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Université, Université de Paris, Paris, France, 2 Immuno-Oncology Service, Human Oncology and

Pathogenesis Program, Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering

Cancer Center, New York, New York State, United States of America, 3 Computational Oncology,

Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York

State, United States of America

☯ These authors contributed equally to this work.

* simona.cocco@phys.ens.fr

Abstract

With the increasing ability to use high-throughput next-generation sequencing to quantify

the diversity of the human T cell receptor (TCR) repertoire, the ability to use TCR sequences

to infer antigen-specificity could greatly aid potential diagnostics and therapeutics. Here, we

use a machine-learning approach known as Restricted Boltzmann Machine to develop a

sequence-based inference approach to identify antigen-specific TCRs. Our approach com-

bines probabilistic models of TCR sequences with clone abundance information to extract

TCR sequence motifs central to an antigen-specific response. We use this model to identify

patient personalized TCR motifs that respond to individual tumor and infectious disease

antigens, and to accurately discriminate specific from non-specific responses. Furthermore,

the hidden structure of the model results in an interpretable representation space where

TCRs responding to the same antigen cluster, correctly discriminating the response of TCR

to different viral epitopes. The model can be used to identify condition specific responding

TCRs. We focus on the examples of TCRs reactive to candidate neoantigens and selected

epitopes in experiments of stimulated TCR clone expansion.

Author summary

Large repertoires of immune cells, such as T cells, are increasingly made available by high-

throughput sequencing. Exploiting such datasets to infer how T cells respond to antigens

could help design vaccines and adoptive T-cell therapies. We here propose an approach

based on probabilistic machine learning to identify and characterize responding T cells.

After learning, this approach is able to distinguish clones that specifically respond to dif-

ferent antigen stimulations. The model parameters and the low-dimensional representa-

tions of the T-cell sequences identify sequence motifs underlying T-cell recognition at the

molecular level. The approach is illustrated on repertoire data describing in vitro
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stimulation of T cells by cancer-related neoantigens, as well as on data for common infec-

tious diseases.

Introduction

T cell receptors (TCR) are the key factors through which the adaptive immune system controls

pathogens and tumors. T-cells recognize infected and malignant cells by binding antigens,

short peptides that are presented on the cell surface by the Major Histocompatibility Complex

(MHC) molecules. Upon antigen recognition, an activated T cell divides multiple times, giving

rise to a population of T cells with the same TCR—an expanded T-cell clone or clonotype. Clo-

notype counts provide estimates of T-cell clone abundance and measure the antigen-induced

clonal expansion characteristic of an immune response. In an immune response, multiple

TCRs can recognize the same antigen and clonally expand. Therefore, TCRs from expanded

clonotypes can contain specific information about the antigen that led to their expansion.

High-throughput sequencing of TCR repertoires isolated from patient tissue and blood has

been motivated by a desire to both understand response to immunotherapies, such as check-

point blockade inhibitors [1], and to drive emerging approaches such as anti-cancer vaccines

[2, 3] and adoptive T cell therapies [4]. However, repertoire sequencing (RepSeq) datasets are

rarely accompanied by structural information on the TCR:pMHC complex [5–7]. These fast-

growing sequence datasets give hope that machine-learning approaches can extract informa-

tion on T-cell recognition from TCR sequences alone. This task is particularly challenging in

cancer, where antigens derived from tumor-specific mutations, called neoantigens, can activate

T-cells and drive tumor regression. The majority of neoantigens are unique to the tumor in

question, and response by neoantigen-targeting T cells is expected to be extremely individual-

ized (private), and driven by neoantigens generated by a small fraction of the mutations in a

tumor [8].

Neoantigens capable of driving an immune response, and their cognate TCRs, are therefore

currently highly sought-after targets for the design of personalized immunotherapies [2–4].

Two outstanding, strongly complementary questions are: what clones specifically respond to a

given neoantigen and what specific “features”, such as the biochemical properties of the amino

acids that make up the TCR, are central to a productive response. Computational methods can

help answer these questions by narrowing down the number of candidate responding TCRs,

which accelerates experimental testing, typically a labor- and resource-intensive task. In partic-

ular, methods aimed at learning a sequence representation of T-cell response can shed light on

the binding mechanisms determining T-cell response specificity at the molecular level. Such

identification of sequence motifs is a preliminary step to finding TCR residues involved in

antigen recognition. From this point of view, TCR sequence-based approaches can also com-

plement and improve other existing approaches, that are focused either on predicting antigen

“immunogenicity” [9, 10] or on characterizing T-cell expansion [11].

We propose a set of probabilistic-modeling approaches, based on Restricted Boltzmann

Machines [12–14] and previously defined selection factors [15], to characterize features of

responding TCR from sequence data. We apply the method to T-cell subrepertoires from [16]

that are in vitro stimulated by patient-specific tumor neoantigens in the peripheral blood of

seven long-term survivors of pancreatic ductal adenocarcinoma (PDAC). The computational

approaches we developed discriminate between specific and non-specific expansion and estab-

lish a connection between antigen specificity and sequence motifs in TCRs. The methods are

general and, apart from the T-cell repertoires from [16], we apply them also to TCR repertoires
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responding to specific viral epitopes [17]. In the later case, we show that our methods allow for

the identification of clusters of TCRs responding to the specific epitopes.

Results

Dataset structure

We consider T-cell repertoires from the in vitro T-cell assays that were performed by Bala-

chandran et al. [16] to detect lasting circulating T-cell reactivity to patient-specific neoantigens

in PDAC long-term survivors. This cohort consists of seven patients, labeled here as Pt1, . . .,

Pt7. First, putative neoantigens were selected among all short peptides harboring a point muta-

tion identified in patients’ tumors using the neoantigen fitness model proposed by Łuksza

et al. [9]. This fitness model predicts the potential of a neoantigen of being immunogenic (i.e.,
to trigger an immune response) based on: its sequence homology to known infectious disease-

derived antigens, which is a proxy for the probability of its recognition by T cells; and its rela-

tive MHC-I binding affinity when compared to the wild-type peptide from which it was

derived, quantifying its differential degree of presentation compared to the wild-type. The

mutated peptide with the maximum fitness within a tumor was predicted as the immunodomi-

nant neoantigen. Subsequently peripheral blood mononuclear cells (PBMCs) from each

patient were pulsed in vitro with the putative immunodominant neoantigen(s) (NA) for that

patient. For comparison, PBMCs were also pulsed with the model predicted homologous

infectious disease-derived antigens (“cross-reactive” antigens, CR) of the NA and their corre-

sponding unmutated versions (“wild-type” antigens, WT). In addition, neoantigens were also

found to be enriched in the genetic locus MUC16. As a result, MUC16-derived neoantigens

were also tested for an in vitro response in two patients (Pt1 and Pt2). Overall, this dataset pro-

vides 23 antigen-stimulated T-cell repertoires, one for each antigen tested across the seven

patients, as summarized in Table 1.

In these assays, T-cell response was monitored in terms of TCR clonal expansion 21 days

after in vitro stimulation by the selected peptides (Fig 1A). Cytokines Interleukin-2 (IL-2) and

Interleukin-15 (IL-15) were added on day 2 and every 2–3 days. Peptides were also re-added

on day 7 and 14 for second and third rounds of restimulation. On day 21, cells were restimu-

lated in the presence of peptides for 5 hours before being stained. Sequence reads of the com-

plementarity-determining region 3, CDR3 (the region in contact with antigens) of the TCR β

Table 1. List of TRB RepSeq datasets from Ref. [16]. Datasets are organized by patient and by antigens used for the in vitro stimulation of the patient’s PBMC. Neoanti-

gens tested were chosen based on a measure of neoantigen “fitness” that accounts for: the neoantigen binding affinity to the patient’s MHC; its potential for being recog-

nized by T cells, quantified by sequence similarity to infectious disease-related epitopes (“cross-reactive”), see [9, 16]. The neoantigens are generated by cancer-specific

point mutations in antigens natural to the organism (“wild-type”). The green circle indicates neoantigens from the genetic locus MUC16, which were not selected based on

neoantigen fitness.

Patient (Pt) Epitopes: NA (Neo-Antigen), WT (Wild-Type), CR (Cross-Reactive) Cross-reactive origin

1 NA (NLLGRNSFK), WT (NLLGRNSFE), CR (LLGRNSFEV) Tumor antigen from p53

1 �MUC16 (TTSPSNTLV), MUC16WT (TTSPSTTLV)

2 NA (QEFENIKSY), WT (QEFENIKSS), CR (QRFHNIRGRW) Human papillomavirus

2 �MUC16 (EASSAVPTV), MUC16WT (EASSTVPTV)

3 NA (RVWDIVPTL), CR (KPWDVVPTV) Dengue virus

4 NA (LLLMSTLGI), WT (LSLMSTLGI), CR (LLMGTLGIV) Human papillomavirus

5 NA (QTYQHMWNY), CR (AFWAKHMWNF) Hepatitis C virus

6 NA1 (LPRQYWEAL), CR1 (KLLPEGYWV) Francisella tularensis

6 NA2 (RPQGQRPAL), CR2 (SPRGSRPSW) Hepatitis C virus

7 NA (GIICLDYKL), CR (TMGVLCLAIL) Dengue virus

https://doi.org/10.1371/journal.pcbi.1009297.t001
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chain (TRB) were obtained both before and after antigen stimulation. We will refer to these

lists of sequence reads as the “day 0” and the “day 21” datasets respectively, providing snap-

shots of the TCR composition of patient repertoires at day 0 (before antigen stimulation) and

at day 21 (after in vitro stimulation). A clonotype was defined to include all TRBs with identical

CDR3 amino acid sequences and we will use this definition. Ref. [16] assessed TRB clonal

expansion using flow cytometry and CDR3 sequence reads. They found identical TRB clones

that were significantly expanded in response to both NA and CR in all patients and neoanti-

gen-reactive clones that were also present in the same patient’s archival primary tumors in 5

out of 7 patients.

Our goal is to learn from CDR3 sequence data sequence-level models capturing informa-

tion about the response to specific antigens in each T-cell repertoire. We use TRB clonal abun-

dance to train models that identify responding clonotypes. We assign to each CDR3 sequence

a multiplicity (counting up the corresponding reads) and we construct sequence datasets

where sequences are replicated as many times as given by their multiplicity. In this way, the

Fig 1. Schematic of the approach. A: Response to the antigen occurs via clonal expansion, where responding T cells proliferate by cell reproduction. B:

Structure of count-weighted training datasets. Repertoire statistics before (left) and after (right) stimulation can be illustrated in terms of logos that convey

information about position dependent residue single-site frequency, and correlation matrices. C: Distribution of CDR3 lengths without alignment (lower x-

axis). The number of gaps inserted in the sequence center by the alignment (upper x-axis) is equal to the difference between the alignment length (Nσ = 19)

and the CDR3 original length. D: The RBM model graphical architecture. The ratio of the RBM model scores before and after stimulation highlights

sequence motifs that are characteristic to antigen stimulation (dark red boxes). Data shown for stimulation by NA of patient Pt3 PBMC from Ref [16].

https://doi.org/10.1371/journal.pcbi.1009297.g001
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contribution of each CDR3 sequence is effectively weighted by counts of sequence reads and

we will refer to these training datasets as “count-weighted datasets” (Fig 1B).

Probabilistic models inferred from sequence data

We learn a distribution of the probability of finding a specific CDR3 sequences in a given rep-

ertoire. The statistics describing CDR3 amino acid usage evolve from day 0 to day 21, reflect-

ing the underlying evolution of the T-cell repertoire composition induced in the experiment.

TRB clonal expansion modifies the amino acid sequence statistics (Fig 1B). The goal of our

inference frameworks is to reconstruct from these changes in the CDR3 sequence statistics the

“constraints” (or patterns) at the level of amino acid sequences that characterize antigen

induced expansion. We consider three methods: the Restricted Boltzmann Machine (RBM), a

selection-factor based method SONIA [15], and an RBM that does not require multiple

sequence alignment (RBM-Left+Right).
Restricted Boltzmann machine (RBM). In the Restricted Boltzmann Machine (RBM)

[12, 13] method presented in Fig 1D, the CDR3 sequences (observed units) are coupled to a

layer of hidden units by a set of connections called “weights”. The advantage of hidden units,

when learning a probability distribution of finding a given CDR3 sequence in the repertoire, is

that they help capture global correlations between observed units (i.e., along CDR3 sequences),

each of the hidden units extracting a feature. The parameters defining the RBM distribution

(Eq 2 in Materials and methods): the local biases acting on the observed units and the global

weights are inferred from the count-weighted datasets representing each TRB repertoire, in

such a way as to reproduce the repertoire statistics shaped by the clonal expansion, see Fig 2A,

Materials and methods, and S4 Fig.

CDR3 length can vary from a few up to 30 amino acids (S1 Fig). To learn the RBM, we first

need to reduce sample sequences to the same length by performing a CDR3 sequence align-

ment [18]. We propose for CDR3s a novel alignment procedure where we first build an align-

ment profile of all the sequences of the same length and then progressively re-align profiles of

increasing length to obtain a multiple sequence alignment of length Nσ = 19 amino acids (see

Materials and methods, [19]). For sequences that share strongly conserved anchor residues, as

in the case of CDR3, the resulting alignment concentrates gaps, due to variable CDR3 length

(Fig 1C), in the middle of the sequence and away from the conserved residues. In Fig 1B gaps

are indicated by ‘−’ symbols in the lists of CDR3 sequences but excluded from logos to empha-

size amino acid usage.

SONIA. We also consider a recent computational tool, SONIA [15] that infers selection

factors acting on the TRB chain from RepSeq datasets. SONIA quantifies selection pressures

on amino acids in the TCR sequences in terms of position-specific “selection” or q-factors,

by comparing the probability of finding a given sequence in a post-stimulation repertoire of

interest compared to a baseline repertoire. In the context of this paper, we model TRB clone

expansion as a form of selection pressure imparted by antigen stimulation and learn two

SONIA models for the probability of finding a CDR3 sequence, one before and one after

antigen stimulation. Specifically, SONIA fits the statistics of count-weighted CDR3 datasets

by an independent-site model, fixing the same “background” distribution for both datasets

to the probability of generation of these sequences Pgen (Eq 7 in Materials and methods).

We used SONIA models with Left+Right feature encoding [15] (Fig 2B). Each CDR3

sequence is encoded by a string of 1 and 0, describing the presence or absence of a given

amino acid at a given distance from the left end of the CDR3 (the start CDR3 anchor resi-

due) and from the right end (the end CDR3 anchor residue), up to a maximum distance that

we set to Nσ = 19.
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RBM-Left+Right (RBM-LR). Finally, we also implemented an RBM version which does

not rely on a first step of sequence alignment by performing a Left+Right CDR3 encoding as in

the SONIA Left+Right model [15]. We refer to this RBM version as RBM-LR. The Left+Right
data encoding is specifically designed to exploit the structure of CDR3 sequences, that are pro-

duced by a gene rearrangement process called VDJ recombination [20]: as a result, the start

site is a cysteine encoded by the variable (V) segment, the end site is Phenylalanine or Valine

encoded by the joining (J) segment and the variability in sequence composition is concen-

trated in the middle, arising from untemplated insertions and deletions at the junctions with

the diversity (D) segment. This left-right encoding has the advantage of not relying on multiple

sequence alignments, which are sample- and procedure-dependent, but it is suitable only for

biological sequences that display strongly conserved start and end residues, such as CDR3s.

The results of the alignment procedure, with gaps located in the central variable region of the

CDR3, are consistent with the left-right encoding (see Fig 2 and S2 Fig), proving the ability of

our alignment routine to well reflect the known biological structure of CDR3 sequences. We

Fig 2. Inferred model parameters enable feature extraction. A: Using count-weighted datasets, the RBM infers the probability PNA
21
ðσÞ of detecting a

CDR3 sequence σ with high abundance at day 21 post stimulation by NA. PNA
21
ðσÞ is parametrized in terms of local biases g acting on CDR3 sites (left

column) and weights connecting each CDR3 site to a hidden unit, effectively coupling the CDR3 sites (right column). Inset: example of weights entering

hidden unit 8, w8. The logo representation of exp(g) normalized (left column) shows that single-site biases, by capturing the frequency of amino acids at

each CDR3 site, reflect mainly the preferential usage of certain residues during the receptor generation process (e.g. Cysteine at the beginning of the CDR3,

Phenylalanine at the end position, blue boxes). For a given hidden unit, there is a set of weights for each site, with different values for each amino acid

appearing at that site. These values can be either positive or negative and the height of the letter reflects the weight’s magnitude for the respective amino

acid. Symbols give weight values for the gap. Weights carry information mainly about experiment-specific enrichment in sequence motifs (e.g. VVV or

WSA at positions 3–5, dark red box). B: The probability PNA
21
ðσÞ inferred by SONIA is expressed in terms of selection or q-factors, one set for the left CDR3

alignment (qL) and one set for the right CDR3 alignment (qR), here represented as sequence logos. Inset: sequence logos at day 21 post-stimulation and for

the baseline distribution Pgen with left and right alignment. In contrast to RBM biases, q-factors quantify only the enrichment (dark red box) with respect to

the TRB generation amino acid usage preferences described by Pgen (blue box in the inset). The gaps appearing in the RBM motifs have been removed from

the logo representations in all figures for clarity of presentation. The dataset used is the same as in Fig 1 (stimulation by NA of Pt3 PBMC from [16]).

https://doi.org/10.1371/journal.pcbi.1009297.g002
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use in fact the RBM-LR model to show that our conclusions do not depend on data encoding:

since the RBM-LR model does not require any alignment, it avoids producing alignment gap

artifacts found in the RBM motifs (see S2 Fig and Fig 5), however its training time can be sub-

stantially longer (Materials and methods).

Model parameters are potential tools for motif discovery

The sequence-based approaches in the previous section provide a scoring scheme that associ-

ates sequence abundance, which is informative about TRB response, to sequence features, that

embed molecular details related to TRB specificity (Fig 1). In particular, the inferred model

parameters identify and allow us to derive sequence motifs containing CDR3 residues charac-

teristic of antigen-specific response (Fig 2). The RBM biases gi(σi) identify conserved positions

along the CDR3 that are mainly a result of preferential usage of these amino acids during the

generation process. Similarly SONIA q-factors disentangle, in a site-specific way, enrichment

in amino acid usage due to clonal expansion from the generated frequency distribution (incor-

porated in the reference probability Pgen). Additionally, RBM weights pick up sequence fea-

tures coming from global selection patterns that independent-site q-factors cannot capture

(Fig 2 and S2 Fig). Inferred model parameters can be applied as a motif discovery tool that,

once combined with systematic experimental tests, provide specific insights about TCR

responses in terms of TCR:pMHC binding.

Model scores correlate to T-cell clonal expansion

From the dataset incorporating clonal multiplicity upon stimulation by antigen p at day 21, the

RBM approach and SONIA learn the probability Pp
21ðσÞ that a given TRB clone σ is detected

with high abundance post-stimulation (Fig 2).

As a preliminary step, we asked whether Pp
21ðσÞ correlates with CDR3 counts at day 21 for

sequences in a test set (see Materials and methods). This indicator of performance is extremely

poor when we use all the clones, since for low-count clones there is no more correlation

between RBM scores and counts (S3(C) Fig). If we filter out low-count clones, progressively

restricting the test set to the clones with highest abundance, we recover a significant correla-

tion and RBM performance is generally better than the SONIA biophysical model based on

the independent-site assumption (S3 and S4B and S4E Figs). We next introduced a probabilis-

tic score of response for a clone σ to stimulation by antigen p, Sp
respðσÞ ¼ log ðPp

21ðσÞ=P0ðσÞÞ,
which measures the ratio of the model probability assigned to sequence σ in the p-specific rep-

ertoire after stimulation, Pp
21ðσÞ, relative to the one before stimulation P0(σ). We tested the

response score’s ability to correlate to actual clonal expansion under the same stimulation p,

quantified by the clone’s fold-change with respect to its abundance at day 0 (see Eq 1 in Mate-

rials and methods). Fig 3 shows good performance, with correlation coefficients ranging

between 0.68-0.83 (RBM) and 0.51-0.71 (SONIA), the only exceptions being visible in datasets

Pt7 and Pt4 WT. Here, relatively high counts at day 0 obstruct information about the antigen-

specific response at day 21. The model can therefore be used to identify both experimental and

condition specific responding TCRs, a task of great importance to advancing personalized

immunotherapies. Response scores Sp
respðσÞ can also be defined in terms of the TCR probabil-

ity at day 21 relative to baseline distribution Pgen(σ) [21]. These scores capture information

about the overall selection pressures acting on the sequence, including thymic and antigen spe-

cific selection [15] (see Materials and methods). The advantage of this choice is that Pgen can

be estimated in silico [21], without the need for longitudinal datasets that include sequence

data at time points before stimulation, which are not always available. More generally, Sp
respðσÞ
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can be estimated relative to other “background” distributions at our disposal, accounting for

TCR statistics in the peripheral blood in normal, unstimulated conditions. In Fig 3A, we show

that the model prediction for antigen specific expansion at day 21, Sp
respðσÞ, is robust with

respect to the choice of the background distribution, suggesting we are capturing a response to

this specific antigenic challenge.

Model scores serve as predictors of specificity of T-cell response

The datasets considered portray the response of the same, individual TRB repertoire to differ-

ent conditions determined by cultures with different antigens. We next asked whether the

model is able to detect some condition-related specificity in these responses.

The model’s response scores Sp
respðσÞ quantify differential degrees of expansion of a TRB

clone σ in response to stimulation by antigen p (S5A Fig). By comparing response scores to dif-

ferent antigens tested for the same patient, we define a score of specificity of response of clone

σ to a given antigen p, Sp
specðσÞ, see Eq 10 in Materials and methods. The score assigns positive

values to TRB clones that are specific responders to the antigen and negative values to the

clones unspecific to it, as shown for Pt3 in Fig 4A. Here, the expansion in response to the two

tested antigens (the neoantigen NA, the cross-reactive CR) is mostly specific to each of them.

Specificity scores whose values lie around zero denote both clones that did not expand at all

and clones that expanded under both stimulations (cross-reactive clones), see Fig 4B. Cross-

Fig 3. Model scores of T-cell clonal expansion. A: The RBM calculated response scores Sp
resp for each TRB clone in each antigen-stimulation condition p.

The correlation between the Sp
resp and clone fold change is poor when considering all clones, as low-count clones are a source of noise. A significant

correlation is recovered by progressively filtering out the low-abundance sequences from the testing set, shown on the example of stimulation by p = NA of

Pt3 PBMC. For both RBM and SONIA (shown on the right), the correlation is robust to the choice of different background distributions: P0 (the

probability learned on the same patient’s dataset at day 0), Pgen (the probability of generating a given CDR3, described by OLGA [21]) and Ppost (the post-

thymic selection CDR3 distribution, sampled here from a default human TRB model available in SONIA [15]). The small differences between the 3 curves

are mainly due to sampling, see also Materials and methods. B: The correlation coefficient between the RBM Sp
resp and clone fold change for each antigen-

stimulation experiment p (color-coded by antigen) when retaining the 125 most abundant clones (the golden dot in panel A). Data from [16] correspond to

p = NA, CR, WT, MUC16, MUC16WT (Pt1, Pt2), p = NA, CR (Pt3, Pt5, Pt7), p = NA, CR, WT (Pt4), P = NA1, CR1, NA2, CR2 (Pt6), see also Table 1. C:

Scatter plot comparing Sp
resp from the RBM and SONIA.

https://doi.org/10.1371/journal.pcbi.1009297.g003
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Fig 4. Model scores of T-cell response specificity. A: Histogram of RBM specificity scores Sp
spec showing their ability to discriminate specific responders to

p = NA (assigned positive values) from unspecific ones (assigned negative values), for two examples: of less specific (Pt7 samples, top), and more specific

expansion (Pt3 samples, bottom). ROC curves give the fraction of specific responders to p = NA (clones specifically expanded upon NA stimulation)

predicted by SNA
spec against the fraction of unspecific responders (clones responsive to the alternative stimulation, here CR) when varying the threshold of

discrimination. The Area Under the ROC curve (AUROC) is taken as quantitative measure of specificity of expansion. B: Ref. [16] identified 78 clones that

expanded under the stimulation by both NA and CR in Pt3. x and y-axis give their log fold change in the NA and CR experiments. The color code gives

their specificity score SNA
spec in absolute value (note that jSNA

specj ¼ jS
CR
specj). High jSNA

specj is assigned only to clones whose expansion was more significant in one

experiment than in the other, while clones that are significantly expanded in both experiments (highly cross-reactive) are assigned jSNA
specj closer to zero.

These clones do not contribute to discriminating the two repertoires. In A-B, SNA
spec and log fold change are given in log base 10. C: ROC for Pt7 and Pt3

samples obtained by RBM-LR and SONIA, which take input training data in the Left+Right encoding. D: AUROC calculated from the RBM for all datasets

under consideration from [16]. The dashed line gives the expected value (AUROC = 0.5) when comparing statistically indistinguishable samples (the

“control”, gray bar), calculated from two replicates of Pt7 sample at day 0. E: Comparison of the AUROC obtained by the RBM, the RBM-LR model and

SONIA for all datasets in D.

https://doi.org/10.1371/journal.pcbi.1009297.g004
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reactive clones are expected to arise due to the sequence similarity between CR and NA and

were documented in Ref [16]. For Pt7, both specific and unspecific responders give similar dis-

tributions of specificity scores, due to a less marked difference in fold change under the two

stimulations (Fig 4A), signaling that in Pt7 expansion is less specific.

We can set a threshold score value to discriminate specific from unspecific responders and,

by varying this discrimination threshold, we can build a Receiver Operating Characteristic

curve (ROC) describing the fraction of specific responders to the antigen predicted by the

model’s score, against the fraction of predicted unspecific responders. The AUROC (Area

Under the ROC) is a quantitative indicator of both the specificity of the expansion upon expo-

sure to a given antigen at the repertoire level and of the model’s ability to detect such specific

expansion (see Materials and methods). Fig 4D presents this measure for all samples, showing

a high degree of specificity for most samples, and a lower degree specificity for others, in par-

ticular patient Pt7 (NA, CR) and Pt1 (NA, CR). This pattern suggests that the tested antigens,

selected for each patient by in silico prediction, were able to stimulate specific responses in

some patients more than in others, and the AUROC of specificity could help identify candidate

immunostimulant neoepitopes.

When assessing specificity, we found that RBM and RBM-LR give consistent answers, see

Fig 4C and 4E, as a consequence of the fact that the two methods’ scores correlate in a similar

way with clonal abundance. The excellent agreement between RBM and RBM-LR confirms

the remarkable robustness of our scoring procedure to the choice of data encoding. AUROC

of specificity by RBM/RBM-LR are also consistent with SONIA, albeit generally shifted

towards higher values for RBM based approaches (Fig 4C and 4E), reflecting the increased

ability of models that include correlations (RBM/RBM-LR) to predict clonal abundances (see

also the inset in Fig 3 and S3 Fig).

RBM-based dimensionality reduction of T-cell response

The RBM outputs a probability of response that is based on detecting sequence patterns associ-

ated to expansion (Fig 2A). The projections of sequences onto weights—the “inputs to hidden

units” (see Eq 4 in Materials and methods) define a lower-dimensional representation space

where data is structured based on sequence patterns (dimensionality reduction). Applied to the

antigen-specific TRB repertoires from Ref. [16], this representation gives insight into how the

response to the same neoantigen is distributed in sequence space, identifying clusters of similar

clonotypes and separating out expansion “modes” due to dissimilar clonotypes. Focusing on

the responding clones identified by RBM scores, visualization in 2 dimensions (Fig 5) highlights

clusters of clones based on sequence features. The degree of clustering depends on the specific

samples, e.g. it is more pronounced in the Pt5 CR sample than in the Pt3 NA sample. This

dimensionality reduction exploits the interpretability of the RBM model in latent space.

To perform a comparative analysis of these sequence motifs, we applied GLIPH [22, 23], an

algorithm that clusters TCR sequences based on putative epitope-specificity (S8 Fig). Most

expanded clusters recovered by GLIPH can be associated with expanded sequences repre-

sented in RBM space in Fig 5. Beyond these common hits, GLIPH and RBM reveal comple-

mentary information, reflecting their different purposes. While GLIPH focuses on finding

clusters of similar sequences, in our RBM approach we use information on expansion to

appropriately weight sequences. As a result, GLIPH reports well-clustered but not necessarily

expanded motifs, while RBM reports highly expanded but sometimes isolated sequences. Only

sequences that are both well-clustered and expanded are captured by both algorithms.

To further illustrate the potential of the RBM low-dimensional representation, we consid-

ered human TCR validated to be specific to common viral epitopes by MHC tetramer-sorting
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[17, 22]. We tested the following epitopes: HLA-A�02:01-M158(M158) from the influenza

virus, HLA-A�02:01-pp65495 (pp65495) from the human cytomegalovirus (CMV), and

HLA-A�02:01-BMLF1280 (BMLF1280) from the Epstein-Barr virus (EBV) from both [17] and

[22]; HLA-A�01:01-NP44 (NP44), HLA-B�07:02-NP177 (NP177) from Flu,

HLA-B�07:02-pp65417, and HLA-A�01:01-pp50245 from CMV [22]. We trained two RBM on

the full sets of CDR3 sequences from each of the two datasources [17] and [22] (see Materials

and methods). The RBM-based dimensionality reduction identifies clusters of clones that spe-

cifically bind the M158, BMLF1280, pp65495 epitopes, for which characteristic sequence motifs

were identified in Refs. [17, 22] using respectively the clustering algorithms TCRdist and

GLIPH (Fig 6 and S7 Fig). RBM weights reproduce also three of the five sequence motifs iden-

tified by GLIPH and validated to be involved in response to M. Tubercolosis in [22] (S7(E) Fig).

Repertoire diversity correlates with model generalizability

Individual repertoires are highly diverse and personalized. Even TRB subrepertoires specific to

the same antigen show high diversity [6]. Several works have also highlighted that epitope-spe-

cific responses often have a “clustered” component, i.e. driven by groups of TCRs with com-

mon sequence motifs [17, 22, 24], along with a more “dispersed” component in sequence

space [17]. To quantify the degree of heterogeneity of clone distributions within repertoires of

interest, several standard diversity metrics exist [25, 26]. Here, we calculate an index of

sequence dissimilarity that follows closely the logic of the repertoire diversity metric TCRdiv

[17], but we apply it to sets of only CDR3 sequences (see Materials and methods) from the

neoantigen experiments of Ref. [16]. The sequence dissimilarity index is a summary statistic

that gives an effective measure of the heterogeneity among the responding (i.e. expanded)

clones, which indicates how much the response is focused around certain amino acid patterns

in sequence space. We see in general (Fig 7A) a higher CDR3 sequence dissimilarity for the

Fig 5. RBM-based dimensionality reduction of TRB response. A: A lower-dimensional representation of RBM predicted TRB sequences of Pt3

responding to the NA antigen 21 days post-stimulation (same model as in Figs 1 and 2). We rank CDR3 sequences by likelihood and look at the top ones (8

clones). We select 2 sets of RBM weights displaying well-defined patterns of amino acid usage at the beginning and at the end of the CDR3 (respectively w8

and w12). The projection of top-likelihood clones onto these weights define the inputs to the corresponding hidden units (h8 and h12) in two dimensions.

Depending on sequence patterns (see colored amino acids), responding clones have either a positive or negative projection onto the selected weights and

end up occupying different portions of the space of inputs to hidden units. The color code (log base 10 of fold change) highlights that high model likelihood

reflects high fold change. B: Same data representation by the RBM as in A, with the 12 top-likelihood clones for the Pt5 CR assay.

https://doi.org/10.1371/journal.pcbi.1009297.g005
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neoantigen response than for epitope-specific repertoires from Refs. [17, 22] (in particular the

M158 repertoire from [17]), indicative of a more diverse response.

Shared sequence patterns play a crucial role in enabling prediction of antigen-specific

response from sequences alone [17, 22, 27]. We can hypothesize that high sequence dissimilar-

ity can hinder generalization, since it is based on picking up features of responding sequences

that are not present in the non-responding ones. In fact, the sequence dissimilarity index for

Fig 6. RBM retrieves TRB sequence motifs reported in Dash et al. 2017 [17] and Glanville et al. 2017 [22]. A: Sequence logos of aligned CDR3 of each

human TCR repertoire specific to CMV, EBV and Flu epitopes based on the tetramer sorted data from Ref. [17]. Sequence motifs identified in Ref. [17] are

marked by colored boxes. The sequence motifs visualized here from aligned CDR3 are similar but not exactly the same as the ones in Ref. [17]. B: We

learned an RBM on the full list of CDR3 sequences from the three repertoires in A. The learned weights show the same sequence motifs as in A and the

inputs to the corresponding hidden units identify two groups of clones: one specific to the M158 epitope (magenta dots) and the other to the BMLF1280

epitope (blue dots). C-D: Same representation as in A-B for the tetramer sorted data from Ref. [22] and the RBM trained on them. For the sake of

comparison we have limited the logos in C to the same epitopes as in A. The pp65495 repertoires (orange dots both in B and D) is the most heterogeneous

(see Fig 7A) and the characteristic sequence motifs reported in [17, 22] are not easily visible in A-C (see instead S7A–S7C Fig). In both cases, the RBM is

able to learn a set of weights reflecting such motifs, see S7A–S7D Fig. E: Same as D, but where T-cell clones belonging to 4 of the 35 clusters found by

GLIPH in [22] are circled in color. These clones are well separated in RBM space. The RBM representation space captures the similarity of sequences that

have the same epitope specificity but are placed into different clusters by GLIPH (blue- and green-circled clusters).

https://doi.org/10.1371/journal.pcbi.1009297.g006
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the neoantigen data (Fig 7A) is comparable in magnitude only to the most diverse epitope-spe-

cific human TRB repertoire from [17], for which the distance-based clustering algorithm per-

formed worse than for other repertoires. To test more quantitatively this hypothesis, we built

an RBM model for the M1-specific TRB repertoire from Ref. [17], the one with the lowest

sequence dissimilarity index (Fig 7A). We evaluated the model on a held-out test set of

M1-specific clones and a 99-fold excess of “generic”, unspecific ones (CDR3 sequences ran-

domly drawn from the day 0 samples). By comparing the RBM scores assigned to M1-specific

clones and to generic ones (Fig 7B), we found the model performed extremely well at predict-

ing clones reactive to M1 epitopes in terms of the Receiver Operating Characteristic curve and

its associated area (Fig 7C), with AUROC = 0.9 on 5-fold leave-one-out validation (see Materi-

als and methods). Repeating the same test using sets of responding clones with a much higher

sequence dissimilarity index to train our RBM, such as the neoantigen stimulation datasets

from Ref. [16] (restricting to expanded clones) or the repertoires specific to pp65495, BMLF1280

Fig 7. Diversity among responding clones and model’s predictive power. A: The sequence dissimilarity index (a modified TCRdiv diversity index, see

Materials and methods) calculated for the pool of expanded clones in the Pt1,. . .,Pt7 assays from [16]. The dissimilarity index values lie in a range

comparable only to the most diverse epitope-specific human repertoire of tetramer-sorted TCRs from Dash et al. [17] and Glanville et al. [22] (black bars),

see also Fig 6. B: Probabilistic scores from the RBM (trained on the M1-specific repertoire from [17]) evaluated for a testing set of M1-specific CDR3 and

generic CDR3 randomly drawn from the day 0 of Pt1,. . .,Pt7 samples. The model’s ability to predict M1-specific clones is quantified by the high AUROC

value (C). D: AUROCs for models trained on lower-diversity repertoires (tetramer-sorted TCR data from [17, 22], black bar) are in average higher than for

the Pt1,. . .,Pt7 datasets (gray bar). Bar plots give the average AUROC and its standard deviation. AUROC values are estimated by a leave-one-out 5-fold

validation protocol (see Materials and methods). E: AUROC for the tetramer-sorted and Pt1,. . .,Pt7 datasets is inversely correlated with the sequence

dissimilarity index, Pearson correlation r of magnitude |r| = 0.95, p-value for testing non-correlation = 2.53 × 10−14 (|r| = 0.87 and p-value = 1.9 × 10−7

considering only Pt1,. . .,Pt7 datasets). D-E show that the predictive power of sequence-based models is degraded for high-diversity repertoires. We

discarded from the AUROC test of B-E the pools of responding clones consisting of fewer than 100 sequences (Pt6 NA1, BMLF1280 and pp65495 from [17],

NP44 and pp65417 from [22]).

https://doi.org/10.1371/journal.pcbi.1009297.g007
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from [22], we found that the average model performance is significantly decreased (Fig 7D).

Since tetramer-sorted datasets do not include count information, this performance reflects the

ability to predict unseen sequences, which is a more stringent test than predicting the abun-

dance of observed sequences. A similar test can be performed on the PBMC stimulation exper-

iments from [16] by separating TCR sequences into training and testing sets, in such a way

that a given sequence could not be found in both. Doing so reveals relatively poor predictabil-

ity (S9 Fig), which is due to the very high diversity of responding clonotypes in these datasets.

In general, we verified that the model’s ability to recover specific clones is inversely correlated

with CDR3 sequence dissimilarity (Fig 7E and S9(A) Fig).

Discussion

We have proposed probabilistic-modeling approaches (summarized in Fig 8A) to obtain

sequence representations of T-cell response from RepSeq datasets. We demonstrated the

inferred, probabilistic scores capture information about sequence counts and predict clono-

type fold changes upon antigen-stimulation (Fig 3). These methods provide tools to detect spe-

cific TCR responses (Fig 4) and connect information about clonal expansion to sequence

features in a way that enables the inspection of sequence properties necessary for TCR recogni-

tion at the biochemical level, providing important input for experimental validation (Figs 2

and 5).

Overall we found the RBM model is better at capturing information about the response to a

single neoantigen or epitope stimulation contained in clone counts than SONIA (Fig 8B–8C).

The RBM encodes global correlations in the CDR3 while SONIA is an independent-site model

(Figs 3C and 4E, and S3 Fig). Nevertheless, SONIA is able to incorporate some sequence corre-

lations via Pgen and account for the V-J gene segments flanking the CDR3, which already

improve predictions in comparison to a fully factorized probabilistic model (S6 Fig). The data

set we have analyzed [16] is characterized by very dissimilar clonotypes. Such diversity results

in relatively poor RBM performance in predicting responding clonotypes not included in the

training data sets in the leave-one-out validation protocol (S9 Fig). SONIA performance is cor-

related to RBM performance (S9(C) Fig), albeit still poor, supporting that the ability to gener-

alize to unseen clonotypes is weakly dependent on the model and data encoding chosen.

Rather it is largely determined by the heterogeneity of the repertoire. In general, the predictive

power of sequence-based models is largely improved when they are trained on less diverse

data sets as tetramer data from the M1-specific repertoire from Ref. [17] (see Fig 7D).

The RBM also has the ability to project the response onto different (groups of) clonotypes

(Fig 5), which is useful for identifying the different sequence features underlying response

within the same sample. Combining different datasets describing the response to specific anti-

gens gives hope of linking the specificity of response to distinct TRB sequence features. Any

generative approach for the sequence probability could be used, for example VAE models [28,

29]. While for fitting post-thymic selection TCR distribution methods capturing non-lineari-

ties did not seem to be essential (there VAE performs as well as SONIA [30]), for building

models of TCR response we expect the VAE to reach an accuracy similar to RBM.

Identifying TCR reactivity to an antigen that is a single mutation away from a self-antigen

(neoantigen), but that is not reactive to the self-antigen itself (the corresponding wild-type), is

of major importance for personalized cancer immunotherapies, such as vaccine design. Candi-

date neoantigens to prioritize in vaccine design are selected through time- and resource-con-

suming pipelines that involve several steps of neoantigen identification and experimental

validation. These approaches are often too costly and time-consuming to carry out on a single-

patient basis. Both immunodominant neoantigens and the elicited immune responses are in
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fact largely individualized, hence the information from already analyzed patients is in general

insufficient to probe candidate neoantigens for new patients (unless we consider recurrent

cancer mutations, which could provide shared targets across patients and tumor types but

whose availability remains to be assessed [31]). In this setting, approaches such as the RBM

and SONIA can help validate specific responses to pre-selected neoantigens, where they can be

applied to extract the sequence features of neoantigen-specific responses in individual and

newly-produced datasets. Moreover, the inferred probabilistic score renders our models gen-

erative, in principle, implying one can predict new TCRs that recognize an antigen, a point

critical to the ability to engineer T cells with a given specificity. It would be interesting to vali-

date, by assays probing the response to neoantigens and wild-type antigens, to what extent our

modeling approach is able to distinguish the wildtype-specific receptors from the neoantigen-

specific receptors, and whether one can then generate new TCRs with comparable specificity.

Our approach is designed to have broader applicability. For instance we have benchmarked

the model with datasets describing individual repertoires elicited by different known antigens,

Fig 8. Comparison of the methods. A: Schematic summary of the characteristics of the three sequence-based probabilistic modeling approaches used:

RBM, RBM-LR, SONIA. B-C: Summary of the results we obtained for the samples from [16] using the approaches in A, in particular the correlation

between the model’s response score Sp
resp and TRB clone fold change when retaining the 125 most abundant clones (B) and the AUROC-based measure of

response specificity (C). Both these measures highlight a different degree of specific response to the stimulation, that overall stays high across the samples

apart from Pt7, where response to the peptides tested was rather unspecific. For each sample, the results from the three methods are well in agreement (see

also Figs 3C and 4E). High values of the AUROC and of the Sp
resp-fold change correlation reflect also how well the probability inferred by each method

reproduces the clone abundance (see S3 Fig, Materials and methods), thus we report the averages over all samples (last column) for a comparison of the

methods’ performance. This comparison shows that the general performance is higher for RBM-based approaches than for SONIA and is the same for

RBM and RBM-LR.

https://doi.org/10.1371/journal.pcbi.1009297.g008
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without using any information about the response-epitope association. This shows that our

approach is generally applicable to scenarios where only single or multiple snapshots of TCR

repertoires (and not the stimulating epitopes) are available, either from peripheral blood or

from tissue-infiltrating lymphocytes. In these cases, our method can assess whether TCR-

driven immune response is occurring and how specific it is across different conditions, time

points, and tissues. It could be used to discriminate clones specifically responding to different,

unknown targets or to detect changes in repertoire clone composition at different stages of dis-

ease progression. Here we exploited the longitudinal structure of the available datasets to assess

TCR response after stimulation relative to the pre-stimulation time point, but such longitudi-

nal structure is not strictly necessary, as we have shown in Fig 3A. Our approach can be

applied to single time point datasets, where it can characterize TCR response and its specificity

in comparison to reference distributions for normal, unstimulated TCR repertoires, like the

ones provided by existing probabilistic models [15, 21]. In addition, in Figs 6 and 7B–7E we

show an application of the RBM based model to datasets of unique, only responding clones

identified by direct TCR binding to MHC-tetramer reagents where a non-responding dataset

is not available.

Our approach remains designed to analyze the ongoing response to known or unknown

targets in TCR repertoires. It does not have the power to predict the number and the type of

such targets and how in turn they affect the amount of well-clustered and expanded clones. In

tetramer-sorted, viral epitope-reactive TCR data from [17, 22], we observed that the RBM low-

dimensional representation groups together into well visible clusters sequences sharing

defined amino acid motifs. In the majority of cases, different groups corresponded to

responses to different epitopes. In general, however, determining the correspondence between

clustered CDR3 sequences and targets of response is outside of the scope of our method, since

it would require better knowledge of the actual TCR-peptide binding modes and, in cancer, of

the tumor’s characteristics that are susceptible to produce viable neoantigens. With more data

on antigen-specific responses becoming available, it will be interesting to understand how bio-

physical properties of antigens correlate with the degree of clustering in the triggered TCR

response.

Another related limitation is the fact that the RBM does not disentangle clusters of clones

with common amino acid patterns from isolated clones that are expanded but cluster less well.

A procedure that separates out well-defined clusters, and provides typical predictions of a clus-

tering algorithm, would overcome this limitation and could be directly compared to GLIPH

[22] and TCRdist [17]. The statistical significance of the feature enrichment captured by clus-

ters could be further enhanced by directly learning an RBM with a “differential” structure,

akin to SONIA’s structure, where the weights, similarly to q-factors, are allocated to learn the

differences with respect to a baseline repertoire distribution due to a targeted immune

response.

Errors in the inference procedure can arise due to incorrect estimates of clone abundances

in data without unique molecular barcodes [6, 32]. Low-count sequences, lying a few muta-

tions away from responding clones, may represent variants of high-frequency clonotypes aris-

ing from sequencing errors and could be discarded by setting thresholds in counts below

which clonotypes are filtered out. We used a count-based filtering threshold only when corre-

lating model scores to clonal abundances (Fig 3 and S3 Fig). We used a variable threshold

parameter, avoiding having to estimate a precise cutoff for clone expansion from counts. Such

estimation can depend on count sensitivity to experimental conditions and sequencing proto-

cols and it requires to first infer the expected level of noise from replicates of the experiment

[11]. Replicates were not available here, as is often the case for RepSeq data. When replicates

are available, the choice of a more systematic count-based filtering procedure can be used
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using a probability of expanded clonotypes [11]. Re-weighting sequences by their probability

of expansion could provide also a robust solution to correct for these biases and constitutes an

avenue for future work.

In the neoantigen stimulated data, we observed, perhaps unsurprisingly, a lower degree of

repertoire focusing around a few, similar TRB clones than in examples of epitope-specific rep-

ertoires from MHC-tetramer assays for viral antigens (Fig 7). We cannot exclude that this

effect is due to the type of assay where, differently from MHC-tetramer assays, responding

clones are not isolated by direct binding to the antigen. Only some of the responding clones

may be antigen-specific, while others may have expanded in response to other, not directly

controlled, culture conditions. Additional experimental tests are necessary to disentangle the

heterogeneity of response induced by different molecular targets and the heterogeneity of

response due to other recognition modes of the same epitope. If the response described here is

not antigen specific, it still remains the response detected by clonal expansion and our models

describe a condition-specific rather than epitope-specific response. This difference in interpre-

tation is important biologically, and from the view of setting up future experimental assays,

but it does not impact the presented methodological results.

Materials and methods

Dataset preparation

Data pre-processing. The main dataset studied consist of TRB CDR3 regions sequenced

by the Adaptive Biotechnologies ImmunoSEQ platform from the T-cell assays of Ref. [16]. We

discard sequences that are generated by non-productive events, i.e., they do not have the con-

served anchor residues delimiting the CDR3 region (Cysteine as the left anchor residue, Phe-

nylalanine or Valine as right one) and they align to pseudo-genes as germline gene choices.

We collapse sequences with the same CDR3 composition (including sequences with different

V-J genes) into the same clonotype and assign, to each clonotype, a multiplicity (number of

sequence reads) that sums up multiplicities of all the different DNA sequences coding for that

same CDR3. The fraction of reads with the same CDR3 but different V-J genes was small (in

average 0.06).

Characterization of TRB clone expansion. In the PBMC culture stimulated by antigen p,

a CDR3 sequence σ is detected with a multiplicity that we denote by Np
t ðσÞ, at time t = 21 days.

We define the fold change FCp(σ) for a sequence σ in the repertoire measuring response to

antigen p as:

FCpðσÞ ¼
Np

21ðσÞ þ 1=2

N0ðσÞ þ 1=2
; ð1Þ

where N0(σ) is the multiplicity of sequence σ in the blood sample from the corresponding

patient at day 0 (before any antigen stimulation). In Eq 1, we add to all counts a 1/2 pseudo-

count, as a standard procedure to avoid ill-defined fold change with very low counts [33].

To isolate a pool of expanded clones for each stimulation condition, we follow the same cri-

teria as Balachandran et al. [16], i.e. TRB clones that increased > 2-fold on day 21 compared to

day 0 and fulfilled the Fisher’s exact test and Storey’s Q value for false discovery rate were

defined as expanded.

CDR3 sequence alignment. We first trained an RBM with fixed-length CDR3 sequences.

To this end, we built a multiple sequence alignment (MSA) of Nσ sites of all the 276993 unique

CDR3 amino acid sequences in the combined dataset from all assays. The alignment routine

consists of aligning in a progressive way sequence profiles of the same length, as schematically

summarized by the following steps (see also Ref. [19]):
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1. We build reference profiles for each length l by estimating the Position Weight Matrix

(PWMl) for the subset of CDR3s with length l by the routine seqprofile (with default

options) of the Matlab Bioinformatics Toolbox (release R2018b).

2. We align progressively fixed-length sequence profiles PWMl starting from the minimal

length l = lmin (here lmin = 5 residues) to an upper length value l = lmax (here we set lmax = 23

residues, length below which 99.9% of sequences lie, see S1 Fig) by aligning at each step two

profiles differing by one residues in length. We use the function profalign of the Matlab Bio-

informatics Toolbox, with BLOSUM62 as scoring matrix. This procedure results in pro-

gressive gap insertions in the shorter CDR3s and produces an alignment of length lmax.

3. We use the alignment obtained as seed to learn a Hidden Markov Model (HMM) profile

of length Nσ, using the routines hmmprofstruct and hmmprofestimate (with default parame-

ters) of the Matlab Bioinformatics Toolbox. We have chosen Nσ = 19 since most sequences

(* 98%) have length below this value, see S1 Fig.

4. We align CDR3 sequences of length l 6¼ Nσ to the HMM profile exploiting the position-spe-

cific HMM insertion and deletion probabilities (via the hmmprofalign function) to obtain a

final MSA of length Nσ.

Sequence-based probabilistic models

RBM. An RBM [12, 13] is a graphical model composed of one layer of Nσ observed units

σ ¼ fsig
Ns

i¼1
and one layer of Nh hidden units h ¼ fhmg

Nh

m¼1
connected by weights W = {wiμ}

(Fig 1D). The observed units σ represent CDR3 sequences, hence the number of observed

units for each sequence input is Nσ = 19 and each observed unit can assume q = 21 values (the

20 amino acids and the gap). The full probability distribution defining the RBM is parame-

trized as a joint probability over hidden and observed units:

Pðσ; hÞ � exp
XNs

i¼1

giðsiÞ �
XNh

m¼1

UmðhmÞ þ
X

i;m

hmwi;mðsiÞ

 !

; ð2Þ

where gi(σi) are Nσ × q local potentials acting on observed units, UmðhmÞ are Nh local potentials

on hidden units and the weights wi,μ(σi) are Nσ × Nh × q parameters coupling hidden and

observed units with a strength dependent of the amino acid σi, see Figs 2A and 5. The probabil-

ity distribution of CDR3 sequences can be retrieved as the marginal probability over hidden

units:

PðσÞ ¼
Z YNh

m¼1

dhmPðσ; hÞ � exp
XNs

i¼1

giðsiÞ þ
XNh

m¼1

GmðImðσÞÞ

 !

; ð3Þ

where GmðIðσÞÞ ¼ log
R
dh e� UmðhÞþhI . The input to the hidden unit μ, Iμ(σ), coming from the

observed sequence σ is given by:

ImðσÞ ¼
X

i

wi;mðsiÞ: ð4Þ

We take UmðhmÞ in the form of a double Rectified Linear Unit (dReLu) potential:

UmðhÞ ¼
1

2
gm;þh

2

þ
þ

1

2
gm;� h

2

�
þ ym;þhþ þ ym;� h� hþ ¼ maxðh; 0Þ h� ¼ minðh; 0Þ; ð5Þ
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a form that gives the model high expressive power, allowing to fit higher order correlations in

the input data, see [14, 34]. All RBM parameters, weights wi,μ(σi), local potentials gi(σi) and the

parameters specifying UmðhmÞ—here (γμ,+, γμ,, θμ,+, θμ,−)—are inferred from data by maximiza-

tion of the average likelihood L ¼ h log PðσÞidata of sequence data σ through a variant of sto-

chastic gradient ascent, as described in [19]. In this way, the RBM probability distribution is

inferred in such a way as to optimally explain the statistics of our count-weighted training

datasets—see S4E and S4H Fig for comparison of data and model single-site frequency and

pairwise connected correlations. Penalty terms (regularizations) can be introduced in the log-

likelihood maximized during training to prevent overfitting. Following [14], we use a L1-type

regularization:

L �
l

2

1

2qNs

X

m

ð
X

i;v

jwi;mðsÞjÞ
2
; ð6Þ

where l
2

1
is the regularization strength.

For RBM models learned from count-weighted datasets (Figs 3–5), we use the performance

of the RBM likelihood L ¼ log Pp
21ðσÞ at recovering the fold-change increase on the validation

set (a held-out 20% of data) to search for optimal values of regularization (l
2

1
) and the number

of hidden units (Nh), see S4C and S4D Fig. For the RBM models inferred from sets of only

responding clones (Figs 6 and 7) the search for optimal parameters has been carried out in a

standard way, i.e. by monitoring overfitting in the validation set at different values of l
2

1
and

Nh, see S4F and S4G Fig. Based on these searches, all the RBM models trained on count-

weighted datasets in this work have been trained with 25 hidden units and regularization

strength l
2

1
¼ 0:1, the RBM models trained on datasets of only responding clones have been

trained with Nh = 10 and l
2

1
¼ 0:1 (exceptions are the RBMs learnt on TRBs from [22] either

specific to CMV, EBV, Flu or to M. Tubercolosis, where we used Nh = 25 to better recover the

different specificity-related motifs). The software package used for implementing the RBM

model is described in [19].

SONIA. SONIA is a tool of probabilistic inference from TRB sequence data, where the

inferred probability of seeing a given TRB sequence in the studied repertoire is parametrized

in terms of an independent-site model:

PðσÞ ¼ QðσÞPgenðσÞ QðσÞ ¼
1

Z

Yl

i¼1

qi;lðsiÞ; ð7Þ

where we take σ to represent only the CDR3 amino acid sequence, of length l, of the TRB

chain. Pgen(σ) is the probability of observing sequence σ in the repertoire as a result of the TCR

generation process [21, 35]. Pgen(σ) is computed by SONIA with the aid of a dedicated software

package, OLGA [21]. qi,l(σi), with the index i running over the CDR3 sites up to its length l, is

the set of position-specific q-factors and Z is the normalization constant. Using an encoding

into Left+Right features, we consider one representative sequence length l = Nσ = 19 and each

q-factor is estimated, for a given amino acid A, as the product:

qi;NsðAÞ ¼ qLi ðAÞ � qRi� Ns � 1
ðAÞ; ð8Þ

where the left (superindex L) and right (superindex R) terms carry information about the posi-

tion i of the amino acid A from the left and on the position i − Nσ − 1 from the right (see Fig

2B for an example). q-factors are learned by maximum likelihood estimation (achieved

through rejection sampling [15, 36]) aimed at best reproducing by P(σ) the sample statistics,

see S4(B) Fig. An L2 regularization, controlling the magnitude of the q-factors learned, can be
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included in the maximum likelihood estimation and we set its value based on a hyperpara-

metric search, see S4(A) Fig. SONIA models were learned and evaluated only for CDR3

sequences at Pgen 6¼ 0, where we estimated Pgen by OLGA on the CDR3 only (without condi-

tioning on the variable and joining gene segment) for consistency with our definition of a TRB

clone.

RBM-LR. In the RBM-LR version, as a result of the Left+Right encoding, the RBM-

inferred parameters consist of the superposition of a left and a right contribution, similarly to

q-factors in Eq 8. For instance, the local potential gi(A) acting on amino acid A at position i is

given by gLi ðAÞ þ gRi� Ns � 1
ðAÞ. For a given hidden unit μ, the effective weight contributing to the

activation of μ for amino acid A at position i is given by the sum wL
i;mðAÞ þ wR

i� Ns � 1;m
ðAÞ, see S2

Fig. For the sake of comparison, we choose for the RBM-LR the same architecture as for the

RBM (25 hidden units, regularization strength l
2

1
¼ 0:1). Due to the Left+Right encoding, the

length of the effective sequences used for training reaches several hundreds of sites: choosing

the reference sequence length of Nσ = 19 (but shorter reference lengths could be used, see

[15]), the overall length is 19 × 20 × 2 = 760 (20 is the number of amino acids while 2 accounts

for having parameters for both left and right alignment). This number, compared to the pre-

aligned, fixed-length training datasets of RBM, can increase significantly the training time: a

training of 200 iterations using 1 core lasts* 2 hours with a CDR3 sample arranged into a

multiple sequence alignment of Nσ = 19, and * 11.7 hours for the same sample in the

Left+Right encoding with Nσ = 19. Note that the RBM package includes an option for paralleli-

zation over multiple cores, which would help reduce the elapsed real training time.

Scoring T-cell response

We train probabilistic models (RBM, SONIA) on count-weighted datasets at t = 0, 21 for each

antigen p. For a given probabilistic framework (RBM, SONIA), we denote the probability

assigned to sequence σ by the model trained on the repertoire snapshot at time t under

stimulation by epitope p as Pp
t ðσÞ. We define the response score of a given CDR3 clonotype

sequence σ:

Sp
respðσÞ ¼ log

Pp
21ðσÞ
P0ðσÞ

� �

ð9Þ

the model likelihood assigned to sequence σ at day 21 relative to the one at day 0 in the same

patient. The term P0(σ) can be in principle replaced by the probability provided by other

“background” models. For instance one can take such background statistics as the distribution

Pgen(σ) [21] or the distribution Ppost(σ) from the models of thymic selection learned by SONIA

[15] (and available with its package), see Fig 3A. When using Pgen and Ppost to estimate Sp
resp

(see Fig 3A), we assume that no read count information before stimulation is available, hence

we set N0 * 1, implying FCp � Np
21. As such, Pgen and Ppost are effectively less noisy version of

P0, because sequences that sample Pgen and Ppost can be generated in large numbers (106) and

they are not affected by experimental sampling noise (as instead samples at day 0 are).

Scoring specificity of T-cell response

To test the power of a model trained on the NA sample to discriminate responses that are spe-

cific to it from the ones that are specific to the CR sample, we calculate a specificity score of

response to NA as:

SNA
specðσÞ ¼ SNA

respðσÞ � SCR
respðσÞ: ð10Þ
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If the responses to NA and to CR are specific, we expect SNA
specðσÞ > 0 for σ in the set of

sequences such that FCNA(σ) > FCCR(σ) and SNA
specðσÞ < 0 for σ such that FCCR(σ) > FCNA(σ),

as is seen in the histograms of Fig 4A for Pt3. When, for the same individual, we have samples

for several antigens p (Pt1, Pt2, Pt4, Pt6, see Table 1), we take as specificity score of response to

a given epitope p:

Sp
specðσÞ ¼ Sp

respðσÞ � max
p0

Sp0

respðσÞ; ð11Þ

where the max is taken over the antigens p0 6¼ p tested for the same individual. In this case, a

sequence σ is considered a specific responder to epitope p if maxp0FCp0 ðσÞ ¼ FCpðσÞ, while it

is considered as an unspecific responder to the antigens p0 6¼ p (see the distribution of Sp
spec and

FCp for the Pt6 samples in S5A and S5B Fig). Note that, using Eq 9 in Eq 11, Sp
specðσÞ reduces

to logPp
21ðσÞ � maxp0 logP

p0
21ðσÞ, as we compare repertoires from the same patient and the

background P0 in Eq 9 is only patient, and not antigen, dependent. Antigen-stimulation exper-

iments can still be compared two by two as in Eq 10, allowing us to estimate matrices of pair-

wise AUROC, see S5(C) Fig.

One can adjust a threshold above which the specificity score Sp
specðσÞ recovers clones specif-

ically expanded under the p stimulation. By varying the discrimination threshold, we build a

receiver operating characteristic curve (ROC curve) to test the diagnostic ability of the score

Sp
specðσÞ to detect the specificity of T-cell responses to p. An Area Under the ROC (AUROC) >

0.5 indicates a good classification performance. We expect such classification performance to

deteriorate not only when the model is poor at capturing information about expansion, but

also when there is no clear signal of specific expansion. In this case both the specificity assign-

ment based on fold change and on the specificity score are dominated by fluctuations in counts

and the AUROC becomes close to 0.5. Hence, Sp
specðσÞ can be seen as a repertoire-wide indica-

tor itself of specificity, across the different stimulations, of T-cell responses.

Model validation

To validate model predictions, we divide randomly every count-weighted sample into a train-

ing set (80%) and a testing set (20%). Model performance at capturing response and its speci-

ficity (through the response score in Eq 9 and the specificity score in Eq 11) is evaluated on the

testing set by measuring the correlation of response scores to clone fold change (Fig 3) and by

the AUROC metric of specificity (Fig 4). In this type of validation, sequences in the training

and testing set are not distinct per se, but the counts reflecting expansion for particular

sequences are different in the two sets. In short, the reads are randomly distributed between

the training and testing sets. In the 5-fold leave-one-out validation protocol (S9 Fig), we

instead consider samples of unique CDR3 clones and divide them into 5 sets. We use 4 sets for

training models (weighting sequences by counts) and 1 set to validate the model’s perfor-

mance. We repeat the model training for the 5 possible training/testing partitions and we con-

sider the average model’s performance over these 5 trainings. In this protocol the same

sequence cannot be found in different sets. The same 5-fold leave-one-out validation protocol

was applied also for training and testing RBM models built from pools of responding-only

clones, see Fig 7B–7E. At each training repetition, the testing set of responding CDR3s was

mixed with generic CDR3 (randomly drawn from day 0 samples of the other patients) in the

proportion 99:1 and the AUROC of discrimination between these two sets was estimated (Fig

7B and 7C reports the results for one repetition for the M1-specific repertoire from Ref. [17]).
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The final AUROC (Fig 7D and 7E) were taken as the average AUROC over the 5 training

repetitions.

Repertoire dissimilarity index

We consider a measure of repertoire sequence dissimilarity that generalizes the Simpson’s

diversity [25, 26] (based on the probability of drawing the same clone in two independent rep-

ertoire samples) to include clone similarity instead of identity only. Following Dash et al. [17],

such a measure can be defined by weighting each pairwise clone comparison by a smooth,

Gaussian-like factor of the inter-clone distance. We consider the pools of only expanded clones

for each assay and we look at all possible, ordered, pairwise comparisons between clones of the

same pool to estimate:

f ¼
1

T

X

i<j

e�
dðσi ;σjÞ

d

� �2

; ð12Þ

where T is the total number of terms in the sum (T = M(M − 1)/2, with M number of sequences

in the pool considered). d(σi, σj) is the distance between CDR3 sequences σi and σj: here we

take the Levenshtein distance [37], while the analogous measure by Ref. [17] relies on the dis-

tance metric they introduced (TCRdist) calculated on the full TCR. The parameter δ sets the

typical scale of the inter-sequence distance d in an epitope-specific repertoire. We choose δ =

5.7, which is the average CDR3 Levenshtein distance within the M1-specific repertoire from

Ref. [17]. As the function f measures the overall similarity within a repertoire, we define the

sequence dissimilarity index as 1/f, see Fig 7A.

Supporting information

S1 Fig. CDR3 length distribution. CDR3 length distribution in the full dataset of 276993

sequences from Ref. [16].

(PDF)

S2 Fig. Model parameters inferred by the RBM-LR model. Same representation as in Fig 2A

where, by starting with CDR3s in the Left+Right encoding, 2 sets of RBM weights, wL and wR,

are inferred. We selected for illustration wL
21

and wR
6

as they capture the sequence motifs of

responding clones highlighted in Fig 5A (dark red boxes).

(PDF)

S3 Fig. Model predicts TRB clone abundances. A: Correlation coefficient of the RBM likeli-

hood log Pp
21 with clonal abundances at day 21 post-stimulation in all samples from [16]. B:

The correlation coefficient shown is obtained by progressively filtering out the low-abundance

sequences from the testing set, as illustrated for the Pt3 NA dataset. C: Scatter plot between

clone abundance at day 21 and the RBM likelihood log PNA
21

for the full Pt3 NA dataset, show-

ing that the correlation is poor for clones at low counts. The golden dashed line marks the

minimal clone abundance that is considered to measure the correlation coefficient reported in

A and indicated by the golden dot in B. B-D contain the comparison between the performance

of the RBM and SONIA, confirming that capturing sequence correlations (as the RBM does,

see also S4 Fig) ensures better prediction of clonal abundance.

(PDF)

S4 Fig. Model selection. A: Hyperparametric search for training SONIA on count-weighted

datasets: we set the L2 regularization at the intermediate value 0.01 (black dot), which ensures

good performance at capturing both clone abundance (through log Pp
21) and clonal fold
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change (through Sp
resp) in the validation set. B. Data statistics (single-site frequency and con-

nected correlations) are reproduced by SONIA. SONIA is documented to perform best when

trained on lists of unique sequences [15], where also correlations are well reproduced (see

inset). As a comparison, the gray points stand for the marginals given by the generation model

Pgen. C-D: Hyperparametric search for training RBM on count-weighted datasets. Similarly to

A, it is performed based on how clonal abundances and clone fold change are reproduced by

log Pp
21 and Sp

resp. We identify as optimal the combinations of parameters indicated by the

black box, which result in maximal correlations with fold change (D) while keeping the corre-

lation to abundance in the intermediate-high range (C). F-G: Hyperparametric search for

training RBM on datasets of only responding CDR3s. Optimal Nh and l
2

1
(black dot) are cho-

sen to ensure high likelihood L on the training set and to prevent overfitting on the validation

set. E-H show that in both cases single-site amino acid frequencies and connected correlations

are extremely well reproduced by the RBM (with parameters marked by the black dot in D and

G). In all hyperparametric searches shown, the model training set consist of 80% of all

sequences in the dataset, the validation set is the remaining 20%. Datasets used: Pt3 NA from

[16] (A-E), samples from Ref. [17] (F-H).

(PNG)

S5 Fig. RBM prediction of response specificity. A-B: Differential degree of clone expansion

under stimulation p is mapped by the model into differential response scores Sp
resp, enabling a

model-based assessment of response specificity. Here we consider sequences from sample Pt6

NA1, where clone abundance reflects response to NA1. The fold change due to NA1 stimula-

tion, FCNA1, is on average higher than the fold change measured for all the other antigens p
tested in the same patient, FCp (A), suggesting a specific response. This set of NA1-specific

responders is on average assigned higher response score by the RBM model trained on the Pt6

NA1 dataset, SNA1
resp , than by models trained on the other Pt6 samples, Spresp, where the same

sequences behave as unspecific responders (B). All models are trained on 80% of a given sam-

ple, and we show average log fold change log FCp and response scores Sp
resp (both expressed as

log base 10) over the Pt6 NA1 testing set. C: Matrices of RBM pairwise AUROC for Pt1, Pt2,

Pt4 and Pt6 (patients for whom more than 2 antigens were tested, see Table 1). The value at

each row/column intersection gives the AUROC (estimated through RBM scores) of response

specificity between the antigen to which the row and column refer.

(PNG)

S6 Fig. Performance comparison to Position Weight Matrix (PWM). PWM is the simplest

sequence-based modeling strategy and it is here learnt on aligned count-weighted datasets.

The PWM probability assigned to each CDR3 clone σ is factorized over CDR3 positions, i.e.
Pp
t ðσÞ ¼

QNs

i¼1
Pp
t;iðsiÞ and Pp

t;iðsiÞ is taken as the frequency of amino acid σi at position i in the

p-specific repertoire at time t = 0, 21 (days). PWM performance in terms of correlation

between response score Sp
resp and clone fold change (see Fig 3) and AUROC of specificity (see

Fig 4) is compared to SONIA (A,C) and RBM (B,D) for all samples from [16].

(PDF)

S7 Fig. RBM recovers sequence motifs analyzed in Dash et al. 2017 [17] and Glanville et al.

2017 [22]. A: One of the set of weights (w4) learned by the RBM (same model as in Fig 6B)

picks up the pp65495 motif discussed in [17]. B: The clones characterized by this motif can be

identified by the negative values of the projection onto this weight (input to h4), indicated by

the black arrow. C-D: Same representation as in A-B for the RBM trained on EBV, CMV, Flu

data from [22] (same model as in Fig 6D), where one weight highlights the sequence motif
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found in [22] for the pp65-specific clones. E: Sets of weights of a RBM trained on the CDR3

sequences of M. tuberculosis-specific CD4+ T cells from [22] recover three motifs from the five

representative TCR specificity groups analyzed in [22]. The set of weights w4 picks up a gap

motif (symbols ) indicating that the motif ‘GGE’ is found in the center of longer CDR3

sequences, where there are gap insertions in the other sequences. F: We choose for illustration

two specificity groups: their sequences (listed in the boxes) are characterized by high values of

the projection onto the corresponding weights (here the inputs to h4 and h13).

(PDF)

S8 Fig. RBM dimensionality reduction is consistent with GLIPH clusters enriched in clon-

ally expanded T cells. A-B: Clustering by GLIPH version 2 (GLIPH2 [23]) of the TRB

sequences from respectively the datasets Pt3 NA and Pt5 CR (same datasets considered in Fig

5). We plot for each cluster the “Fisher score” reported by GLIPH2 (a p-value quantifying the

significance of the motif characterizing the cluster compared to a reference repertoire) and the

“expansion score” (a p-value quantifying the significance of the abundance of clones in the

cluster) and we annotate the most significant clusters under both criteria by the corresponding

sequence motif. GLIPH2 builds several clusters at high expansion score precisely around the

motifs characteristic of expanded clones identified by RBM, as we make visible in the amino

acid letters marked in color in A-B and C-D (here the same plots as in Fig 5 are reported).

Clusters at highest motif-wise significance contain unexpanded clones, hence their motifs do

not appear in the RBM dimensionality reduction C-D, where we kept only clones with top

RBM scores (expanded). All the sequences not marked in color in C-D are expanded but not

clustered by GLIPH2; in A-C, other expanded clones falling into a GLIPH2 cluster are indi-

cated by small red arrows. We run GLIPH2 using the web tool available at http://50.255.35.

37:8080/ with options: Reference version = version 2.0, Reference = CD8, all aa interchangeable =
YES and providing as input for each dataset the list of CDR3 sequences, V and J segments and

sequence counts at day 21. The clusters identified by GLIPH2 are 1113 for the Pt3 NA sample

(total number of sequences = 14228) and 1759 for the Pt5 CR sample (total number of

sequences = 14122).

(PDF)

S9 Fig. Sequence dissimilarity among responding clones and model generalization. A: The

x-axis gives the correlation, averaged over trainings, between the RBM score log Pp
21 and clonal

abundance 21 days post-stimulation in a 5-fold leave-one-out validation protocol (see Materi-

als and methods) for all the Pt1,. . .,Pt7 datasets from [16]. The scatter plot shows that the abil-

ity of the RBM score to recover clonal abundance increases for low diversity repertoires

(Pearson correlation r of magnitude |r| = 0.61, p-value for testing non-correlation = 0.002). B:

Correlation between the RBM log Pp
21 and clone abundance for the dataset at lowest dissimi-

larity index (Pt4 WT), both for training and testing set, as a function of the dataset size (filtered

by counts). A correlation in the testing set higher than zero is recovered only when retaining

the most abundant clones: the dataset size chosen for the points in A,C—indicated by the dark

red dot—corresponds to *160 sequences. The trend, markedly different for training and test-

ing set, signals overfitting that is unavoidable when the response is heterogeneous (as quanti-

fied by the sequence dissimilarity index, Fig 7A). C: Correlation to clone abundance by

RBM—same quantity as in A—is compared to the one obtained by SONIA.
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