. Figure 3(b) shows that the total number of diversity, given that it spreads from deme 1 to deme 2. Due
infected hosts in each deme shows a time delay AT = T, — T, to.the .founder. effect that gives an advantage to the very first
between their outbreak peaks. The distribution of infected ~ Migrating strains, the linear dependence of the escape proba-
hosts n(x, ¢) in deme 2 at the outbreak peak is broader than bility on the antigenic diversity at the outbreak peak V (T), as
in deme 1, signifying a higher diversity outbreak [inset of describgd in Fig. 2(d), should also hold for deme 2, so that we
Fig. 3(b)]. The probability of antigenic escape for each migra- may write

tion rate is given by the probability of escape in each deme, P2 = {p1 + mVa(T2) — Vi(T1)]} Pspread: @)
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FIG. 3. Moderate host migration between two demes maximizes the probability of survival by amplifying the antigenic diversity of
secondary outbreaks. (a) Probability of antigenic escape at different migration rates for symmetric 1 <> 2 (circles) and asymmetric 1 — 2
(triangles) migrations. The black dashed line is a prediction for the survival probability using the linear relation in Fig. 2(d) and Eq. (6). The
horizontal lines show the results for the two limiting cases of zero migration rate (blue) and infinite migration rate (orange). The probability
of survival at intermediate mobility attains a maximum near a rate of k/y ~ 10~*. We do not report simulations of asymmetric migration
for large k because we neglect the time dependence of N,, which should only be important for large k. (b) Number of infected hosts in each
deme for symmetric migrations. The outbreak is seeded in deme 1 with 100 individuals and spreads through host migration to deme 2 at a
time AT in the future. The inset gives a comparison of the viral density of each outbreak at their respective peak n,(x, 7;) and ny(x, 7). The
outbreak in deme 2 has large variance, i.e., is more antigenically diverse. (c) Increased mean variance of the deme 2 outbreak compared to
deme 1 at their respective peaks (V»(T3) — Vi(T1)) as a function of the average time difference (AT) between the outbreak peaks. Both axes
have been scaled by the cross reactivity r3. The dashed line is the prediction AV = 2DAT [Eg. (8)]. For small migration rate, the time to
seed an outbreak in deme 2, AT, is larger than for a large migration rate increasing the antigenic diversity, which increases the probability
of antigenic escape as shown in Fig. 2(d). The blue solid line shows a prediction from the analytic expression in Eq. (F9), discussed in
Appendix F. (d) Escape probability at different mutation and migration rates. The vertical axis shows the normalized escape probability, where
the normalization factor for a given mutation rate is chosen so that the peak normalized escape probability is one. We see that the optimal
migration rate is independent of the mutation rate even though the overall escape probability depends strongly on D. Only mutation rates with
1073 < escape probability < 1 are shown. The parameters are 8 =2.5,0 =0,y =1,D=0.01,0 =2, M = 15, N, = 2x10%, and r, = 3.
The migration rate in (b) is k = 1073. In (a), (c), and (d) analysis was performed over 10* statistical replicates.

where m is the regression coefficient and pgpyreaq is the proba-
bility that the epidemic spreads from 1 to 2.

For each value of the migration rate, we record the average
antigenic diversity at the outbreak peak in the two demes,
(Vi(T)) and (V»(T>)), and the frequency with which outbreaks
in deme 2 are seeded via migration pgyead- The expected
overall escape probabilities calculated using Eq. (6) correctly
predict the measured probabilities for all but very high muta-
tion rates [black line in Fig. 3(a)], showing that the increased
survival probability originates from an increased antigenic
diversity in deme 2.

To understand why diversity in deme 2 is higher at its
epidemic peak than in deme 1, we analyze how the variances
Vi(t) and V,(t) are predicted to evolve according to Eq. (1).
During the first epidemic peak, immune pressure may be
neglected and viral evolution in deme 1 is dominated by pure
diffusion so that Vi(t) =~ 2Dt. As soon as deme 2 receives
some infected hosts from deme 1, its own diversity quickly
tracks that of deme 1 when the migration is high enough,
Vo(t) = Vi(t), so that

Va(Tr) — Vi(Th) = 2DAT. (8)
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FIG. 4. Time dependence of the fixation index in the case of two
demes. The solid lines show the average value over 200 replicate
simulations and the shaded areas show the standard error.

This prediction shows good agreement for small values of
AT, corresponding to large values of the migration rate k
[Fig. 3(c)]. Decreasing the migration rate increases the time
delay AT, increasing antigenic diversity and the probability
of survival of the virus in deme 2. As the migration rate
becomes very low and AT large, the secondary epidemic
in deme 2 is seeded by only a few migrating hosts, leading
to a collapse in the diversity at its peak. The effect may be
accounted for qualitatively using simplifying approximations
(see the Appendix A), yielding analytic or semianalytic pre-
dictions for the diversity at the epidemic peak [solid line in
Fig. 3(c)]. Combining these predictions with Eq. (7) allows us
to derive an expression for the optimal migration rate, which
decreases as a function of the magnitude of the epidemic peak.
The feedback between migration rate and escape probability
is entirely mediated by the outbreak delay time AT, which
should be independent of the mutation rate D. In Fig. 3(d) we
perform sweeps over both the mutation and migration rates
and confirm that the optimal migration rate is insensitive to
the choice of mutation rate. Outside of a small range around
1072, the escape probability is either very close to 1 (high D)
or very close to 0 (low D), making it difficult to see the effect
of migration in our simulations. Within the range of interest,
migration rate controls the sharpness of the transition, with the
fastest rise occurring for the optimal migration rate.

To quantify the importance of the spatial structure of strain
diversity, population geneticists often measure the fixation in-
dex of a fragmented population, which compares the diversity
across the whole system to the average diversity in each deme.
When computed as a function of time for a two-deme system,
that fixation index reveals a period where the variances of
strains in the two demes are markedly different (Fig. 4; see
also Appendix D). This difference subsides at the end of
the simulation as migration homogenizes the outbreaks. This
confirms that the diversity boost created by spatial fragmen-
tation is only transient. The magnitude of this effect depends
nonmonotonically on the migration rate: There exists an in-
termediate migration rate for which it is highest. That rate is
much smaller than the rate at which survival probability peaks,
suggesting that the fixation index does not capture important
aspects of immune escape.

Altogether, the analysis of the two-deme case shows that
the optimal migration should be slow enough to produce a
delay in the outbreak dynamics but fast enough so that the
diversity of the initial epidemic in deme 1 can be inherited
by deme 2. This effect entirely relies on the interplay of the
migration and mutation rates.

C. Linear networks with many demes

To investigate networks with more than two demes and
the role of subsequent deme outbreaks, we first consider the
simple topology of Np demes arranged with linear connec-
tivity, each deme with N, hosts. We assume symmetric rates
normalized by the number of outgoing connections a deme
has such that the rate out of any deme sums to k. We observe
a similar tradeoff as in the two-deme case [Fig. 5(a)], with an
optimal migration rate achieving the balance between access
to more hosts and the ability for additional demes to give extra
chances of survival to the virus. Increasing the number of
demes increases the escape probability at all migration rates,
since it simply increases the number of hosts. This is clear in
the limit of large migration rate (k — 00), which reduces to a
single large deme of increasing size Np x Nj,.

To disentangle the impact of deme structure from that of
the number of hosts, we repeat the analysis but with constant
total population size Ny, and deme sizes that decrease accord-
ingly with the number of demes as N, = N,oi/Np (Fig. 5).
Despite this normalization, which decreases the overall sur-
vival probability, adding demes still increases viral survival at
intermediate migration values [Fig. 5(b)]. The optimal migra-
tion rate for viral survival shifts slightly towards larger values
as the number of demes increases. This result is explained by
the number of hosts per deme decreasing, which makes sur-
vival in individual demes harder and rescue through migration
more important. Note that the large migration limit coincides
with the single-deme result with Ny hosts, as expected.

The benefit of adding more demes even as the total pop-
ulation size is kept constant emphasizes the importance of
inheritance of diversity between demes. Diversity builds faster
within a deme when the viral population is pressured by
the immune system. When a new deme is seeded with the
virus, there is no established immune system and so not much
diversity is generated inside it. Instead, diversity is imported
from the previous deme, where it is already large, as additional
infected hosts arrive.

For fixed numbers of hosts per deme [Fig. 5(a)], the opti-
mal migration rate for viral survival is the same for all network
sizes. As we argue in the Appendix F, the location of the peak
decreases with the maximal number of hosts infected during
the initial outbreak, Ny.x. That peak is a property of each
newly infected deme. It depends not on the overall number
of demes but only on the number of hosts in the infected
deme. When we add demes of constant size N, to the system,
Nmax remains similar for each deme and so does the optimal
migration rate. By contrast, when we increase the number of
demes while keeping the total population constant, we expect
the migration rate to shift to higher values as N, and thus
Nmax, decreases, as observed in Fig. 5(b).

In Fig. 5(c) the importance of viral diversity for survivabil-
ity in a larger deme system is revealed. The variance of the
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FIG. 5. Increase of survival probability with the number of demes. The survival probability is plotted as a function of the migration rate for
networks with Np demes connected in a linear topology, with (a) a fixed number N;, = 10° of hosts per deme and (b) a fixed total population
Nt = 10° and N;, = N, /Np hosts per deme. In both cases, symmetric migration rates are normalized by the number of outgoing connections
a deme has such that the rate out of any deme sums to k. (¢) Mean variance of the viral antigenic density within each deme when the number
of infected people in the deme is maximized in a five-deme system with line topology; the same system producing the red line in (a) was used.
Different demes along the line are indicated by different symbols and color shades.

viral density is measured for each deme in a five-deme line
topology system. The last deme achieves the largest variance
in the system, demonstrating the role of adding more demes
in increasing viral diversity and therefore survival. Diversity
in each deme is maximized at the migration rate at which
survival probability also reaches a peak. This optimum occurs
when the variance inherited by each successive deme is the
same and the total variance within the system is also maximal.
Consequently, the total diversity is optimized at a migration
rate which allows for the same inherited diversity in all demes,
leading to the best chance of survival.

Overall, we conclude that separating hosts into many
demes helps the viral population survive.

(@

. o6

D. Influence of network topology on viral escape probability

To explore the impact of topology beyond linear net-
works, we consider all unique four-deme network topologies
[Fig. 6(a)], where uniqueness is defined with respect to net-
work structure and the identity of the initial outbreak deme.
We assume symmetric migration rates normalized by the
number of outgoing connections such that the overall migra-
tion rate out of each deme is k. Figure 6(b) shows the survival
probability as a function of migration rate for these topologies.
As in the previous cases, there exists an optimal migration
rate at which the probability of survival is maximal, and the
low and high migration rate limits reduce to the single-deme
case with Nj, and Ny = 4N, hosts. The optimal migration rate

(b)
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o
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FIG. 6. Effect of network topology on virus survival probability. (a) All four-deme networks. White triangles indicate the deme/node with
the initial outbreak. The color represents the value of the centrality of the outbreak node. Open symbols in the lower right corner of each
colored box refer to the markers used in (b), specifying the network topology used for the simulation of each curve. Symmetric migration rates
are normalized so that the total outgoing migration rate of each deme is always k. (b) Viral survival probability as a function of migration rate
for all possible four-deme networks. The inset shows the peak height as a function of centrality. The simulation parameters are § = 2.5, = 0,

y=1,D=0.01,7=3,M =150 =2,and N, = 10.
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FIG. 7. Migration rates for real networks given flight travel data. (a) The top 20 most frequently traveled airports from the data are
displayed in a network graph with color gradient representing the closeness centrality of each deme. (b) Migration rates are calculated for
different real networks and are put into context with the four-deme line topology migration rate which maximizes the survival probability. How
these rates were obtained is outlined in Appendix G. Data for the number of flights within designated regions are collected from [52]. (c) An
inverse relationship between closeness centrality and probability of survival of the virus exists within the real network data. The parameters for

simulation are 8 =2.5,0 =0,y =1,D =0.0042, rp =3,and M =

area population of the city where each airport resides [53].

for viral survival is relatively insensitive to network structure,
since it is mostly driven by the deme size, as discussed earlier.
However, the value at the peak depends on the particular
network topology.

To identify what features of the topology drive this depen-
dence, we consider closeness centrality, a quantity that was
proposed to quantify the importance of a node x in a network
and defined as the inverse average distance to all other nodes
in the system [35]

C(x) — N—_l (9)
Yo A, x)

where N is the total number of nodes in the network and
d(y, x) is the length of the shortest path between nodes x and y.
We colored networks in Fig. 6(b) and the survival probability
curves in Fig. 6(a) according to the closeness centrality of
the outbreak node. The smallest closeness centrality value,
represented by the line topology (in green), results in the
highest maximum survival probability. Networks with nodes
with high closeness centralities have lower survival probabil-
ity peaks [inset of Fig. 6(a)], with the fully connected network
having the lowest. Outbreaks with the same centrality have
very similar curves.

Two aspects contribute to this effect: the network topology
itself and the location of the outbreak. Lower connectiv-
ities enhance virus survival, as do outbreak demes that
are isolated. Network topology introduces an exploration-
exploitation tradeoff to viral survival. Outbreaks originating in

15 o = 2. Host population sizes in each deme reflect the metropolitan

nodes that are well connected gain access to more demes, and
therefore susceptible hosts, early on. However, as the outbreak
spreads quickly, only the diversity developed in the first deme
is transmitted to other demes. Sequential discovery of new
hosts in less connected networks allows the viral population
to accumulate diversity via sequential range expansions. In
the two-deme case, access to new populations at a delayed
time drives an increase in viral diversity. In larger networks,
the structure of the network modulates the number of times
the virus can exploit diversity accumulation due to this time
delay. Outbreaks in well-connected nodes expand to new
populations simultaneously, while the linear structure of Np
demes allows Np — 1 temporally ordered range expansions
that optimally exploit each deme.

E. Where do real travel networks lie?

To determine if the relationship between closeness cen-
trality and viral survival probability can be observed in real
network data, we analyze an airplane travel data set [51]. The
full data set is composed of 3632 airports and the number of
people who travel between airport pairs in 2011. We select
the top 20 most frequently traveled to airports and plot the
network connectivity graph with color coding according to
the closeness centrality found for each node [Fig. 7(a)]. The
closeness centrality is calculated first by designating local
distances between any two cities as the inverse of the number
of people traveling between them. Using these distances as the
directed weights in the network, Dijkstra’s algorithm is used
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FIG. 8. Analysis of migration rate heterogeneity. The relationship between viral survival probability and the closeness centrality is
measured for (a) the top 30 airports experiencing the most travelers arriving and departing, two bootstrap cases (b) and (c) where migration rates
in the adjacency matrix are randomly selected from the distribution of migration rates from the top 30 airports, and (d) bootstrap simulation
with half the migration rates drawn from the same distribution but symmetry in the adjacency matrix is enforced. The parameters are the same

as in Fig. 7, with N;, = 107 for all demes in (b)—(d).

to find the shortest path between the origin deme and all other
demes in the system. More explicitly, from Eq. (7), d(x, y) =
MiN(Y " _ egoes in path from x o y L2z )» Where £ for each edge is
the inverse of the number of people traveling along that edge.
This places more strongly coupled airports closer together in
network space. The network structure shows expected trends:
The four Chinese airports (PEK, PVG, CAN, and CTU) are
strongly connected, as are Mumbai (BOM) and Delhi (DEL)
and the three U.S. airports (ATL, LAX, and DEN). We inter-
pret each airport node of the graph as a deme.

To understand how our model predictions connect to real-
world networks, we estimate travel rates based on the 20-deme
network in Fig. 7(a), as well as other data sets [52]. Our
estimates include only air travel and are likely lower than the
real values which include other modes of transportation.

We then compare these rates to the optimal migration
rates obtained by the model for the four-deme line topology,
explored previously [Fig. 7(b)]. While topologies of real net-
works are far bigger and more complex than our simulations
allowed us to explore, our previous results suggest that the
location of the maximum depends only weakly on the details
of the network topology or size. The comparison between the
predicted optimal rate and the empirical estimates gives good
agreement, suggesting that current travel volumes maximally
improve a virus’s chances of survival.

To delve more finely into the network structure, we use
the adjacency matrix produced by the 20 airport system out-
lined in Fig. 7(a) to simulate and calculate the viral survival
probability for outbreaks initiated at each of the 20 airports.
The migration rates used reflect the number of people moving
between airports and are normalized by the metropolitan area
population size of the origin deme [53]. The viral escape
probabilities are then plotted as a function of the closeness
centrality of the airport where the outbreak originates. The
viral survival probabilities are negatively correlated with the
closeness centrality [Fig. 7(c)], meaning the more remote the
outbreak deme, the greater the probability of survival. The
same negative relationship between probability of survival
and closeness centrality of the outbreak deme holds if we
extend the analysis to the top 30 most trafficked airports
[Fig. 8(a)]. Therefore, we observe the same relationship in
real-world networks as in our smaller toy networks. The

network graph and resulting ranking of demes by closeness
centrality predict that an outbreak originating in the deme
with the lowest closeness centrality, the only South American
airport Sao Paulo (GRU) in our 20 top airport reduced data
set, has the highest probability of survival. Conversely, a virus
originating in Hong Kong (HKG), which is well connected
to other destinations around the world, benefits less from the
ability to migrate.

To investigate how the distribution of migration rates and
the distribution of population sizes influence the relationship
between survival probability of the virus and the closeness
centrality of the origin deme where the outbreak is initiated,
we simulate two data sets of 30 airports with two different
randomly sampled adjacency matrices from migration rate
distributions obtained from real data and all initial population
sizes for each of the 30 demes set to the same N, value (see
Appendix I for details). Results are shown in Figs. 8(b) and
8(c). The negative trend is absent in those two synthetic net-
works, revealing that some structure is required for closeness
centrality to act as an indicator of viral survival [Figs. 8(b) and
8(c)]. Unlike those synthetic networks, which sample all the
rates independently, the real airport network is roughly sym-
metric. To test the toll of symmetry of the adjacency matrix,
we randomly sampled migration rates as above but imposed
matrix symmetry (see Appendix I). This procedure restores
the negative correlation between closeness centrality and sur-
vival probability [Fig. 8(d)], indicating that what is important
is that the fluxes in and out of each deme are roughly equal.

Finally, to understand the impact of population diversity,
we designed another synthetic network where all migration
rates were set to 10™* and population sizes were sampled
from the distribution of all metropolitan areas in the data. This
analysis, shown in Fig. 9, shows no relationship between sur-
vival probability and population size. The flux out of a given
deme in this simulation is governed by its population size,
but since the adjacency matrix codes for a fully connected
network, flux into each deme is determined by all other deme’s
populations. This means that a large deme in the system will
most likely have a larger migration rate out than in. This
imbalance erases the relationship between survival probability
and deme size, similarly to what we observed for closeness
centrality [Figs. 8(b) and 8(c)].
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FIG. 9. Analysis of population size heterogeneity. Survival prob-
ability is plotted against population size. A negative trend reveals
that outbreaks starting at demes with larger flux (larger population
size) have a worse chance of survival. However, no relationship is
identified.

IV. DISCUSSION

When examining the interplay between viral evolution and
host spatial migration we found that intermediate migration
rates maximize viral diversity, favoring antigenic escape. This
result stems from coupling a stochastic property of evolution,
i.e., diversification, and exploiting susceptible individuals due
to migration. Large migration rates allow diversity to be trans-
mitted between infected demes, as newly infected populations
exert only weak or absent selection and multiple migration
events allow multiple strains to simultaneously grow. This
coupling leads to greater diversity and a higher probability of
viral survival and ultimately antigenic escape. This process
is an example of an exploration-exploitation tradeoft: Low
migration rates hamper the virus’s search for new pools of
susceptible individuals whereas high migration rates result
in infection with similar strains, decreasing diversity and fu-
ture antigenic escape. This tradeoff depends on the ratio of
timescales for host immunity and migration. Low migration
rates that result in exploiting a deme for long times allow the
host immune systems to gain cohort immunity and eliminate
viral diversity through selection. Long-term survival of the
virus therefore exploits short-term coupling of host-induced
mutations and migrating at peak diversity. This process re-
quires dwell times in a population that allow for the strain
diversification but avoid low migration rates that would lead
to a decrease in diversity before migration.

The existence of an optimal migration rate for pathogen
survival has been observed in many models and attributed to
different effects. In our model, the optimal rate exploits the
diversity buildup due to host-driven viral mutations, which are
not included in models of long-term and large-scale outbreaks
[33,54]. Matching allele models, originally introduced to
study plant pathogen evolution, incorporate host/parasite mi-
gration, evolution, and demographics via a multicompartmen-
tal Lotka-Volterra style approach [55]. However, they assume
fixed diversity. There are n possible alleles for a single locus
in both parasite and hosts, in which the host is immune to the
“matching” parasite strain but susceptible to all others. Within
this class of models, allowing only for host migration, Gandon

et al. [55] reported an intermediate optimal value of host
migration rates for host resistance. High pathogen persistence
probabilities at intermediate pathogen migration rates have
also been observed in two-compartment susceptible-infected-
susceptible (SIS) models without an evolutionary component
[33,56,57]. Unlike these results, the optimal migration rate for
viral survival in our model appears also in small networks,
whereas in the work of Hisi et al. [57] the optimal migration
rate disappears in networks of ten or less demes.

The migration of susceptible hosts on the network has
been discussed in terms of favoring one of two alternative
rescue effects: evolutionary [55] or demographic [57]. The
evolutionary rescue effect relies on gene flow, where the ge-
netics of a population is affected by the genetic makeup of
neighboring populations. This allows migrating strains that
are poorly adapted to a given host environment to survive
by migrating to new niches. It also allows well-adapted pop-
ulations to spread their genes to other regions, accelerating
recovery after a shock [41]. This process is distinct from the
demographic rescue effect, which creates short-lived refuges
for viruses by randomly bringing a large number of suscepti-
bles together for a period of time. The viral population can
survive in this ephemeral host population until it reinfects
other regions that have by then lost their immunity. Our obser-
vations rely on evolutionary rather than demographic rescue
mechanisms since removing back migration does not affect
viral survival probabilities for a wide range of migration rates
and viral survival correlates with large strain diversity. In gen-
eral, they reinforce the importance of evolutionary dynamics
in metapopulation persistence, in line with [40,41,58].

A number of analytic studies have focused on ecologi-
cal models without evolution, describing demographic rescue
effects in two-deme SIS systems. Meakin and Keeling [59]
and Keeling and Rohani [60] use a moment closure approach
to derive the correlation functions of the outbreak sizes in
the demes. These steady-state results find highly correlated
outbreaks (and therefore large maximum outbreak sizes) at
intermediate coupling strength. (Both models use a different
type of coupling: Rather than permanently migrating, indi-
viduals “commute” to the other deme for a fixed amount of
time and then return home.) Of course, survival probability
and population size are not the same thing: Our outbreaks
peak after infecting most of the population, and then surviving
simulations tend to recover and level off at about 10%—-20%
N, in each deme, roughly independent of migration rate. We
also find that the outbreak peaks occur at the same time in
different demes at high migration rates [see Fig. 3(c), where
AT goes to 0 at high migration rates], with a peak asynchrony
(large AT) at intermediate times. However, the composition
of the outbreaks in each deme is not the same, which allows us
to draw evolutionary conclusions from this observation. The
outbreak in deme 2 is much more diverse than in deme 1 (see
Fig. 10 in Appendix C for histograms of variance for each
deme). Since diversity drives antigenic escape [Fig. 3(b)],
comparison with this class of models also leads us to conclude
that evolution is responsible for the optimal migration rate for
viral survival. At intermediate migration rates, the escaping
strain appears in the more diverse deme 2, while at low mi-
gration rates it appears in deme 1, where the outbreak began
(see Fig. 11 in Appendix C).
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Evolutionary models without migration have predicted a
nonlinear increase in the speed of antigenic evolution as a
function of the fraction of immunocompromised hosts in the
population [37]. This result is due to hosts that recover more
slowly, infecting more people, as they have more time to
transmit the infection. This causes an effective increase in the
growth rate of the virus, increasing the probability of acquir-
ing an antigenic mutation. Immunocompromised hosts play
a role similar to migration in our model: When a new deme
is infected for the first time, the virus has access to a large
number of hosts with susceptible immune systems, increasing
the growth rate of the virus, but only in a transient way. While
we do not systematically study the effect of base virulence
B in our model, previous theoretical work has shown that
shorter, more virulent outbreaks tend to produce less genetic
diversity than longer, less infectious ones [36]. In other words,
the virus needs time to exploit mutations, and time is in short
supply in fast, sudden, and one-time outbreaks that occur
with high 8. Comparison to this class of models allows us to
draw conclusions about the evolutionary impact of population
structure in space.

The topology of the network determines the probability
of survival of the viral population. Outbreaks in demes with
low closeness centrality are more likely to escape the host
immune systems than ones starting in high closeness cen-
trality demes. This means that the way a virus disperses has
evolutionary consequences, at least when evolution happens
quickly. Although we focused on small networks, these effects
probably hold in large networks. If this is the case, not all
initial conditions of the simulation are equal. In the case of
randomly chosen initial conditions over many replicates, not
all replicates contribute equally to observed mean probabil-
ities. Depending on how extreme this effect is, some initial
outbreak locations may dominate viral survival probabilities
on large networks. In the context of protecting crops from
dispersing pests, it has been noted that the degree of the
outbreak node is correlated with the size of the outbreak and
the speed of spread [61,62].

The role of topology for viral survival also suggests that
multiple pairwise mobility restrictions between cities or air-
ports can synergistically strengthen and result in a stronger
global effect. This has been reported when implementing
spectral control strategies [63,64], which selectively modify
traffic between specific nodes to control epidemics. In the
long-time limit, SIS models on networks have shown that
the maximal eigenvalue of the network determines the ex-
ponent of the rate with which a particular virus goes extinct
[35,64]. Our model complements these results with analysis
of the transient dynamics. The networks that favor antigenic
escape in the short term are not necessarily the same as
those that favor long-term survival. For example, the lin-
ear network topology guarantees the largest probability of
short-term antigenic escape, but has a small maximal eigen-
value, which makes viral survival more difficult at long times.
The network that makes viral survival most difficult at short
times, the fully connected network, has a large maximal
eigenvalue and offers the best conditions for long-term viral
survival. Therefore, the traffic restriction strategies which are
most effective will be different for emergent and endemic
pathogens.

In the case of emergent pathogens, the applicability of our
results will depend on the scale considered. Figure 7 shows
that depending on which set of airport data one considers,
the effective migration rate is not the same. All reported
migration rates result in viral survival probabilities that are
close to the maximum [Fig. 7(b)]. This result could imply that
reducing viral survival could be achieved by either strongly
increasing or decreasing mobility. However, the value of viral
survival also depends on the number of hosts [Fig. 5(c)]. If
the number of hosts is large, increasing migration rates does
not decrease the viral survival probability. Additionally, the
width of the peak in terms of migration rates means obtaining
a significant effect would require changing mobility by several
orders of magnitude, which is no small task for policymakers.
For example, Ref. [65] report that cell phone mobility data
show that the “lockdown” policy caused a 54% reduction in
mobility in the Chicago metro area in the first week of April
2020. Additionally, while decreasing mobility is achievable,
increasing mobility is harder to implement. Finally, driving
a virus to extinction is not the primary goal of policy. It is
more important to reduce the total number of cases and to
prevent an outbreak large enough to overwhelm the healthcare
system.

Eco-evolutionary feedbacks remain critical to understand-
ing long-term epidemiology. We have examined a density-
dependent selection effect (very common strains within a
deme experience the most immune pressure, neglecting the
lag time for collective immunity to catch up), but global
frequency-dependent effects can be important as well. It also
remains to be seen how short-time selection biases towards
diversity impact mid- and long-term phylodynamics. Such a
question requires speciation dynamics and therefore a higher-
dimensional antigenic space.

Low-dimensional antigenic spaces are commonly used by
experimentalists and theorists alike [18,66—-68]. While it has
been suggested that this low dimensionality could be an
artifact of random walks [69], canalization of evolutionary
trajectories in the long-time endemic state suggests that the
phenomenon is not an artifact, but rather is caused by the
propagation of an antigenic wave [19]. However, even in a
canalized state, trajectories are not predictable beyond a per-
sistence time that decreases with dimension of the antigenic
space [23].

The effective antigenic dimension of emerging pathogen
coevolution has been much less discussed. Our results may
be sensitive to the choice of dimension, as higher dimensions
should generically increase antigenic diversity and increase
the probability of antigenic escape. However, we expect the
qualitative structure of the peak at intermediate migration
rates to hold for any dimensionality, because our analytic
approach (see Appendix A) readily extends to any dimension
in the Gaussian approximation. We therefore expect a higher,
but still nonmonotonic escape probability as a function of the
migration rate.
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DATA AVAILABILITY

All codes used to perform simulations and generate fig-
ures can be found in [70].

APPENDIX A: OLIGOMORPHIC DYNAMICS

We adapt the oligomorphic dynamics (OMD) approxima-
tion [71,72] to study the size and antigenic variance of the
initial outbreak. For simplicity, we neglect noise and work
in two demes. The dynamics of the densities in deme i are
given by Egs. (1)—(4), where we define the fitness as F;(x, t) =
BSi(x,t) —a — y and, for simplicity, we neglect noise and
work in two demes. We assume that there are N, individu-
als infected at time ¢t = 0, all with strain x = 0 in deme 1,
which gives the initial condition n;(x,t = 0) = Nyd(x) and
m(x,t =0) =0. We obtain an equation of motion for the
total number of infected individuals N;(t) = f dxn;i(x,t) by
integrating Eq. (1):

dN;

dr
The total infected population grows with the antigen-averaged
fitness and migration causes the infected numbers in different
demes to equilibrate on a timescale of k™.

We define the densities of viral variants and immune pro-
tections as

= (F)N; + k(N; — N;). (AD)

_ni(-xat)
oi(x,t) = N (A2)
hi(x,
Vi 1) = ;C(t;), (A3)

with H;(t) = fdx hi(x,t). Applying Egs. (A2) and (A3) to
Eq. (1), we obtain

90 _ Lom o dn,
at  N;dt NP dt
82¢, kN;
= (F; — (F)¢:i + —+—(¢J #i). (Ad)

The first term tells us that regions of antigen space with fitness
larger than average will increase in frequency, while regions
with fitness less than average will decrease in frequency. The
migration term has an N;/N; prefactor. If deme j has a much
larger infected population than deme i, the antigenic distribu-
tion in deme i will rapidly relax to the antigenic distribution

of deme j, inheriting all the genetic diversity from deme j
almost immediately. This rapid equilibration of the antigenic
distributions among demes explains the enriched diversity vs
outbreak size relationships for secondary outbreaks we see in
simulation.

We now assume ¢(x, t) is Gaussian and can thus be char-
acterized completely by its mean m;(f) = (x); and variance
Vi(t) = ((x — (x);)*);. We assume the distribution of x is
sharply peaked about the mean value m;(¢) = (x); and expand
the fitness around the mean

(Fi(x))i = (Fi(m;) + F/(m;)(x — m;)

+3F mi) (e —mi)* + - )i
F/ (m;) 2
V ’
2 + -
where we neglect higher-order terms than the variance V;(¢) =
((x — (x);)?);. This approximation is valid since for typical
simulation parameters V/r3 ~ 2Dt /r3 ~ 1072, which renders
even the higher-order terms small compared to first- and

second-order terms. The OMD approximation for the total
infected number gives

dN;
dt

= Fi(m;) + (A5)

F// mi
- (E»(mi) + 17 )w)M TR - ND. (A6)
To close the equation we need the dynamics for the mean
and variance m; and V;, respectively; m; = 0O at all times based
on symmetry arguments. Multiplying Eq. (A5) by x> and
integrating by parts, we find

av; 3¢
- =/x2<(Fi (F; >)¢'+D8_+_(¢J ¢i)>dx

= Cov(x?, Fi(x)) + 2D + k (V Vo). (A7)
This is a generalization of the Price equation to include dif-
fusive spreading due to mutations and the rapid distribution

equilibration due to migration.

APPENDIX B: DERIVING AV = 2DAT

For the case of two demes, the covariance term in Eq. (A7)
scales with V> at early times when V; is still small and can thus
be neglected, giving equations for the variance in the OMD
approximation

dV, N,
— =2D+k—(\V, —V}), B1
T + Nl( ) 1) (BD)
A% N
— =2D+k— (V] = V). B2
7 + Nz( 1 —V2) (B2)

If the outbreak starts in deme 1 and spreads to deme 2 at AT,
at small times we have V| ~ 2Dt and the solution of

d avy

== —=2D + k—(ZDt V2), (B3)

WL(AT) = (B4)

is

Vz(t)=2D|:t—ATexp<—k Nl(t)dt)]. (BS)

ar Na(?)
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FIG. 10. Histograms of diversity at outbreak peak in each deme
show that at optimal migration rates, deme 2 is markedly more
diverse than deme 1. The histograms are count normalized, so low
migration rates which rarely seed secondary outbreaks produce very
few samples of diversity in deme 2.

If the infected number of individuals in deme 1, N;, peaks
at time 7; and the infected number in deme 2 peaks at time
T, = T\ + AT, the antigenic variance at the outbreak peak in
deme 2 is

Wo(Ty + AT) =2DT, + 2DAT

T\+AT
X |:1 — exp (—k/ Nl(t)dt)].
ar M)

(B6)

For large k, the spread to deme 2 happens quickly, AT =~ 0,
such that

Vo(Ty) ~ 2D(T; + AT) = Vi(T}) + 2DAT. (B7)

APPENDIX C: ANTIGENIC DIVERSITY IN EACH DEME

We have argued in the main text that antigenic diversity
drives our results. Here we include more detailed simulation
results from the two-deme case to demonstrate that diversity is
systematically higher in the second deme. We compare diver-
sity between demes at comparable points in the development
of the outbreak in each deme, i.e., the diversity of each deme
at the peak of the outbreak in each deme. This amounts to
comparing the within deme diversity with the time lag of AT'.

Figure 10 shows the histogram of antigenic diversity in
each deme at outbreak for a sweep of migration rate k. At low
migration rates (bottom) there are very few outbreaks in deme
2, so the deme 2 histogram is very sparse. As migration rate
increases and becomes close to the optimal migration rate for
viral survival, we see that deme 2 tends to have more diverse
outbreaks, with the mean of the distribution shifting right as
well as its width growing to close to fourfold compared to
deme 1. Deme 2 is much more likely to see very diverse
outbreaks than deme 1. Increasing k further, rapid mixing
between the demes takes over and the distributions become

—
o

[0 both at same time
[ deme 2 first
I deme 1 first

e
o0

e
foN

o
~

<
[\

prob. of first escape strain

0.0 +=
10

10’ 10" 10
migration rate, K/y

FIG. 11. Probability of escape occurring in each deme for vari-
ous migration rates in the two-deme case. The size of the red region
gives the probability that the antigenically escaped strain first ap-
pears in deme 2 as opposed to deme 1. We define an antigenically
escaped strain as one that is sufficiently far from the ancestor strain
at x = 0. In deme i, the time of emergence is the first time ¢ such
that f|x|>x* n;(x, t)dx > 100, with x* (the critical antigenic distance)
computed as in Ref. [38]. If the new strain emerges in both demes
within two time units of one another, we say they appear at the same
time. We highlight that at intermediate migration rates deme 2 is
the primary source of escape strains due to its amplified antigenic
diversity. The parameters are the same as in Fig. 3.

more similar. Here invasion is too rapid to exploit deme 1 to
gain diversity and the virus immediately explores both demes.

The correlation of higher diversity with antigenic escape
is demonstrated by recording which deme produces an escape
variant first. We use OMD arguments to set an escape distance
x* such that immunity profile created in response to an out-
break centered at 0 has largely decayed. We define the escape
time 7, for each deme i as the first time a virus appears in
that region of antigenic space. We then compare the escape
times in each deme to see, over many runs, where the escape
is most likely to occur (Fig. 11). At low migration rates, deme
1 has escape events more often than deme 2, as deme 2 is
more rarely populated. At intermediate migration rates, the
more diverse deme 2 has escape events more often than deme
1, and at high migration rates the two demes show similar
numbers of escape events.

APPENDIX D: FIXATION INDEX

A classic way to assess the importance of spatial structure
on strain diversity is to compute the fixation index Fgy, which
compares the proportion of genetic diversity due to local and
global variability

Viithin ()
Vtotal (t ) '

where Vyimin 1S the antigenic variance within a typical deme
and Vi is the antigenic variance across all demes in the net-
work. The number of infected individuals is different between
the two demes, so we compute Vyimin (f) as a weighted average

Viain (1) = Ni()V1(1) + NaVa(1)
within - Nl(t)-i-Nz(l)

Fsr(t) = D)

D2)
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The total antigenic variance Vi, is found by combining the
antigen-space densities across all demes

Mot (X, 1) = Y mi(x, 1). (D3)

The combined viral density is then used to compute the total
variance of the antigenicity Vioa.

APPENDIX E: NUMERICAL PROCEDURES

Our simulations produce solutions to the system of
stochastic integro—partial differential equations (PDEs) de-
fined by Eqgs. (1)-(4), with all codes to produce simulation
results and figures available from [70]. Our simulation method
draws on previous work, mainly Refs. [73-75], which we
review here. The key idea behind our numerical solver is the
operator splitting method [76,77], where the terms in Eq. (1)
are solved one at a time, sequentially for each time step. We
split Eq. (1) into a deterministic and a stochastic piece and
solve each individually. We solve our system on a uniform
grid of antigenic points with grid spacing Ax and periodic
boundary conditions. The length of the antigenic space is
L, so the antigenicity can take values x = —L/2, —L/2 +
Ax,...,L/2 — Ax. We assume periodic boundary conditions
so that the antigenic site x = L/2 is identical to x = —L/2,
but other choices of boundary condition (such as no flux)
are possible. We choose values of L large enough so that
the infected density never interacts with the boundary of the
antigenic space. As in the continuum model, we will call
the infected density in deme i at antigenic coordinate x and
time 7, n;(x, t), the immune density /;(x, t), the cross-reactive
immune protection c;(x, t), and the susceptibility S;(x, 7).

Time is likewise discretized by steps of length Atf; for
the deterministic step of the algorithm we use the explicit
forward-time Euler method to update all densities. In a given
time step Af, we first perform a diffusion update to capture
mutational changes. At each antigenic point x we compute

~ DAt
fi(x, 1) =ni(x,t) + —[mi(x + Ax, t)
Ax?

+ ni(x — Ax,t) — 2n;(x, t)]. (E1)

We then compute the cross-reactive immune protection
ci(x, t) at each grid point x,

ci(x, 1) = Z exp (min(|x —yhL -k yD)h,-(y, t)Ax,
y

o

(E2)
where the sum runs over y = —L/2, —L/2 + Ax,...,L/2 —
Ax and the minimum function accounts for the periodic
boundary conditions on antigenic space. The cross-reactive
protection c;(x, t) is then used to compute the susceptibility
Si(x,t) =[1 — ci(x, )]M. We next update the immune and
infected densities using the postmutation infected density
i(x, 1),

At 5
hi(x, t + At) = hi(x, t) + MN, [7i:(x, 1) — Ni(©)hi(x, 1)],

(E3)

FiCx, 1) = fix, D[] + AtF(x, )], (E4)

where

Nix, t) = Zﬁ,-(x, 1) Ax (E5)

and
Fi(x,t) = BSi(x,t) —a —y. (E6)

We now turn to treat the stochastic piece of the dynamics.
The characteristic feature of demographic noise is fluctuations
that scale like the square root of the population size. Between
any two grid points in antigenic space x — x 4+ Ax, we expect
there to be n;(x,t)Ax infected individuals in deme i. We
then expect that the noise amplitude should be proportional
to «/n;(x, t)Ax. The factor of Ax here is important; previous
work [73-75] assumes a unit lattice spacing, which is appro-
priate for a stochastic PDE. Our model by contrast requires
direct integration over the antigenic coordinate in order to
compute immune response. This integration requires defini-
tion of an antigenic step size Ax, which we eventually make
small. We begin by writing the stochastic differential equa-
tion (SDE) for the number of infected individuals between x
and x + Ax,

d
E(ni(x, H)Ax) = o+/ni(x, 1)AxE(x, 1). (ET)
The process &;(x, t) is a white noise with correlation function

(6x(x, 1)E;(y, 8)) = 88, 8(1 — ). (E8)

The SDE for the density at grid point x is then

di’l,‘ i o .
PP Eﬁ&(x, 1). (E9)

The solution to this SDE is known [75]. We directly integrate
from ¢ tot + At, where the initial condition is the result of the
deterministic step 71;(x, t). The distribution for n;(x, t + At) is

2/1;(x, ) Ax\\ 02 At
oAt 2Ax
(E10)

ni(x,t + At) ~ Gamma(Poisson(

The argument of the Gamma distribution above is the scale
parameter; the rate parameter is 1. Other methods of sampling
the noise are also possible [24] and produce qualitatively iden-
tical behavior, with a common choice being a simple Poisson
sample

(x.1 + Af) ~ Poi fi;(x, ) Ax\ 0% At ELD
ni(x, ~ Poisson

o2At Ax
In the main text, all simulations except for those of
Fig. 5 were performed using Eq. (E10). Data for Fig. 5
were generated using Eq. (E11). The final step is to in-
clude spatial migrations, which we incorporate using a

mass-action term
n;(x,t + At) < ni(x,t + At)

+ Y [Kinj(x.t + A — Kjmi(x,t + AD]AL. - (E12)
J
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APPENDIX F: ANALYTICAL TREATMENT
OF DIVERSITY DYNAMICS

The first step to determining the optimal migration rate
is to calculate how long on average it takes for an outbreak
in deme 1 to spread via migration to deme 2. The model
defined by Eqs. (1)—(4) is complex; we will make simplifying
assumptions when necessary in order to make progress. We
will use the OMD framework of Appendix A to compute the
number of infected individuals N; and antigenic diversity V; in
each deme. We will assume that in deme 1 the viral abundance
follows an exponential growth followed by an exponential
decay

NoeFl

ifr <T
M) = {Nmaxe—m—m o1

ift > 1. (FD)

This says that the infected number in deme 1 will grow ex-
ponentially with rate F = 8 — y until reaching a maximum
at the outbreak peak time 77. At this time, there are Np,x =
Noe ™ infected individuals and the infected population will
then decay as individuals recover at rate y. In deme 2, migrant
infected populations will be subject to growth and noise. Our
primary interest is in the emergence of the infected population
in deme 2 as it grows to avoid stochastic extinction. We will
assume that the small viral populations in deme 2 during
the early outbreak elicit negligible immune response, instead
enjoying a constant growth rate F. Integrating Eq. (1) over x
and ignoring migrations, we find

dN,(t)
dt

where £(¢) is a white noise. Using Eq. (F2), we can com-
pute the probability that a virus with initial abundance N,(0)
eventually goes extinct due to noise. The calculation is fastest
using common results from martingale theory [78]. The
stochastic process Z(t) = exp[—2F N»(t) /02] is a martingale
which is shown by computing dZ/dt using 1t6’s lemma and
noticing that Z(¢) has no deterministic rate of change. The
process Z(t) being a martingale implies that its expectation
should not change in time (with expectation (- - - ) here being
over noise realizations, not over the antigenic distributions as
previously discussed). Because Z(¢) has a known determinis-
tic initial condition, we immediately have

=FN; + 0/NE(1), (F2)

o 2F x0
(Z(t)) = Z(0) = P(extinction) exp <— o )

2

2F
+ P(establishment) exp (— X0 ) ,

o

(F3)
which immediately gives the probability of establishment 1 —
P(extinction) as

2F
P(establishment) = 1 — Z(0) ~ —2N2(0). (F4)
o

To include migration, we note that in a given time interval
t > t+dt, k x Ni(t) x dt individuals migrate from deme
1 to deme 2. Denoting by AT the time at which the first

successful migration arrives in deme 2, we can explicitly
calculate

P(AT > t) = ]_[ (1 - i—ikNl(z)dt> (F5)

s<t

= exp (—/ 2k—le(s) ds). (F6)
o O

Computing the mean of a random variable distributed accord-
ing to (F6) is difficult in general. Instead, we compute the
most likely value for AT, which is the inflection point for

. . . . . 2
the cumulative distribution function % = 0. The most

likely value for the migration time AT is given by

2
Ni(AT)? = ;{—FNI’(AT). (F7)

Assuming that migration happens before the outbreak peaks
in deme 1 (AT < Ty), we find a simple expression for the

migration time
AT = Liog (2 (F8)
=—lo .
F %\ 2k,

We now have a concrete relationship between the rate of host
migration and the time to seed an outbreak in deme 2. One
could also compute the expected value of AT numerically,
(AT) = f0°° P(AT > t)dt. Once the first infected individual
is successfully established in deme 2, the growth should be
approximately exponential N,(t) = e/ (=27,

Taking N, to be exponential but shifted in time by an
amount (AT), we can evaluate the integrals in Eq. (B6),
finding

Vo (Th + (AT)) = Vi(Th)
~ 2D(AT){1 — exp[—kNoe" *T/ (T — (AT) + B~}
o2
~ 2D(AT) [1 —exp (-7@ — (AT) + /3“))}. (F9)
In the last line we have used Eq. (F8) to simplify. While the
above function does not admit a simple expression for the

optimal migration time AT, the exponential can be expanded
as

2
W (Ty + (AT)) = Vi(Th) =~ 2DAT<%(T1 — AT + ,3_1)>,

(F10)
from which we expect the optimal waiting time to be
T1+ B!
AT* =~ +’3 (F11)

Using Eq. (F8), we now have an estimate for the optimal

migration rate
2N, T1+ 87!
o

5 (F12)

For the parameters used in Fig. 3, this expression gives
k* ~4x1073.
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APPENDIX G: MIGRATION RATE PREDICTIONS

In Fig. 7(b) we compare migration rates between different regions in the world to see what probability of viral survival we
would have in these systems. To do this, we obtain data on the number of flights per year within that system (for the U.S.
calculation we would find the number of internal U.S. flights per year) as well as the total number of people in that system
(number of people living in the U.S.) and the average number of passengers on a plane flying within the region. The calculation
would follow as

L (No. of flights per year)(average No. of people per flight)
migration rate = .

(52 weeks per year)(No. of people in region)

We end up with the number of people moving per week divided by the total people in the region as a migration rate prediction.
The number of people traveling per week is used due to the migration rate scaling with the recovery time, which is about a week.
It is important to acknowledge the approximative nature of these calculations as the people traveling may not necessarily live in
the place the flight originates from and therefore not belong to the number of people in that region.

APPENDIX H: U.S. MIGRATION RATE CALCULATION
From the following calculation, travel within the U.S. is well mixed:

(16405 000 flights per year)(200 passenger per flight)

. =2x107".
(52 weeks per year)(333 300 000 U.S. residents)

U.S. migration rate =

APPENDIX I: MIGRATION RATE AND POPULATION SIZE HETEROGENEITY

We expand the airport network analysis to the top 30 most trafficked airports. To determine whether the specific network
topology is necessary for the observation of the negative trend, we conduct two sets of simulations following the same procedure:
We (i) combine all migration rates into one distribution, (ii) randomly sample with replacement this migration distribution for
all entries in the adjacency matrix, (iii) ensure all diagonal elements are zero, (iv) set all initial population sizes for each of the
30 demes to the same N, value, and (v) find the survival probability for the virus for an outbreak which occurs at each deme in
the network.

When the assumption that the flux into an airport is roughly the same as the flux out is enforced, the adjacency matrix is
always symmetric. To test if this structure is imperative to produce the negative relationship, we randomly sample half of the
migration rates from the distribution and reflect these rates across the diagonal to establish symmetry. In Fig. 8(d) the relationship
between the closeness centrality and the survival probability is restored, indicating that what is important is that the fluxes in and
out of each deme are roughly equal.
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