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Abstract
The recent advent of high-throughput sequencing of immune
receptors allows for the study of immune repertoires in un-
precedented depth. This should eventually lead to a better
understanding of basic immune function and the development
of valuable new diagnostic tools. However, the interpretation of
these new sequence data can be difficult because the rela-
tionship between receptor sequence and immune specificity is
generally unknown. In particular, phenotypically similar reper-
toires will in general be completely different at the sequence
level because of cross-reactivity. Here we argue that sequence
repertoires need to be considered statistically to overcome this
functional degeneracy. New tools are needed to extract the
functionally relevant statistical features from sequence data,
separating them from individual-specific, stochastic, and other
non-reproducible effects.
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The adaptive immune system exploits the diversity of
receptors encoded on the surface of B- and T-cells to

recognize unknown pathogens and protect the host
organism from infections. The set of all these receptors
in an individual, termed the immune repertoire, is a
unique example of a biological system with a very high
level of somatic genetic diversity. Each time a new
immune cell is created, the gene for its surface
receptor is quasi-randomly generated from combina-
torially chosen genomic templates [1] and diversity
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is further increased by random nucleotide deletions
from, and insertions between, the templates. From the
generation process onward, each lymphocyte cell and
its clonal descendants will carry a unique surface re-
ceptor gene and have a unique pathogen recognition
specificity. The diversity of this generation process,
called VDJ recombination, is so great that, while any
one individual has many millions of B- or T cell clones
[2,3], two different individuals have almost completely
non-overlapping immune repertoires, while being
protected against the same pathogens. The great het-

erogeneity of individual repertoires makes classical as-
sociation studies unfit to make predictions about the
functioning of immune repertories. Instead, we must
look for key statistical properties of the repertoire,
rather than its detailed sequence content, to identify
what is functionally relevant and common to different
individuals behind the apparent diversity of their
repertoires.

Newly produced lymphocytes undergo an initial selec-
tion step, where they are screened against proteins that

are naturally produced by the host organism. Receptors
that bind too strongly to these self-proteins could trigger
auto-immune disease and are eliminated, whereas those
that do not bind to any self-protein are suspected of
being poor receptors and are also eliminated. Cells that
pass these tests are released into the periphery, where
they form the naive repertoire. Those that recognize
pathogens proliferate and a fraction of their offspring is
kept as memory cells that are governed by their own
homeostasis and used for a faster response to recurring
antigens. B-cells also acquire hypermutations while they

proliferate, which are further selected upon, in a process
called affinity maturation. In summary, the immune
repertoire is made of naive and memory subsets, with
clones of different sizes that share the same receptor
protein in each subset.

Modern high-throughput sequencing has vastly
expanded the scope of the information that we can
obtain about immune repertoires. It is now possible to
obtain a list of the genomic DNA or expressed mRNA of
all the T cell or B cell receptors in a given biological

sample (blood, thymus, spleen, tumor) [4e6] (reviewed
in [7e11]). In addition to sequence, the data can
include the number of times the sequenced molecule
occurred in the original sample, thus giving access to the
abundance of each clonotype [12]. In this article, we will
www.sciencedirect.com
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discuss the challenges inherent in using these rich data
sets to uncover the underlying statistical features that
are responsible for how the immune system works, and
might eventually be useful for medical diagnostics and
therapeutics [13e15].

The probability distribution from which immune cell
receptor sequences are drawn is one of these key

statistical properties. This distribution is impossible to
estimate directly because it is only sparsely sampled
by even the largest datasets. We can solve this prob-
lem by recognizing that each immune receptor
sequence reflects a series of hidden eventsdwhich
genomic templates were joined, what nucleotide de-
letions and insertions were made to generate the
observed sequence. These events are stochastic and
their distributions, which reflect the biochemistry of
VDJ recombination, are a priori unknown. The genesis
of a given receptor sequence can only be inferred

probabilistically. Given a large enough set of se-
quences, statistical inference methods allow us to
infer the underlying distributions of the hidden vari-
ables, to quantitatively describe the generation pro-
cess of new receptors, and to quantitatively
characterize repertoire diversity and individual-to-
individual variability [16]. This probabilistic estimate
can be further refined by inferring the broad features
of receptor sequences that make them functional, by
quantitatively comparing productive receptors to
failed recombinations [17].

Once the hidden variable distributions are known, we
can assign to any individual sequence its probability of
generation in a single recombination event. Remarkably,
the generation probability of specific human T-cells
varies over 20 orders of magnitude, and even more for B-
cells [18]. This analysis allows us to quantify our level of
surprise at observing any specific receptor sequence in a
given repertoire, knowledge that is essential when
describing selection or evolution of repertoires in
response to infections and vaccines.

Gauging our surprise also proves very important when
discussing so called public repertoiresdsets of re-
ceptors that are shared by many individuals. It had been
suggested that public receptors might occur simply as a
result of convergent recombination [19,20]. Using
hidden scenarios to quantify the probability of gener-
ating a given receptor, we predicted the probability
that the same receptor be generated in two unrelated
individuals purely by chance, in excellent numerical
agreement with data [16,17]. Such shared receptors
are found to have a much higher-than-average proba-

bility of generation, as predicted quantitatively by
the theory. Although the phenomenon of convergent
recombination has been identified as a major
source of public sequences for some time, we would
www.sciencedirect.com
argue that being able to calculate its exact extent, as
afforded by a high-throughput sequence data combined
with statistical modeling, constitutes an important
advance.

In this connection, it has been pointed out [21,22] that
sequences with small numbers of insertions are more
likely to be generated independently multiple times

because of their lower diversity and higher-than-average
generation probability. The enzyme TdT that is
responsible for insertions in VDJ recombination is
known to be down-regulated in prenatal life, both in
humans and mice [23]. This fact has some interesting
consequences. First, since identical twins share a cir-
culatory system in utero, one would expect them to have,
due to long-lived shared clones created before birth,
more shared T cell sequences than unrelated in-
dividuals. Since the shared clones were created when
the insertion enzyme was inactive, one would expect the

shared sequences to have very few insertions, and this is
what is observed [24]. Hidden variable models make it
possible to directly trace the change in the insertion
distribution in developing mice and quantify the upre-
gulation of the insertion enzyme.

The general lesson is that we need a full probabilistic
description of the repertoire in order to discriminate
between antigen driven responses and chance events.
While it is tempting, and often useful, to look for a
restricted set of key sequences that can be linked to

certain conditions and disorders and are widely shared
for functional reasons [25e27], sharing is meaningful
only if it is statistically unlikely. The picture we are
proposing is that the immune repertoire functions as a
statistical ensemble: everyone’s immune system is
different at the level of actual sequences, but different
repertoires are functionally equivalent in a statistical
sense [28]. The search for a core public repertoire,
defined as a minimal list of sequences that must be
present in each individual for protection against
common pathogens, may miss important aspects of how
each individual responds to infections in a personalized

manner.

This diversity of responses is directly related to the
phenomenon of cross-reactivitydthe fact that one re-
ceptor recognizes more than one antigen [29]dand its
counterpartdthat one antigen is recognized by more
than one receptor [30]. Cross-reactivity is almost
certainly an important, perhaps even central, aspect of
the immune repertoire. In particular, it has been pointed
out that a non-cross-reactive mouse immune repertoire
would require a number of cells that would take up

more volume than the whole mouse [31]. Cross-
reactivity also explains how individuals with apparently
different repertoires may be protected against the same
infections.
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While sequencing is a powerful tool, it tells us little
about the functional diversity indicative of the recogni-
tion phenotype, i.e. the set of antigenic targets the
repertoire is specific to. The space of these functional
responses is too high-dimensional and difficult to
access experimentally to be explored exhaustively.
Experimental techniques based on directed evolution
can find the best antibody binders to a specific anti-

genic target [32,33]. However, repertoire-level studies
of responses to specific antigens show that many clones
change their frequency, and also show a large variability
of responding clones between even genetically iden-
tical individuals. As a result of these studies, we have
learned that, at the receptor sequence level, the
response to the same antigen is sparse and non-
overlapping between different individuals [34e37].
Linking these sequencing-based assays to phenotypic-
response, or in vitro deep-mutational scanning assays
[38,39], and to models of self-tolerance [40], is an

extremely important and unsolved problem. We note
that the ability to assign to sequences their generation
probability could give an instructive window into this
problem: if the clone responding to an antibody in one
individual has a very low generation probability, the
same clone is unlikely to occur in another individual
and the antibody response, if any, should be via a
different sequence clone.

As we observe different responses to vaccines in different
individuals, can we nevertheless try to identify common

features of the responding receptors? In a recent study
where mice were immunized with a killed Mycobacterium
tuberculosis antigen, it was shown that although immuni-
zation altered the T cell repertoire, it did not lead to
repertoire convergence [37]: a certain number of clones
could be identified in the different immunized mice, but
their frequencies differed tremendously and the re-
searchers could not identify a set of relevant responding
clones. However, they were able to identify amino acid
patterns that were overrepresented in the immunized
mice compared to random expectations, and machine
learning approaches were proposed to identify such

patterns. Albeit preliminary, these results suggest that
responding sequences in different individuals may share
learnable features despite being distinct, giving hope for
the characterization of an effective phenotypic public
repertoire.

The functioning of the immune repertoire currently
remains a mystery. While high-throughput sequencing
technology provides us with a wealth of data on receptor
sequence repertoires, we argue that a probabilistic or
ensemble view of the repertoire that accounts for the

cross-reactivity of its receptors and the functional di-
versity that it entails, is necessary for understanding the
diversity of immune responses to common challenges,
and will prove instrumental in making useful prediction
and diagnostic tools.
Current Opinion in Systems Biology 2017, 1:44–47
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