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Abstract

Many biological systems require the coordinated operation of a
large number of agents linked together by complex interactions
in order to achieve their function reliably. Because of the
complex relationship between individual laws and system-level
behaviour, theory is needed to assess which emergent phe-
nomena result from fine-tuning or adaptation, and which follow
from logical or physical constraints set by the system’s design.
Here we illustrate this crucial role of theory through recent
examples from the collective motion of bird flocks. In some
cases abstract theoretical laws explain the emergence of some
apparently surprising traits, without the need to invoke new
assumptions. Conversely, quantitative theoretical predictions
sometimes show that general mathematical and physical laws
are incompatible with otherwise mundane observations, forc-
ing us to reconsider our assumptions and leading us to
discover new principles.
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Living systems often display a finely orchestrated
behaviour linking their many parts: the collective rear-
rangement of epithelial cells during wound healing [1],
the coherent motion of large groups of birds when they
come down to roost [2], the orchestrated action of our
immune system to protect us against pathogens, or the
complex programs of gene regulation and cell

differentiation during development. The precision of
cellular responses [3,4], the speed of information
transmission, and the reproducibility of evolutionary
paths on short timescales [5], all suggest a precise
tuning of biological parameters to achieve these feats.
Often, the collective nature of the biological function
acts on effective parameters controlling the emergent
behaviour of the system, rather than on individual bio-
logical parameters. It has been argued that this fine-
tuning can lead the system into particular regions of
the parameter space, similar to critical points or critical
surfaces delineating phases in physics [6,7]. Yet some-
times a more careful examination of the phenomenon
reveals that what we observe in nature is actually dictated
by physical or logical constraints, rather than by resulting
from makinga particular set of adaptive choices. In certain
cases, this realization comes directly from experimental
facts: forinstance, the reproducibility of protein evolution
is explained by the fact that most evolutionary paths are
forbidden as they include deleterious, often non-viable
mutations [8,9]. In other cases, raw observations are not
enough to reveal the underlying rules constraining the
system, or to immediately deduce the range of behaviours
implied by these constraints. Theory is then needed to
decide whether the peculiar or intriguing biological phe-
nomena we are confronted with is really the product of
some biological optimization mechanism, or rather the
consequence of general mathematical and physical prin-
ciples. Conversely, theory may reveal that seemingly
mundane observations actually put strong constraints on
the class of models describing the phenomenon.

Collective behaviour holds many such examples of
interesting dialogue between theory and observations,
because of the complex relationship between the indi-
vidual and collective levels, which require a thorough
theoretical analysis. The concerted motion of large
groups of animals, such as bird flocks (Figure 1A), fish
schools and mammal herds [10—12], provides a visually
stunning example of collective behaviour. Less visible,
but resulting from similar forces and equally fascinating,
is the rearrangement of cells in tissues that are driven to
flow together [13—15]. In all of these cases, collective
behaviour is se/f-organized, namely the group achieves its
tasks by means of distributed control laws, without any
leader. How these distributed laws result in complex
collective motion is a rich field of investigation where
theory has played an important role. Here we report and
discuss some instructive cases from these systems in
which theory helps us gauge the relative role of
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A. A snapshot of a flock of European starlings (Sturnus vulgaris). B. Propagation law for starling flocks. During collective turns in flocks, a first individual
starts turning and, one by one, all the others follow. The figure displays the distance from the initiator of the turning front as a function of time. Different
colors correspond to different turning flocks. In all cases a linear regime is clearly identifiable where directional information propagates in a wave-like
manner (black lines are linear fits). For each event, the speed of propagation is given by the slope of the curve in the linear regime. From Ref. [36].

biological, mathematical and physical principles in
shaping the phenomenon at hand.

Phenomenological description and
universality

Deriving collective behaviour from the dynamics of the
individual units is, in general, a difficult task. This
statement is especially true in the case of biological
systems, where such units are living entities and in-
teractions between them involve complex mechanical,
chemical or cognitive processes. It is not @ priori clear
what is the level of detail needed in the description of
individuals and in the way they coordinate with each
other. Some important inspiration in this respect come
from the statistical physics of condensed matter origi-
nally developed to describe non-animate materials,
where collective phenomena have been studied to
describe phenomena such as magnetization [16]. In this
case advanced conceptual theoretical approaches, such
as the Renormalization Group [17], and experimental
findings show that in fact most of the microscopic de-
tails do not matter. Only a few fundamental features are
relevant to describe the large scale behaviour: the nature
of collective order, the dimensionality, symmetry prop-
erties and conservation laws. As a consequence many
different physical systems exhibit the same large scale
properties, i.e. there exists universal ‘classes’ of collec-
tive behaviour; and simple effective models can be
formulated to describe the behaviour of an entire class.

This perspective has inspired the whole field of living
active matter [18—20] and physics-based modelling of
biological collectives [12,21]. Many results on active

systems at the micro-scale (cell tissues, bacterial colonies,
microtubules networks) support the value of this approach.
It turns out that the same theory can equally well predict
the large scale behaviour of living assemblies and inanimate
active matter, which share the same fundamental proper-
ties [18—20]. Recent findings on bird flocks [22] and insect
swarms [23] indicate that these animal groups satisfy static
and dynamic scaling laws: the large scale properties of the
system under different conditions (number of individuals,
density, external parameters), once appropriately rescaled,
can be described by a single master function. Laws of this
kind are the phenomenological underpinning of univer-
sality in condensed matter materials, and suggest that the
effective theoretical framework used for inanimate systems
is also justified when looking at coherent animal groups at
large scales. Clearly, at smaller scales, the specific nature of
different groups matters, just as the type of chemical alloy
used is important for a material.

The possibility of describing complex systems in terms
of simple minimal models enormously helps their un-
derstanding. Such models are typically specified in
terms of an interaction network, and very few control
parameters. Comparison with classes of models sharing
similar features can tell us whether the described col-
lective behaviour is generic, i.e. we can expect it on the
basis of the mechanistic structure of the dynamics, or
rather requires some fine tuning of the parameters and/
or some additional gauging principle.

Scale-free correlations
Bird flocks represent an archetypical example of col-
lective behaviour in animal groups. The quantity that
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best characterizes the degree of collective behaviour in
an interacting system is the correlation function be-
tween the fluctuations of the relevant degrees of
freedom [21,24]. In the case of animal groups on the
move, this amounts to measure the correlation between
the changes in velocity of different individuals separated
by a certain distance. In bird flocks, whose linear
dimension ranges from ~ 10m up to ~ 100m, the spatial
span of this correlation has been found to be as large as
the group itself; more precisely, one says that the cor-
relation length scales linearly with the flock size [22].
"This kind of scaling is a signature of the lack of a char-
acteristic length scale of the problem — there is no
natural scale for the birds to communicate over. A similar
situation arises in natural swarms of insects, where again
experiments find that the scale of correlation of the
groups grows with its size [25]. The scale-free nature of
self-organized groups is very important, as it implies that
the behavioural changes of different individuals can in-
fluence each other (statistically) over very large scales.
It is therefore interesting to understand how generic
this feature is, and whether it tells us something unex-
pected about the systems under investigation.

Collective motion can be described theoretically in
terms of interacting agents that locally decide their di-
rection of motion based on that of their local neighbours
[26,27]. The dynamical rules for the movement of the
individual agent are of the kind:

V[.(;.F]) = Z/,/\’/([)+fcn+gl([)7 (1)
7

1‘,’(1‘—0— 1) = r,-(l) —I—V;'(l), (2)

where r;(7) and v;(7) are the position and velocity of agent .
The first term at the r.h.s. of Eq. (1) is a social force aligning
the agent’s flight direction to a weighted average of the
neighbours’ velocities (including agent /), where J;; spec-
ifies the interaction network and is different from zero only
for neighbours in a well defined interaction range. The
function f¢, is a constraint fixing the speed |v;| to its
cruising value, and mathematically implements the active
nature of the constituents, i.e. the fact that agents have an
internal source of energy that they convert into motion (as
opposed to ‘passive’ particles in physics). Finally, &; is a
noise term translating errors in the alignment process.

Several variations of this model have been investigated
in the literature [28—32], but all of them share some
very general features: the system is endowed with a
continuous symmetry (a rotation of all velocities leaves
the equations invariant), interactions are local and based
on mutual alignment, speed is constrained. When the
noise in the system is low enough, this kind of interac-
tion gives rise to a global net motion of the group, as is
observed for flocks. However, if no factors favour one

direction over another, i.e. if the system is symmetric, the
flock has the freedom to arbitrarily choose a specific
flight direction out of all the equally probable ones. This
arbitrary global choice is known theoretically as the
spontaneous breaking of a continuous symmetry (the
rotational one, in this case), a very general phenomenon
that is ripe with deep mathematical consequences, the
most conspicuous of which being the fact that the
system develops long-range correlations. To grasp the
generality of this mechanism, known as the Goldstone
theorem [33], it is worth mentioning that it holds for
ferromagnetic systems in condensed matter [34], and
that the exact same mathematics is at the core of the
existence of the celebrated Higgs boson.

Hence, scale-free correlations of the flight orientations
in a flock do ot rely on any biological fine-tuning, no
matter how relevant these correlations are to achieve
global coordination; in fact, we should have expected
them from the symmetry properties of the dynamical
equations.

On the other hand, the modulus of the velocity, i.e.
speed, is not a symmetry-broken degree of freedom:
there is no arbitrariness for a bird in choosing its own
speed, as this is fixed by sharp physiological and aero-
dynamic factors (encoded is the constraint f,, in Eq.
(1)). For this reason, from a theoretical standpoint we
would expect the modulus of the velocity to be corre-
lated only over short distances. Yet, experiments show
that speed fluctuations too are correlated over long
distances in flocks [22]. To explain this phenomenon,
the value of some effective parameter must sit near a
particular value, called a critical point by analogy with
phase transitions in physics [35] and reaching that
particular place in parameter space does requires a bio-
logical tuning principle. Insect swarms do not globally
move: no arbitrary direction of motion of the group has
been selected, and therefore math does not require
scale-free modes to emerge. Hence, again one needs a
bona fide biological principle to explain the scale-free
correlations empirically observed in swarms [25].
These examples emphasize that, although scale-free
correlation may seem equally striking in the distinct
contexts of orientation and speed fluctuations, in flocks
and swarms, a closer look under the lens of theory tells
us that it is far more demanding in some cases than in
others. This distinction, which has clear and important
biological implications, comes in this case from model-
ling and theoretical physics.

Information transfer and memory

Up to now we have seen how theory sometimes modifies
our preliminary expectations, and therefore stops our
search for new biological principles, by providing general
mathematical and physical laws able to explain the
salient traits of the phenomenon at hand. Some other
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times, the opposite happens: our intuition suggests that
what we observe is not particularly noteworthy, hence
inviting us to deal with more exciting phenomena, while
a more careful theoretical analysis indicates that in fact
we should investigate further what we have found. An
instructive example is that of information transfer across
bird flocks. Experiments [36] show that the information
about a collective change of direction propagates across a
flock in a “ballistic” manner, i.e. linearly in time, just like
an ordinary wave (Figure 1B). This may seem a rather
mundane observation, as waves are part of our ordinary
experience both in the physical and in the biological
world [37—39]. A sub-linear propagation law would
seem inadequate to transfer information across large
biological groups. In this case simulations show that as
the propagation front crosses the flock, it divides it into
two parts that fly in different directions, risking splitting
the group [40]. A swift mechanism of information
propagation thus seems paramount to keeping the
group’s cohesion.

Theory tells a different story. The traditional descrip-
tion of interacting agents (see Egs. (1) and (2)), which
we invoked to make sense of long-range correlations in
flocks, fails to predict the wave-like propagation of in-
formation [54]. Our common physical experience with
waves is light and sound. In light, what propagates are
perturbations of the electric and magnetic fields. In
sound, it is fluctuations of the density and displacement
speed of the medium. In both cases propagation is
mathematically ruled by D’Alembert’s wave equation, a
second order partial differential equation in both time
and space, which ensures linear propagation. The
equation’s structure results from the reciprocal coupling
of two conjugate quantities: the electric and magnetic
fields in light; the density and velocity fields in sound.
In general, identifying conjugate variables, such as time
and frequency in acoustics, that are coupled through a
mathematical transformation, often helps to describe
signal propagation.

However, what propagates in a flock is the direction of
motion of the birds, which is not coupled to an experi-
mentally identified conjugate field, such as density in
standard sound. Classic flocking theories thus describe
the fluctuations of the direction of motion through a
first-order equation in time (Egs. (1) and (2)). The
analysis of the model reveals that this seemingly
innocuous assumption leads to a wrong prediction—the
diffusive transmission of information, meaning that the
distance covered by information grows with the square
root of time, rather than linearly, in clear contradiction
with the data.

Here, the theoretical analysis compels us to re-discuss
the structure of models like Egs. (1) and (2), and
calls for a new principle [40]. Within the new theory,
linear information propagation is a direct result of the

same global rotational symmetry mentioned earlier,
which suggests to define a conserved quantity that is
conjugate to the direction of flight. This new variable, a
continuous internal angular momentum, is connected to
the behavioural inertia of birds in changing their head-
ing direction. It describes a dynamics where birds do
not immediately adapt their flight direction to the
external forces but integrate past information, i.e. they
have memory (technically, birds are non-Markovian).
This new biological ingredient leads to modified
second order equations of motion that are mathemati-
cally equivalent to light and sound propagation, in
agreement with the data [36,40]. The new conserved
field, which has interesting formal ties with the spiz of
quantum particles [40] has an entirely biological role. It
implements the memory kernel of the velocity update
and also has a direct kinematic interpretation: it rep-
resents the radius of curvature of the birds’ trajectories.
This abstract theoretical detour leads to concrete
experimental predictions. It implies that information
transfer must be faster the stronger the group’s orien-
tational order, as accurately verified by the data [36].
The fact that there exists a conserved quantity also
results in a specific way of turning, where individuals
follow equal radius paths, as observed experimentally in
natural flocks [36,41,42].

The role of memory to describe collective patterns in
living assemblies—initially overlooked in the literature
of active particles—has been recently considered in
several works. Models of collective motion with memory,
even though of a different kind and symmetry properties
than the one discussed above, have been considered to
describe coordinated behaviour in fish schools [43], the
emergence of vortex-like structures of biofilaments in
motility assays [44], and collective oscillations in dense
bacterial suspensions [45].

Asymmetric interactions

Another example where theory and physics-based
modelling helps us understand the specificity of bio-
logical collective behaviour is the role of fluctuations on
the stability of collective order. It is empirically
observed that during aerial display, large flocks of birds
perform frequent collective turns, even in absence of
predation [42]. Similarly, spontaneous evasion ma-
noeuvres have been measured in fish schools [46]. It
therefore seems that endogenous fluctuations can have
an important role in the group dynamics, as they are able
to produce relevant changes in the collective state of the
system (the group’s global direction of motion). A model
like Egs. (1) and (2) is not able to explain this kind of
behaviour. If groups are large enough, this model pre-
dicts that global order is stable in time in absence of
perturbations. When reconsidering this model in light of
experimental observations, one realizes that some fea-
tures present in animal groups must be taken into
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consideration. One standard assumption in this model,
as in many other agent based models in active matter, is
that interactions between individuals are reciprocal.
This assumption is natural in physics, where all forces
between particles depend on distance and are therefore
necessarily symmetric. However, when considering local
coordination rules in living groups, this is not generally
true. For example, interactions between birds in a flock
are topological rather than metric [30,47], meaning that
cach individual coordinates with a given number of
closest neighbours independently of their distance.
These interactions are therefore non-symmetric. Simi-
larly, the visual and perceptual field of many animals is
not fully isotropic, which again implies a non-symmetric
interaction network—if I see you, you might not see me
[48,49]. Considering directed (i.e. non-symmetric)
interaction graphs can have relevant effects on the role
of fluctuations and order stability, and can explain why
large finite groups change their collective state on finite
time-scales [50]. When interactions are symmetric, each
individual is influenced and influences others in a
balanced way. As a consequence, local errors (i.e. noise)
are spread through the whole network and only cause
negligible fluctuations of global order. On the contrary,
this does not always happen for asymmetric interactions:
fluctuations can get locally enhanced before propagating
through the system, causing a finite change in the col-
lective state of the group. Even though asymmetric in-
teractions have been considered in the past in models of
collective motion (zone models with blind angles, see
e.g. Refs. [28,51]), their connection to fluctuations and
stability of long-range order is not fully understood.
Recent studies have also investigated the destabilizing
role of fore-aft asymmetries in Vicsek-like models
[52,53], showing how asymmetries can qualitatively
change the behavior of active matter systems on the
large scale.

Conclusions

The examples we discussed in the context of collective
animal motion show how a theoretical framework helps
us to gauge our expectations, by distinguishing cases
where an intriguing observation requires invoking some
new underlying biological principle, from cases where
the same observation is already expected, with no
additional assumption. Conversely, as was the case with
information propagation and spontanecous large-scale
changes in flocks, sometimes predictions of existing
theories do not agree with seemingly mundane obser-
vations; when this happens, our understanding of the
phenomenon is wrong or at best incomplete, and we
must look for a new theory to make genuine biological
predictions and progress. These are of course the most
exciting cases: while living systems must function
within the known laws of physics and mathematics, they
may also hide some new laws, whose existence may only
be revealed by the theoretical analysis, but whose

rationale lies entirely within the boundaries of biology.
In absence of a theoretical perspective, though, we risk
to be looking for biological tuning principles aimed at
explaining what we do not expect, when there is actually
no need for them. Using the above examples we tried to
show that a detour into abstract theoretical, and possibly
oversimplified theories, is not always only a theoretical
exercise but may lead to new insights with direct
experimental and biological consequences. Constantly
confronting theory with quantitative experimental
measurements pushes our understanding of living sys-
tems at all scales into new directions.
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