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Receptor crosstalk improves concentration sensing of multiple ligands

Martín Carballo-Pacheco,1,* Jonathan Desponds,2,* Tatyana Gavrilchenko,3,* Andreas Mayer,4,* Roshan Prizak,5,*

Gautam Reddy,2,* Ilya Nemenman,6,† and Thierry Mora7,†

1School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, United Kingdom
2Department of Physics, University of California San Diego, La Jolla, CA 92093, USA

3Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
4Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA

5Institute of Science and Technology Austria, Am Campus 1, A-3400, Klosterneuburg, Austria
6Department of Physics, Department of Biology, and Initiative in Theory and Modeling of Living Systems,

Emory University, Atlanta, GA 30322, USA
7Laboratoire de physique de l’École normale supérieure (PSL university), CNRS, Sorbonne University,

and University Paris-Diderot, 75005 Paris, France

(Received 10 October 2018; published 26 February 2019)

Cells need to reliably sense external ligand concentrations to achieve various biological functions such as
chemotaxis or signaling. The molecular recognition of ligands by surface receptors is degenerate in many
systems, leading to crosstalk between ligand-receptor pairs. Crosstalk is often thought of as a deviation from
optimal specific recognition, as the binding of noncognate ligands can interfere with the detection of the
receptor’s cognate ligand, possibly leading to a false triggering of a downstream signaling pathway. Here we
quantify the optimal precision of sensing the concentrations of multiple ligands by a collection of promiscuous
receptors. We demonstrate that crosstalk can improve precision in concentration sensing and discrimination
tasks. To achieve superior precision, the additional information about ligand concentrations contained in short
binding events of the noncognate ligand should be exploited. We present a proofreading scheme to realize an
approximate estimation of multiple ligand concentrations that reaches a precision close to the derived optimal
bounds. Our results help rationalize the observed ubiquity of receptor crosstalk in molecular sensing.
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I. INTRODUCTION

Living cells need to collect information with high precision
to respond and adapt to their environment [1]. For exam-
ple, chemotactic swimming bacteria can react to changes in
concentrations of nutrients and toxins [2], and cells from the
innate immune system can recognize distinct microbial com-
ponents and initiate immune responses [3]. Presence or con-
centrations of key ligands are measured via receptor proteins,
which are usually located in the cell surface, and later pro-
cessed by complex downstream signaling networks to trigger
cellular responses. The accuracy of these measurements suffer
from multiple sources of noise, including the transport of
ligands by diffusion, the binding of the ligands to the receptors
after they have arrived to the surface, and the communication
between components of the signaling network.

In recent years, the fundamental limits to cellular sensing
has received thorough theoretical consideration [4–7]. Berg
and Purcell [8] were the first to study the problem and found
that the sensing error can be minimized by increasing the
number of receptors or the number of measurements per
receptor. More recently, Endres and Wingreen showed [9],
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using a maximum likelihood estimation, that the accuracy can
be increased by a factor of 2 by solely taking into account
the unoccupied time intervals. Further theoretical work has
concentrated on understanding the limits in cellular sensing
for single receptors with spatial [10–14] and temporal gra-
dients [15,16], for multiple receptors [17–19], and even for
cells that can communicate [20–22]. The thermodynamic cost
[23–27] and the trade-offs between different resources for
sensing [28–30] has also been explored at large.

Most of the aforementioned models assume that receptors
sense individual ligands. However, cognate ligands usually
reside among other spurious ligands, and receptors must
identify them accurately [16,31–34]. Recently, Mora [35]
derived the fundamental limit to measuring concentrations
among spurious ligands and devised a signaling network,
based on a kinetic proofreading scheme [36], to approxi-
mately reach this limit. Similarly, Singh and Nemenman [37]
found that a single receptor is capable of correctly mea-
suring two different ligands with disparate binding affinities
using a similar network. These studies focused on under-
standing the optimal sensing capacity of one receptor with
a cognate and one (or many) noncognate ligands. In reality,
receptors with different cognate ligands may communicate
with each other through their downstream signaling networks,
thereby increasing the efficiency of the measurement of the
concentration of all ligands. This crosstalk between ligand-
receptors pairs, to which we will refer to simply as “crosstalk”
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throughout the paper, is distinct from the much-studied
crosstalk between signaling pathways downstream of recep-
tors). Ligand-receptor crosstalk is likely to occur in systems
with a larger number of ligands than receptors. For example,
in the bone morphogenetic protein signaling pathway, more
than 30 different ligands interact with only seven different
receptors [38,39]. Similar circumstances arise for Toll-like
receptors in the innate immune system [40] and T-cell recep-
tors in the adaptive immune system [41,42]. While the impact
of crosstalk on adaptation dynamics has been studied in the
context Escherichia coli chemotaxis [34], the fundamental
limits to how different receptors combine information through
crosstalk is currently unknown.

In this paper, we place physical limits on concentration
sensing with crosstalking receptors. We focus on two types of
receptors, each with their own cognate ligand, and compare
specific (noncrossreactive) to crossreactive binding. To gain
intuition, we first consider specific receptors which never bind
to noncognate ligands. We then analyze the more realistic
case where both receptors bind to both ligands with different
binding strengths in a background with other ligands. In the
latter case, we call the receptors specific if the off-rates of the
noncognate ligand are as high as those for the background lig-
ands. In both cases, we demonstrate that crosstalk outperforms
specific binding of ligands in some parameter regimes as
measured by relative errors on concentration estimation of the
two ligands. We also discuss a related problem: detection of
the presence of a ligand over a given concentration threshold
using sequential probability ratio tests.

Our eventual goal is to understand systems with many
ligands and receptors (many inputs–many outputs or MIMO).
Nonetheless, our treatment of the two ligands–two receptors
(2 × 2) scenario is an important special case that must be
analyzed as the first step, and it is already a large departure
from systems previously considered. Indeed, experimental
and computational analysis of such systems usually focuses
on deterministic chemical kinetics. However, in this regime,
crosstalk is always detrimental for information transmission.
Thus the discussion usually revolves around how to avoid the
seemingly obvious disadvantages of crosstalk [43] and how
crosstalk allows one to calculate various lower-dimensional
functions of the involved ligands concentrations (e.g., their
ratios), even when estimation of all ligand concentrations is
impossible [39]. Here we argue that crosstalk in MIMO sys-
tems is advantageous, potentially suggesting an explanation
for the ubiquity of MIMO systems in nature.

II. MAXIMUM LIKELIHOOD ANALYSIS
OF TWO CROSSTALKING RECEPTORS

We consider a situation of crosstalk in the simplified case
of two receptors, labeled A and B, and two ligands, labeled
1 and 2. The binding rates of the two receptors kA and kB

are assumed to be independent of the identity of the ligand,
as in the case of diffusion-limited binding, in which case
kA = 4DsA, kB = 4DsB, where sA, sB are the sizes of idealized
circular receptors located on the cell surface and D is the diffu-
sivity of the ligand molecules. The distinction between the two
ligands appears in the distinct rates of unbinding, which are
denoted by rA,1, rA,2, rB,1, rB,2. In the presence of both ligands,

receptors alternate between bound and unbound states with
exponential waiting times associated with the off and on rates,
respectively. In general, the mean occupancy of each receptor
contains useful information about the concentrations of each
ligand. However, the temporal information contained in the
sequence of bound and unbound times is lost; a maximum
likelihood estimation based off the binding and unbinding
events yields an estimator that is unbiased and asymptotically
achieves the least variance, as given by the Cramér-Rao bound
[9,35,44]. For independent receptors, we may split the log-
likelihood L into contributions from binding events at each
receptor, L = LA + LB. For ligands with concentrations c1

and c2 (with ctot = c1 + c2), the probability of a sequence of
bound and unbound times on receptor A is written as

P
({

uA
i , bA

i

}) ≡ eLA

=
nA∏

i=1

e−kActotuA
i
[
kAc1rA,1e−rA,1bA

i +kAc2rA,2e−rA,2bA
i
]
,

(1)

where {uA
i , bA

i } denotes the sequence of unbound and bound
times and the index i runs from one to the total number of
binding events nA in a fixed time interval T , which is taken to
be much longer than the typical binding and unbinding times.
A similar expression can be written for receptor B. The log-
likelihood now reads

L =
∑

R=A,B

{
−kRctotT

R
u + nR log kRctot

+
nR∑

i=1

log
[
xrR,1e−rR,1bR

i + (1 − x)rR,2e−rR,2bR
i
]}

, (2)

with x = c1/ctot and where T R
u is the total unbound time of the

receptor R. Maximum likelihood (ML) estimates of x and ctot

are obtained from the conditions ∂L
∂x |x∗ = 0 and ∂L

∂ctot
|c∗

tot
= 0.

The ML estimate of the total concentration, c∗
tot, is given by

c∗
tot = nA + nB

kAT A
u + kBT B

u

. (3)

The ML estimate x∗ satisfies the equation
nA∑

i=1

αAe−(αA−1)rA,2bA
i − 1

x∗αAe−(αA−1)rA,2bA
i + (1 − x∗)

−
nB∑

i=1

αBe−(αB−1)rB,1bB
i − 1

(1 − x∗)αBe−(αB−1)rB,1bB
i + x∗ = 0. (4)

Here we have defined αA = rA,1/rA,2 and αB = rB,2/rB,1.

III. PRECISION IN CONCENTRATION SENSING

Since ctot and x are involved in separate terms of the log-
likelihood (2), the variances of their optimal estimators are
given, in the limit of large numbers of binding events, by the
inverse of their respective Fisher information, δx2 = 〈 ∂2L

∂x2 〉−1

and δc2
tot = 〈 ∂2L

∂c2
tot

〉−1, where the angled brackets denote an
expectation over the distribution parametrized by the true
parameter values. A similar approach is taken in Ref. [35];
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here we simply write the final form for the variance in the
estimates of ctot and x:

δc2
tot = c2

tot

〈nA〉 + 〈nB〉 , (5)

δx2 =
[ 〈nA〉

f (x, αA)
+ 〈nB〉

f (1 − x, αB)

]−1

, where (6)

f (x, α)−1 =
∫ ∞

0
dte−t [αe−(α−1)t − 1]2

xαe−(α−1)t + (1 − x)
, (7)

where averages and variances are taken over realizations of
sequences of bound and unbound times (or, equivalently,
averaged over one sequence in the limit of large T ) and 〈ni〉 =
T/[(kictot )−1 + xr−1

i,1 + (1 − x)r−1
i,2 ]. Before proceeding fur-

ther, we make a few simplifying assumptions of symmetric
binding of the two ligands on the two receptors (Fig. 1).
Particularly, we assume rA,1 = rB,2 = r, rA,2 = rB,1 = r′ and
kA = kB = k, which give αA = αB ≡ α = r/r′. For α < 1, the
conditions imply that ligand 1 acts as a cognate ligand for
receptor A and a noncognate ligand for receptor B, whereas
the reciprocal relationship is true for ligand 2. The discrim-
inability of the two ligands is set by α, which measures the
ratio of bound times of the cognate and noncognate ligands. It
is convenient to nondimensionalize the concentrations of the
two ligands as c̃1 = kc1/r and c̃2 = kc2/r. The mean number
of binding events on the two receptors is given by the total
time divided by the mean time for each binding and unbinding
cycle, which gives

〈nA〉 = rT (c̃1 + c̃2)

1 + c̃1 + αc̃2
, 〈nB〉 = rT (c̃1 + c̃2)

1 + αc̃1 + c̃2
. (8)

In the case of specific receptors, i.e., when each ligand
binds to only one receptor type, the minimum variance of the
estimated concentration of each ligand can be derived in a
similar manner from the log-likelihood (see Ref. [9]). If we
suppose ligand 1 binds specifically to receptor A (with the
same binding and unbinding rates as in the crosstalk case
above), and ligand 2 binds only to receptor B, then the error
in ML estimation is given by

δc2
1 = c2

1/〈nA〉spec, δc2
2 = c2

2/〈nB〉spec, where (9)

〈nA〉spec = rT c̃1

1 + c̃1
, 〈nB〉spec = rT c̃2

1 + c̃2
, (10)

where 〈nA〉spec, 〈nB〉spec are the average number of binding
events for the specific receptor case in the same interval T .
Note that (10) does not correspond to the r′ → ∞ limit in
Eqs. (5) and (6): When r′ is very large, noncognate ligand
bound times can be read easily because there is no cutoff
for the readout of small bound times. This biological incon-
sistency can be removed by taking into account binding of
nonspecific molecules (see Sec. V).

To make a comparison between the effectiveness of
crosstalking and specific receptors, it is more pertinent to
estimate relative errors, δc1/c1, δc2/c2, as concentrations can
span many orders of magnitude. In the limit of long times,
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FIG. 1. Specific and crosstalk receptors for concentration sens-
ing. (a) The receptors A and B bind to their cognate ligand 1
and 2, respectively, with the same rate k. Crosstalk is defined as
the receptors additionally binding to another noncognate ligand.
The noncognate ligand unbinds faster (r′ > r), which allows for
discrimination between the two types of binding events. (b) The
two receptors bind to both ligand species, as well as to a pool of
background ligands 0, all with the same binding rate k. The off rates
of the noncognate ligand can either be identical to the background
ligands (specific case, r < r′ = r0) or in between the background and
the cognate ligand (crosstalk case, r < r′ < r0).

where errors are Gaussian distributed, the covariance matrix

� =
⎡
⎣ δc2

1

c2
1

δc1δc2
c1c2

δc1δc2
c1c2

δc2
2

c2
2

⎤
⎦ (11)

describes the magnitude and shape of relative estimation
errors as an ellipse around the true value. Its determinant,
� = det(�), gives the volume of that ellipse and is used as
a measure of error. Intuitively, the discriminability between
two pairs of concentrations (c1, c2) and (c′

1, c′
2) depends on

the overlap in the areas of the two ellipses centered around the
pairs [45]. In the crosstalk case, from (5) we have

�CT = 1

x2(1 − x)2

1

〈nA〉 + 〈nB〉

× 1

〈nA〉 f (x, α)−1 + 〈nB〉 f (1 − x, α)−1
, (12)

For the case of specific binding, the measurements of c1 and
c2 are independent, and from (10), the determinant of the
covariance matrix is

�S = 1

〈nA〉spec〈nB〉spec
. (13)

In the limit of weak crosstalk, α 	 1, we find that crosstalk
between receptors always improves sensing capacity over
noncrosstalking receptors, regardless of the concentrations of
each ligand. To see this, note f (x, α) ≈ (1 − x) and f (1 −
x, α) ≈ x [from (7)], and so

�S/�CT ≈ 2
[μ + 2x(1 − x)](μ + 1/2)

(μ + x)(μ + 1 − x)
> 1, (14)

where μ = (c̃1 + c̃2)−1. In particular, when c1 ≈ c2, the num-
ber of binding events for the crosstalking receptors is twice
that for the specific receptors and, consequently, �S is a factor
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FIG. 2. Comparison of concentration sensing accuracy with specific and crosstalking receptors. (a) Ratio between the specific and crosstalk
errors, �S/�CT, for four different values of α and different concentration pairs. The region where crosstalk shows greater precision �CT < �S

is delineated by the orange dashed line. For α > αc ≈ 0.27, crosstalk does not exhibit greater precision in any range of concentrations. (b) The
logarithm of the same ratio for c̃1 = 1 and three values of c̃2 as a function of α.

2 greater than �CT in this limit. In Fig. 2 we mark the regions
in the (c̃1, c̃2) plane where �S > �CT for different values of
α. We make two major observations. First, for α = 0 i.e., for
perfect discriminability, crosstalking receptors always show
lower estimation error [Eq. (14)]. Second, there is a critical
value of α, αc ≈ 0.27, beyond which �S is smaller than
�CT for all concentrations. Thus, the usefulness of crosstalk
diminishes with increasing α, as in Ref. [37].

IV. PRECISION IN CONCENTRATION SENSING

Next, we consider the task of discriminating between
two external environmental states or “hypotheses,” H0 and
H1, corresponding to ligand concentrations (c1, c2) and
(c′

1, c′
2), respectively. A Bayes-optimal decision-maker com-

pares the likelihood ratio or, equivalently, the difference
in log-likelihoods, L0 − L1 ≡ �L, for the two hypotheses,
given the observed bound and unbound times, and makes a
decision if �L crosses a certain threshold θ in a given amount
of time T . The false-positive and false-negative error rates
depend on θ and the distribution of �L under the hypotheses.
To conveniently compare the discriminability for the crosstalk
and specific cases, we use the discriminability (or “sensitivity
index” d ′), defined as

d ′ = 〈�L〉c − 〈�L〉c′√
〈δ2�L〉c + 〈δ2�L〉c′

, (15)

where subscripts c and c′ denote expectation values under
concentrations (c1, c2) and (c′

1, c′
2), respectively. If �L is

Gaussian distributed and its variance equal for both sets of
concentrations, then d ′ and θ together uniquely determine
the false-positive and false-negative error rates. For large
T , the central limit theorem guarantees that the Gaussian
approximation is a good one. Although the variances 〈δ2�L〉c

and 〈δ2�L〉c′ are not equal in general, d ′ is often used as a
general measure of discriminability.

To calculate the mean and variance of 〈�L〉c, we first
observe that since the two receptors are independent, it is
sufficient to compute them for a single receptor and sum them
up. We show in the Appendix that for a single receptor with
arbitrary unbound and bound time distributions, the cumulant
generating function of 〈�L〉c has a simple form in the limit of
large T , from which we derive explicit forms for the mean and
variance. In Fig. 7, we validate these analytical expressions
using numerical simulations.

The discriminabilities for the crosstalking and specific
receptors, d ′

CT and d ′
S , are compared in Fig. 3. The orange

line mark the region where crosstalk offers greater discrim-
inability compared to the specific case. Large concentrations
of the noncognate ligand can mask the accurate discrimination
between different concentrations of the cognate ligand, as
evidenced by the blue region. As α → 0, masking plays a
limited role, since even though binding events are dominated
by the noncognate ligand, the bound times are extremely short
and easily distinguishable from the bound times of the cognate
ligand.

V. CONCENTRATION ESTIMATES OF TWO LIGANDS
IN A POOL OF NONSPECIFIC LIGANDS

Next, we consider a more realistic scenario the cell faces:
the problem of concentration estimation of two ligands in a
presence of a pool of background nonspecific ligands. This
scenario also allows us to resolve the inconsistency of the
limit of perfect specificity, α → 0. As we observed earlier,
that limit did not reduce to the case of no crosstalk because
of infinitely short but mathematically informative nonspecific
binding events. Adding a background of nonspecific ligands
removes the informative content of these spurious events
by making them indistinguishable from background ligand
binding. Here, as before, we have two receptors, A and B,
and two cognate ligands, 1 and 2, whose concentrations c1

and c2 the cell needs to estimate. In addition, there exists a
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FIG. 3. Crosstalking receptors show improved discriminability
relative to specific receptors. Ratio of sensitivity index d ′ for the
crosstalk (d ′

CT) and specific (d ′
S) cases, as a function of the concentra-

tion of the second ligand c2, and the specificity ratio α = r/r′, in the
task of discriminating two values of the first ligand concentration,
kc1/r = 0.5 or kc′

1/r = 2. The orange line separates the regions in
which each of the two strategy (crosstalk or specific) is optimal.
Crosstalk is beneficial for small c2 and α, i.e., when the ligands are
easy to distinguish and do not saturate the receptor. The sensitivity
index was computed using rT = 104.

pool of nonspecific ligands labeled 0, with concentration c0.
The receptors now have to differentiate between three types of
ligands to correctly estimate their concentrations. We assume
diffusion-limited ligand-receptor binding as before. The off-
rates for the nonspecific ligands are rA,0 = rB,0 = r0 � r′ > r
from both receptors. With total concentration given by ctot =
c0 + c1 + c2, and relative fractions x = c1/ctot , y = c2/ctot ,

the probability P({uR
i , bR

i }) of a sequence of bound and un-
bound times can be written as a function of the on-rate, various
off-rates, and concentrations. As before, the ML estimate
of θ = [x, y, ctot] can be obtained by maximimizing the log-
likelihood L = log P by setting ∂L(θ)

∂θ
|θ∗ = 0. Further, in the

limit of large numbers of binding events, the Cramér-Rao
bound guarantees that the covariance matrix of the estimator
θ is given by the inverse of the Fisher information matrix:

〈δθT δθ〉 = −
〈

∂2L
∂θT ∂θ

〉∣∣∣∣
−1

θ∗
. (16)

The covariance matrix �NS of the relative errors on con-
centrations, δc1/c1 and δc2/c2, can then be obtained by a
change of variable from θ to (c0, c1, c2), from which the error
volume �NS = det(�NS) is computed, analogous to �S and
�CT defined earlier.

We are interested in how �NS varies as a function of r and
r′ to understand whether crosstalk (defined now as r′ < r0

by contrast to background unspecific binding, r′ = r0) can
result in relatively better concentration estimates. Up to scalar
scaling, �NS depends only on the ratios kctot/r0, r/r0, and
r′/r0 and the ligand concentration fractions x and y.

The estimation error quantified by �NS attains a minimum
[Fig. 4(a)] at some finite values of r = rmin and r′ = r′

min < r0,
meaning that finite crosstalk minimizes the estimation error,
providing a substantial drop in errors relative to no crosstalk,
r′ = r0 (as illustated by the difference between the minimum
and the rightmost point of the curve in the inset). At a fixed r,
for r′ > r, while �CT monotonically decreases with increas-
ing r′, �NS is nonmonotonic with a local minimum at r′ =
r′

min ∈ (r, r0) [inset, Fig. 4(a)]. The existence of a minimum
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FIG. 4. Optimal unbinding rates in presence of background unspecific binding. Logarithm of the error, log �NS as a function of the
unbinding rate of the cognate ligands, r, and the unbinding of noncognate ligands, r′, for the ML estimates in the crosstalk model with
nonspecific ligands with x = y = 0.4. (a) Weak background binding (kctot/r0 = 0.01). �NS attains a local minimum at rmin < r′

min < r0,
meaning that crosstalk optimizes the accuracy of concentration sensing. In the inset, we plot �NS (red) and �CT (blue) as a function of
r′/r0, at fixed r/r0 = 0.01 (along the dotted white line in the main plot). While �CT decreases monotonously as r′ increases (and α decreases),
�NS attains a local minimum (black diamond). A good estimation of the cognate ligand concentrations requires all unbinding rates to be as
dissimilar as possible, ensuring that the identity of the bound ligand can be faithfully inferred from the binding times. (b) Strong background
binding (kctot/r0 = 0.01). The minimum is reached at the boundary, (r′

min = r0), meaning that the noncognate ligand is indistinguishable from
background binding and thus treated as noise. This optimal solution thus reduces to the case of specific binding in the presence of background
binding. Plots are obtained with kc1/r0 = 0.4, kc2/r0 = 0.4, kc3/r0 = 0.2, and r0T = 104.
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FIG. 5. Optimal strategy as a function of ligand fractions. Three phases are shown: I, crosstalking receptors are optimal (rmin < r′
min < r0);

II, specific receptors are optimal (rmin < r′
min = r0); III, impossible region (x + y > 1). The heatmap shows the optimal value of the specificity

ratio, αmin = rmin/r′
min. Yellow lines indicate a constant c0 (or x + y). The phase diagram depends on the strength of background binding:

(a) kctot/r0 = 0.01, (b) kctot/r0 = 0.1, and (c) kctot/r0 = 0.5. As this strength increases, the region where specific binding is optimal (phase II)
extends toward smaller values of x and y.

results from a trade-off between three conflicting effects. First,
when r′ is large, receptors cannot reliably distinguish between
the noncognate and the nonspecific ligand, resulting in an
increased estimation error for x and y. On the other hand,
larger values of r′ and r result in more binding events, thereby
improving statistics and accuracy. Last, r and r′ should as far
as possible from each other for each receptor to be able to
distinguish cognate from noncognate ligands. These opposing
forces result in a local minimum at (rmin, r′

min), balancing
the need for speed (high unbinding rates r, r′) with that of
specificity (low but different r and r′), ensuring that receptors
can maximally distinguish between the three different kinds
of ligands by looking at their binding times.

Distinct regimes emerge depending on the value of the
dimensionless parameter kctot/r0, which can be viewed as an
effective unspecific receptor occupancy quantifying the effect
of background binding, as well as on the ligand fractions
x and y. For small kctot/r0 [Fig. 4(a)], a trade-off exists
between speed and specificity (r′

min < r0), while for large
kctot/r0 [Fig. 4(b)], the low receptor availability caused by
unspecific background binding makes the speed requirement
dominate, resulting in absence of crosstalk in the optimal
solution (r′

min = r0). Figure 5 shows the phase diagram as a
function of the ligand fractions x and y for fixed values of
kctot/r0 = 0.01. Three phases emerge: crosstalk (rmin < r0, I),
no crosstalk (rmin = r0, II), and impossibility region (x + y >

1, III).
When one ligand is present in very low concentrations and

the other in high concentrations (low x, high y, or vice versa),
introducing crosstalk would cause the abundant ligand to satu-
rate both receptors, keeping the receptor that is cognate to the
sparse ligand from sensing its concentration. In that regime,
crosstalk is not optimal [region II of Fig. 5(a)]. As kctot/r0

increases [Fig. 5(b)], this region spreads toward smaller values
of x and y. Yet even when the effect of background ligand is
felt strongly, crosstalk is still advantageous when the cognate
ligands are sparse (x + y 	 1).

VI. A BIOCHEMICAL NETWORK SCHEME THAT
REACHES CLOSE TO THE OPTIMAL BOUNDS

In this section, we present a simple kinetic proofreading-
based scheme that implements an approximate maximum like-
lihood estimation with a precision close to the derived optimal
bounds. In the following analysis, for simplicity, we revert to
the former case of one cognate and one noncognate ligand.
We note that the ML estimate for the total concentration
ĉtot = (nA + nB)/(kAT A

u + kBT B
u ) has a simple expression; the

terms in the numerator and denominator can be measured
biochemically and combined to form ĉtot. To estimate x, the
scheme relies on a proofreading “classifier” associated to each
receptor that distinguishes between bound times above and
below a certain threshold. An unbiased estimate of x, which
we denote by x̃R, can be formed for each receptor R (R =
A or B), based on the fraction f̂R of binding events where
the ligand is bound longer than τR. Defining yR = e−r′τR , hR =
e−rτR − e−r′τR = yα

R − yR, this estimate reads:

x̂A = f̂A − yA

hA
, (17)

x̂B = yα
B − f̂B

hB
. (18)

The error in each estimate is δx2
R = fR(1 − fR)/(h2

RnR), where
nR is the mean total number of binding events in time T and
fR ≡ 〈 f̂R〉. Because the estimates from receptors A and B stem
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FIG. 6. (a) Network scheme to estimate x = c1/ctot using the fraction of binding events that last longer than some threshold τ . An estimate
of x is read off from the fraction of X molecules in the active state (see text). (b) The error in estimating x for x = 10−1, 10−3, 10−5 (blue,
orange, red respectively) using (19) (solid, colored lines) and the crude estimate of using only one receptor (dashed lines) is compared with
the optimal ML error (solid, black lines).

from independent binding events, the best way to combine
them is through a weighted average of the estimates from each
receptor:

x̂ = β x̂A + (1 − β )x̂B, (19)

with β = 1/(1 + δx2
A/δx2

B).
The value of the threshold τA can be optimized to yield

the most precision in x̃A. In Appendix B, we show that the
optimum is reached for r′τ ∗

A = (1 − α)−1 log ( 1−2α
αx ), valid for

α < 1/2. We note here that even though τ ∗
A depends on x, the

dependence is logarithmic. To implement adaptive thresholds
that depend on log x, we can imagine a collection of “gating”
networks which apply different thresholds to the length of
the binding events. An independent crude estimate of x is
sufficient to choose the network that has a threshold closest to
τ ∗

A . The optimal value for τB has a similar form with x replaced
by 1 − x.

The cell can easily compute x̂A and x̂B using a proofreading
motif followed by a downstream push-pull network as shown
in Fig. 6(a). For concreteness, consider the case of receptor
A. Suppose the proofreading motif produces a molecule of
enzyme E1 for each binding event longer than the threshold
τA. Further, every binding event generates a single protein
X and an enzyme molecule E2. The enzymes E1 and E2

catalyze the conversion of X to its active state X ∗ and vice
versa, respectively. Assuming that X and X ∗ are in excess
in the enzymatic reaction, the rate at which X and X ∗ are
interconverted is directly proportional to the enzyme numbers
with catalytic rates denoted by k1 and k2. Suppose also that X ∗
reverts to X at a finite rate r−1. At steady state, dX ∗/dt = 0,
and we have r−1X ∗ = k1E1 − k2E2. Then, setting k1/r−1 =
1/hA and k2/r−1 = yA/hA, the fraction of X molecules in the
active state tracks x̂A.

Combining x̂A and x̂B as in Eq. (19) using a biochemical
network can be done at fixed β. For instance, when x ∼
1/2, the errors from both receptors are about the same and
we may weight the estimate from each receptor equally,
β = 1/2. However, tuning β to reflect its dependency of the
concentrations requires additional adaptive mechanisms. In
the regime x 	 1, receptor A has the highest precision in

estimating x, and x̃A can be taken as a crude estimate of
x (and symmetrically for B when 1 − x 	 1). In Fig. 6(b),
we compare the error from this crude estimate against the
optimal crosstalk error and the error from using the optimal
network weights (19). This comparison shows that although
the approximate biochemical solutions are not optimal, they
stand reasonably close to the ML estimate.

VII. DISCUSSION

The key result of our paper is that crosstalk is generically
the optimal strategy for sensing multiple ligand concentration
using multiple receptors. The theory predicts an optimal level
of crosstalk, which balances the opposing requirements of
maximizing the number of binding events with the receptor’s
ability to distinguish the ligands involved in those events.
For this discrimination to be possible, the difference between
cognate and noncognate binding affinities is maintained.

While we have restricted our analysis to two ligands sensed
by two receptors (2 × 2), our framework can be readily gen-
eralized to more of each to deal with MIMO ligand-receptor
crosstalking systems. We expect crosstalk to be also beneficial
in this more general setting. In practice, crosstalk may be
sparsely distributed and composed of many subsystems with
limited number of binding partners as in our 2 × 2 system.
Alternatively, in a related context of steady-state information
processing, it was argued [46] that the joint probability distri-
bution of activities of units in a large network can often be de-
composed into contributions from just pairwise interactions,
with an error from discarding the higher-order contributions
becoming asymptotically small as the system grows. Thus,
even though larger ligand-receptor networks may harbor new
phenomena, necessitating future studies, the analysis pre-
sented here is likely to be useful in these scenarios as well.

In the simplest theory that we presented (Secs. II and III),
higher unbinding rates are always advantageous because they
increase receptor availability without hurting discriminability.
However, in reality there are several reasons why high un-
binding rates are not optimal. First, the molecular machinery
required to process the information of the receptor binding
state operates with its own incompressible timescale, which
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FIG. 7. The values from expressions for the mean [(A14), solid lines, left panel] and variance [(A16), solid lines, right panel] of the
log-likelihood differences, �L, align with those obtained from numerical simulations (circles). Parameters are the same as those in Fig. 3.

sets a lower bound on the duration of binding events that can
be detected. Second, it is not realistic to assume that unbinding
rate can be increased arbitrarily without affect binding rates
as well. Very unspecific ligands that unbind very quickly are
also less likely to bind in the first place, and the assumption
of diffusion-limited binding rate is no longer valid. Last, for
high-enough unbinding rates, cognate and crosstalk binding
events become indistinguishable from completely unspecific
binding with other generic molecules. Modeling that situation
as we did in Sec. V allowed us to find well-defined optimal
unbinding rates.

We focused the application of our theory to a purely
symmetric case, with equal proportions of the two types of
receptors, but more general situations could be considered.
For instance, in the case of an imbalance between the two
ligands, c1 > c2, it makes sense to have more receptors of
type A than of type B. Other interesting transitions may
occur as we vary parameters, such as receptors of type B
vanishing from the optimal solution as c1 becomes more and
more predominant, into a regime where a single receptor type
A can sense both ligands as in Ref. [37]. We also assumed
that binding rates were constant (since limited by diffusion
only), because we were interested in the fundamental limits of
sensing. More realistic situations where binding rates decrease
with specificity would obviously limit the benefit of crosstalk.

In addition to maximizing the use of each receptor to gain
information about each ligand, crosstalk has the additional
advantage of expanding the dynamic range of concentrations
over which ligands can be sensed, as extensively discussed in
the context of chemotaxis [34]. For instance, when a ligand
is present at high concentration, its cognate receptors will
be fully saturated, making it difficult to reliably read off
the concentration from the receptor’s activity. Lower-affinity
binding to a second receptor can then allow for more accurate
sensing, as long as that receptor is not itself saturated by
other ligands. In our language, when receptor A is saturated
by ligand 1, c1  r/k ≡ Kd , then receptor B is still sensitive
to the concentration of ligand 1 in the regime c1 ∼ r′/k =
α−1Kd . More generally in the presence of multiple ligands
and multiple receptors, a good strategy could be to organize
specificities (i.e., unbinding rates) so that, for each ligand,
dissociation constants collectively tile the sensory space. For
such strategies to work, the concentration space must be

sparse, meaning that only one or a few of the ligands of
interest are present in large concentrations at the same time.
Receptors could also avoid saturation by only interacting with
other receptors locally instead of globally [34], leading to
accurate sensing of multiple ligands.

Crosstalk, also known as promiscuous binding, cross-
reactivity, or multiplexing, depending on the context, is
widespread in biology. It is an important feature of the Bone
Morphogenetic Proteins (BMP) [38], Notch, Wnt [47], and
JAK-STAT [48] pathways, as well as the Eph-ephrin system
for cell positioning [49], T- and B-cell receptor antigen recog-
nition [42,50], and olfactory receptors [51]. An often cited
benefit of promiscuity is that it confers the ability to design
combinatorial codes. In the context of olfaction [52], such
design can be advantageous in the presence of sparse odors
[53]. Combinatorial codes also allow for flexible computa-
tions in signaling pathways [39]. In the adaptive immune sys-
tem, cross-reactivity is necessary to cover the large space of
possible antigens with a limited number of receptors [41,42].
Our results suggest another advantage of crosstalk: sensing
accuracy.

An open question is whether some of the biological sys-
tems that exhibit crosstalk make use of that benefit and
whether they are organized in a way that approaches the opti-
mal solution. While it is not clear which system (among those
mentioned above or others) would be a good candidate to test
our hypothesis, our theory makes a number of concrete predic-
tions which could be tested experimentally. Specifically, our
results suggest that receptors benefiting from crosstalk should
signal through two or more different pathways, depending on
the duration of the binding event [Eqs. (17) and (18)]. Long
binding events should contribute to the signaling pathway
that encodes the concentration of the ligand for which the
receptor is most specific, while short binding events should
activate the pathway corresponding to the secondary ligand
and primarily activated by the other receptor type. This split-
ting of pathways as a function of binding time is possible in
principle and underlies the difference between the recognition
of foreign antigens and tonic stimulation of T-cell receptors
in the adaptive immune system [54]. Incidentally, our design
also predicts the existence of signaling crosstalk [Eq. (19)]
as a consequence of crosstalk at the level of receptor bind-
ing, which could also be tested experimentally. For example,
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quality of activation in response to ligand combinations can
be measured on wild-type cells, as well as in cells with
signaling crosstalk knocked out. In summary, our theoretical
predictions could guide future experiments to focus on the
predicted features and to quantify their action on the efficiency
of concentration sensing.
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APPENDIX A: CUMULANTS OF THE LOG-LIKELIHOOD
FOR DISCRIMINATION

Consider a receptor switching between two states, bound
and unbound, where the bound times u and unbound times

b are drawn from general distributions that depend on the
external ligand environment. We will consider the problem
of discriminating two possible environmental states, labeled
H0 and H1, given the time series of receptor states for a fixed
time T , where T is much larger than the typical bound and
unbound times. Our interest is in calculating the cumulants
of the log-likelihood difference between the two hypotheses,
L0 − L1 ≡ �L, under the hypothesis that either H0 or H1 is
the true external state. We shall use Pi(u) and Qi(b) to denote
the distributions of unbound and bound times, respectively,
for Hi.

The moment generating function M(λ) of �L under Hi is

M(λ) = 〈eλ�L〉i =
∫

eλ�L+LiDuDb, (A1)

where the measure denotes an integral over all possible bound
and unbound times in the interval T . The range of the integral
can be split over distinct regions with a particular number
of binding events n in time T , i.e.,

∑n
j=0 u j + b j > T but∑n−1

j=0 u j + b j < T , where u j and b j denote the unbound and
bound time at the jth binding event. Conditioning over n using
the Heaviside function, we have

M(λ) =
∞∑

n=1

∫
eλ�L+Li

⎡
⎣�

⎛
⎝ n∑

j=0

u j + b j − T

⎞
⎠− �

⎛
⎝n−1∑

j=0

u j + b j − T

⎞
⎠
⎤
⎦ n∏

j=1

du jdb j . (A2)

Note that Li is a sum of 2n independent contributions: Li = ∑n
j=1 pi(u j ) +∑n

j=1 qi(b j ), where pi ≡ log Pi and qi ≡ log Qi. The
Heaviside function � can be replaced by its integral form

�(x) =
∫ i∞

−i∞

dσ

2π iσ
eσx, (A3)

where the pole at σ = 0 should be taken to be in the left half of the complex plane. Applying this expression, we have

�

⎛
⎝ n∑

j

u j + b j − T

⎞
⎠ =

∫ i∞

−i∞

dσ

2π iσ
e−σT

n∏
j

eσu j+σb j . (A4)

Using the same representation for the other � function, we have

M(λ) =
∞∑

n=1

∫ i∞

−i∞

dσ

2π iσ
e−σT

∫ ⎡
⎣ n∏

j=1

eλ�p(u j )+pi (u j )+λ�q(b j )+qi (b j )

⎤
⎦
⎛
⎝ n∏

j=1

eσu j+σb j −
n−1∏
j=1

eσu j+σb j

⎞
⎠ n∏

j=1

du jdb j, (A5)

where �p(uj ) = p0(u j ) − p1(u j ) and similarly for �q. Simplifying, we have

M(λ) =
∞∑

n=1

∫ i∞

−i∞

dσ

2π iσ
e−σT [ f (σ, λ)n − f (0, λ) f (σ, λ)n−1], (A6)

where we have defined

f (σ, λ) =
∫ ∞

0
eλ�p(u)+pi (u)+σudu

∫ ∞

0
eλ�q(b)+qi (b)+σbdb. (A7)

Summing over n, we get

M(λ) =
∫ i∞

−i∞

dσ

2π iσ
e−σT f (σ, λ) − f (0, λ)

1 − f (σ, λ)
. (A8)
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From Cauchy’s residue theorem, for large T , this integral is
dominated by the residue from the smallest, positive pole σ

such that f (σ, λ) = 1, which we call σs(λ). Since we are
interested in the cumulants of �L, which are generated by the
Taylor series of log M(λ) as λ → 0, it is sufficient to consider
only small λ. To see that σs exists and is positive, we expand
f (σ, λ) around f (0, 0) up to first order in a Taylor series,

f (σ, λ) = f (0, 0) + σ
∂ f

∂σ
+ λ

∂ f

∂λ
+ · · · , (A9)

where all derivatives here and below are evaluated at (σ, λ) =
(0, 0). Since f (0, 0) = 1 and f (σs(λ), λ) = 1, we have

σs(λ) = −λ
∂ f /∂λ

∂ f /∂σ
+ O(λ2). (A10)

To keep the moment-generating function well defined, for
i = 0, we take λ → 0− and for i = 1, we take λ → 0+, which
together ensure that for both cases σs is a positive pole of
the integrand in Eq. (A8). We circumvent the problem of
calculating σs for each Pi and Qi by noticing that for large T ,
the cumulant generating function log M can be simply written
as

log M(λ) = −T σs(λ) + o(T ). (A11)

The mth-order cumulants are then obtained by taking the
mth-order derivatives of σs(λ) at λ = 0. Here we will derive
the expressions for the mean and the variance; higher-order
cumulants can be obtained by taking further derivatives. As
noted above, f (σs(λ), λ) = 1. Differentiating both sides by λ,
we obtain

dσs

dλ

∂ f

∂σ
+ ∂ f

∂λ
= 0. (A12)

From here, we get

〈�L〉i = −T
dσs

dλ
= T

∂ f /∂λ

∂ f /∂σ
. (A13)

Taking the partial derivatives of f and evaluating at (0,0)
gives:

〈�L〉i

〈n〉i
= 〈P + Q〉i, (A14)

where we have defined P = log P0
P1

,Q = log Q0
Q1

and 〈n〉i =
T

〈tu+tb〉i
is the total number of binding events on the recep-

tor in time T . For instance, at (0,0), we have ∂ f /∂λ =
〈log P0

P1
+ log Q0

Q1
〉

i
and ∂ f /∂σ = 〈u + b〉i. The variance can

similarly be obtained by applying another derivative with
respect to λ on (A12). Finally, we get

〈δ2�L〉i = −T
d2σs

dλ2
= T

( dσs
dλ

)2 ∂2 f
∂σ 2 + 2 dσs

dλ

∂2 f
∂σ∂λ

+ ∂2 f
∂λ2

∂ f
∂σ

.

(A15)

The expression above can be evaluated as in the examples
above to obtain:

〈δ2�L〉i

〈n〉i
= 〈P + Q〉2

i

〈(tu + tb)2〉i

〈tu + tb〉2
i

− 2〈P + Q〉i
〈(tu + tb)(P + Q)〉i

〈tu + tb〉i
+ 〈(P + Q)2〉i.

(A16)

APPENDIX B: OPTIMIZING THE PROOFREADING
SCHEME

The variance of x̂A is

δx2
A = fA(1 − fA)

nA(e−αr′τA − e−r′τA )2
, (B1)

where fA = xe−rτA + (1 − x)e−r′τA . We define yA = e−r′τA and
write the above equation as

δx2
A × nA = yA(1 − yA)(

yα
A − yA

)2 + x
1 − 2yA

yα
A − yA

− x2, (B2)

To make the right-hand side of the above expression tractable
for optimization, we observe that we are imposing a cutoff
that discriminates between samples drawn from exponential
distributions of means with ratio α−1. As α → 0, the ratio gets
larger and we expect the threshold to be placed much greater
than mean bound time of noncognate binding events, ∼r′−1.
Accordingly, we propose an ansatz that yα

A = O(1) and yA 	
1 as α → 0. Using the ansatz, we simplify the equation above
to get

δx2
A × nA ≈ y1−2α

A + xy−α
A . (B3)

Optimizing the right-hand side of the above equation with
respect to yA by taking the derivative in yA and equating to
zero, we get

r′τ ∗
A ≈ (1 − α)−1 log

(
1 − 2α

αx

)
, (B4)

which is reproduced in the main text and used in Figure 6. We
verify then that as α → 0, e−r′τ ∗

A 	 1 and since αα → 1, we
have e−αr′τ ∗

A = O(1). A similar expression can be derived for
τ ∗

B with x replaced by 1 − x in Eq. (B4).

APPENDIX C: NONSPECIFIC LIGAND POOL

With total concentration given by ctot = c1 + c2 + c0, the
probability of a sequence of bound and unbound times
{uR

i , bR
i } can be written as

P
({

uR
i , bR

i

}) =
∏

R=A,B

nR∏
i=1

e−kRctotuR
i
(
kRc1rR,1e−rR,1bR

i

+ kRc2rR,2e−rR,2bR
i + kRc0rR,0e−rR,0bR

i
)
, (C1)

with index R running over the receptors A and B, and index i
running over the binding events nR in a fixed interval T . Now,
log-likelihood L(x, y, ctot ) as a function of the fractions of the
cognate ligands, x and y, and the total concentration, ctot, is
given by

L =
∑

R=A,B

{
−kRctotT

R
u + nR log kRrR,0ctot − rR,0T R

b

+
nR∑

i=1

log
[
xλR,1e(1−λR,1 )rR,0bR

i + yλR,2e(1−λR,2 )rR,0bR
i + 1

− x − y
]}

, (C2)
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where R runs over the receptors, i runs over the binding events (a total of nR) of each receptor, bR
i denotes the bound time of the

ith binding event of receptor R, and T R
u and T R

b denote the total unbound and bound time, respectively, of receptor R. We also
define λR, j ≡ rR, j

rR,0
as the ratio of the unbinding rate of ligand j to the unbinding rate of the nonspecific ligand from receptor R.

By setting ∂L(θ)
∂θ

|θ∗ = 0, we obtain the ML estimates of θ = [x, y, ctot]. The ML estimate of total concentration, c∗
tot, is

c∗
tot = nA + nB

kAT A
u + kBT B

u

. (C3)

The ML esimates of the fractions of cognate ligands, x∗ and y∗, satisfy the following equations:

∑
R=A,B

nR∑
i=1

λR,1e(1−λR,1 )rR,0bR
i − 1

x∗λR,1e(1−λR,1 )rR,0bR
i + y∗λR,2e(1−λR,2 )rR,0bR

i + 1 − x∗ − y∗ = 0, (C4)

∑
R=A,B

nR∑
i=1

λR,2e(1−λR,2 )rR,0bR
i − 1

x∗λR,1e(1−λR,1 )rR,0bR
i + y∗λR,2e(1−λR,2 )rR,0bR

i + 1 − x∗ − y∗ = 0. (C5)

Next, by taking expectation over the distribution of the sequence of bound and unbound times, we obtain 〈 ∂L
∂θ

〉, which informs

us whether the ML estimates are unbiased, and 〈 ∂2L
∂θ2 〉, which help us obtain the Fisher information matrix, I (θ). We note that this

probability P factorizes and can be written as

P
({

uR
i , bR

i

}) =
∏

R=A,B

nR∏
i=1

p
(
uR

i

)
p
(
bR

i

)
. (C6)

It is trivial to show that 〈 ∂L
∂θ

〉 = 0 and hence the ML estimates θ∗ are unbiased. Now, setting u = rR,0bR
i , we have

〈
∂2L
∂x2

〉
= −

∑
R=A,B

〈nR〉
∫ +∞

0
due−u [λR,1e(1−λR,1 )u − 1]2

xλR,1e(1−λR,1 )u + yλR,2e(1−λR,2 )u + 1 − x − y
, (C7)

〈
∂2L
∂y2

〉
= −

∑
R=A,B

〈nR〉
∫ +∞

0
due−u [λR,2e(1−λR,2 )u − 1]2

xλR,1e(1−λR,1 )u + yλR,2e(1−λR,2 )u + 1 − x − y
, (C8)

〈
∂2L
∂x∂y

〉
= −

∑
R=A,B

〈nR〉
∫ +∞

0
due−u [λR,1e(1−λR,1 )u − 1][λR,2e(1−λR,2 )u − 1]

xλR,1e(1−λR,1 )u + yλR,2e(1−λR,2 )u + 1 − x − y
. (C9)

We also have

〈
∂2L
∂c2

tot

〉
= −〈nA〉 + 〈nB〉

c2
tot

, (C10)〈
∂2L

∂x∂ctot

〉
= 0, (C11)〈

∂2L
∂y∂ctot

〉
= 0. (C12)

Using Eq. (C7)–(C12), the Fisher information matrix I (θ) can be obtained as −〈 ∂2L
∂θ2 〉. The Cramér-Rao bound, in the limit of

a large number of binding events, which can be ensured by choosing T to be significantly longer than a typical binding or
unbinding event, ensures that

�θ = I (θ)−1. (C13)

We are interested in the log concentrations, li = log ci. What is an appropriate cost function in this case? With θ′ = [l1, l2], and
lall = [l1, l2, l0] = [θ′, l0], we obtain the covariance matrix �lall as

�lall = Jall�θJT
all, (C14)

where Jall is the Jacobian given by ⎛
⎜⎝

x−1 0 c−1
tot

0 y−1 c−1
tot

−z−1 −z−1 c−1
tot

⎞
⎟⎠. (C15)
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This describes an ellipsoid in lall space. We are interested only in θ′. So we obtain the marginal distribution of l1 and l2 and
obtain the covariance matrix, �θ′ = J�θJT , and the cost function �NS as the area of the ellipse centered at (l1, l2) as

�NS = det(�θ′ ) = det(J�θJT ), (C16)

where the Jacobian J given by (
x−1 0 c−1

tot

0 y−1 c−1
tot

)
. (C17)
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