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Inferring Resource Competition in Microbial Communities from Time Series
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The competition for resources is a defining feature of microbial communities. In many contexts, from soils
to host-associated communities, highly diverse microbes are organized into metabolic groups or guilds with
similar resource preferences. The resource preferences of individual taxa that give rise to these guilds are
critical for understanding fluxes of resources through the community and the structure of diversity in the system.
However, inferring the metabolic capabilities of individual taxa, as well as their competition with other taxa,
within a community is challenging and unresolved. Here we address this gap in knowledge by leveraging
dynamic measurements of abundances in communities. We show that simple correlations are often misleading
in predicting resource competition. We show that spectral methods such as the cross-power spectral density
and coherence that account for time-delayed effects are superior metrics for inferring the structure of resource
competition in communities. We demonstrate this fact on synthetic data generated from consumer-resource
models with time-dependent resource availability, where taxa are organized into groups or guilds with similar
resource preferences. By applying spectral methods to oceanic plankton time-series data, we demonstrate
that these methods detect interaction structures among species with similar genomic sequences. Our results
indicate that analyzing temporal data across multiple timescales can reveal the underlying structure of resource
competition within communities.
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I. INTRODUCTION

The collective biological activity of ecosystems is defined
by fluxes of resources. From plant [1] to microbial [2] com-
munities, the availability of resources such as sunlight or
reduced carbon and nitrogen enables the generation of energy
and the production of biomass. Competition for resources
therefore drives ecological interactions between members of
the system. As a result, resource-mediated interactions such as
competition have long been recognized as central structuring
properties of ecosystems across scales.

Perhaps nowhere are the structuring forces of resources
more clear than in microbial consortia. Communities of mi-
crobes utilize resources in almost every niche on the planet,
from carbon remineralization in the photic zone of the ocean
[3] to fiber utilization in the rumen of ungulates [4] and the
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collective transformation of oxidized nitrogen compounds in
the soil [5,6]. In each of these cases, complex communities
of hundreds or thousands of species compete for and utilize
resources to generate energy and biomass.

In these contexts, the metabolic traits of microbes utilizing
each resource become a key property of interest because they
dictate which species compete for which resources. In part
due to the conserved structure of the biochemical pathways
that enable the utilization of resources, microbial communities
are frequently observed to be comprised of guilds, or groups
of species, that utilize a similar set of resources [7,8]. These
guilds, often comprised of tens (or more) of taxa, compete
for diverse pools of resources. For example, marine com-
munities utilize complex mixtures of carbon sources [9] and
many members of the human gut microbiome utilize mix-
tures of carbon sources [10]. Thus the mapping of species
to the resources they utilize typically has a blocklike struc-
ture, with groups of species utilizing groups of resources
[11].

A second key feature of resource utilization in microbial
ecosystems is temporal fluctuations. Temporal variability in
resource availability is the norm across many if not most
habitats. For example, diurnal fluctuations drive the availabil-
ity of carbon in photosynthetically driven ecosystems [12],
and feeding temporally structures the availability of resources
in host-associated microbial communities [13]. Similarly, in
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FIG. 1. Environment-mediated ecological interactions between resources and consumers. (a) Cartoon of interactions among environment-
mediated resources and consumer species. (b) Example of the gain matrix for consumer-resource interaction G with elements Giα = riαγiα

(color bar). The probability of nonzero consumer-resource interactions depends on whether the resource is preferred by the species or not, with
an adjustable parameter q that encodes guild-structure bias (q = 0.4 for this example). All resources also have private resources to prevent
extinction. (c) Effective interactions among the species are captured by the effective resource-utilization overlap matrix GGᵀ (color bar), shown
here for three different values of the guild-structure bias q.

soils, transient dynamics in moisture drive large fluctuations
in nutrient availability [14].

Given the importance of resources, the central role of
microbial traits and temporal fluctuations in mediating the
dynamic utilization of resources by communities, a central
challenge in the field, is understanding resource-mediated in-
teractions in communities. This challenge is highlighted by
the fact that, in the context of a complex community, we
cannot easily access the resources each and every species
is utilizing. In most cases, isolating individual strains or
taxa and assaying their resource preferences is infeasible.
While genome-scale models [15] show potential for pre-
dicting resource utilization from sequencing data (shotgun
metagenomics), these methods remain highly error prone for
genomes of nonmodel organisms [16]. In light of these con-
siderations, it is important to develop empirically grounded
methods to infer the resource-mediated interactions in a com-
plex consortium.

Here we ask what metrics on the observed time series of
species abundances can give us insight into the structure of
resource-mediated interactions in the community. In particu-
lar, if there are metabolic guilds in the community, how can
we reliably infer them from time-series measurements? We
approach this problem in the context of consumer-resource
models [17]. We focus on consumer-resource formalisms be-
cause recent work has shown these models to be powerful
quantitative formalisms for understanding abundance and re-
source dynamics in real communities [6,18], suggesting that
this formalism has some predictive power in the microbial
context.

While a host of powerful methods have been developed
to infer interactions in ecological communities, many of
these methods rely on statistical analysis of correlations in
species abundances and make simplifying assumptions such
as sparsity [19,20]. Leveraging the widespread availability
of time-series data in microbial communities [21–23], we
present temporal pairwise measurements as novel predictors
of resource-mediated species-species interactions and apply
them to existing datasets.

II. RESULTS

A. Environment-mediated consumer-resource model

In real experiments, the underlying consumer-resource in-
teractions and resource dynamics are exceedingly challenging
to measure. To develop a method that can be applied to an-
alyze experimental time traces, we first introduce a model
with known ground truth to develop an appropriate met-
ric, which can reveal the effective resource overlap between
species, using only the observed abundances of consumer
species.

We consider an ecological system with N species with
abundances xi (i = 1, . . . , N) and M resources with con-
centrations Rα (α = 1, . . . , M). Interactions are given by an
externally supplied resource model. The dynamical effect of
environmental fluctuations is explicitly modeled by the time
dependence of the external supply, Kα (t ), that mediates re-
source availability [Fig. 1(a)] [17,24–26]. Mathematically,

ẋi =
(

M∑
α=1

riαγiαRα (t ) − dx

)
xi(t ), (1)

Ṙα = Kα (t ) −
(

dR +
N∑

i=1

riαxi(t )

)
Rα (t ), (2)

where riα is the uptake rate of resource α for species i (and
simultaneously the depletion rate of resource α given species
i), γiα is the yield of species i given resource α, i.e., how much
species i grows by consuming resource α, and dx and dR are
the death rates of the species and the resources, respectively.
For simplicity, dx is set to be equal for all species and dR across
all resources. We call this model the environment-mediated
consumer-resource model (ECRM).

Because resources impact species abundances through ex-
ponential growth, it will be useful to log-transform species
abundances before analysis, defining

s̃i(t ) ≡ log xi(t ), (3)
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which we further normalize as the z score,

si(t ) = s̃i(t ) − 〈s̃i〉
σs

. (4)

Intuitively, the z score describes the deviation from the mean
in terms of expected standard deviation.

To model the impact of environment, we assume that its
fluctuations directly influence the resource abundance, which
then, by means of the consumer-resource relation, is transmit-
ted through the ecological system. We consider two types of
environmental fluctuations Kα (t ).

First, sinusoidal drives are given by

Kα (t ) = K0
α + Aα sin(ωαt − φα ), (5)

where K0
α is the base supply for resource α, Aα the amplitude

of the sinusoidal drive, ωα the frequency, and φα the phase.
This form models the periodic drives omnipresent in nature,
for example, diurnal cycles in aquatic systems, or regular food
intakes in host-associated microbiomes.

Second, Ornstein-Uhlenbeck (OU) drives evolve according
to

Kα (t ) = K0
α + Qα (t ), (6)

with K0
α the base supply for resource α as in the sinusoidal

case and Qα a stochastic OU process defined by

dQα

dt
= −ωαQα + Aα

√
ωαηα (t ). (7)

Here ωα and Aα are defined such that both the power and the
timescales in the sinusoidal and the OU processes match, and
the white noise {ηα (t )} satisfies

〈ηα (t )〉 = 0, 〈ηα (t )ηβ (t ′)〉 = δαβδ(t − t ′). (8)

Compared to sinusoidal drives, OU drives are stochastic,
which are useful in modeling environmental fluctuations with
unknown strength and regularity such as redox fluctuations in
soils [27].

The gain matrix for the consumer-resource interaction
G, where each entry is Giα = riαγiα , describes the intake
of resource α by species i [Fig. 1(b)]. Summing over the
resources, we obtain the resource-utilization overlap matrix
GGᵀ [Fig. 1(c)]. Large off-diagonal entries of this matrix
(GGᵀ)i, j indicate that species i and j have high overlap in
the resources they utilize. Species with high resource overlap
are expected to compete and those without are expected not
to compete. One can consider the resource-utilization matrix
as a proxy for effective interactions between species, which is
informative about the community structure.

Specifically, we are interested in detecting guilds among
the interacting species. To introduce a guild structure in re-
source overlap, we write the uptake rate as riα = rgiα , where
giα is an adjacency matrix that takes the value of 0 if species
i does not uptake resource α and 1 if it does consume this
resource. In order to generate ensembles of random inter-
action strengths such that the resulting GGᵀ matrix has a
block (guild) structure, we construct a bipartite graph be-
tween N species and M resources. We then separate both the
species and the resources into k groups, with each group of
species preferring to consume resources from one group of
resources. The elements of the adjacency matrix that specifies

these preferences, giα , are drawn from a Bernoulli distribution
parametrized by a probability pin. For the other k − 1 groups
of nonpreferred resources, the elements of the adjacency ma-
trix giα are drawn from a Bernoulli distribution parametrized
by a probability pout < pin. In addition, each species is as-
signed its private resource to prevent extinction [Fig. 1(b)].
The yield γiα is drawn from a Gaussian distribution with a
positive mean and small variance to introduce randomness.
All yields are non-negative (see Sec. IV for specific parameter
values).

When there are only two guilds a and b, we can reduce
the number of parameters by defining a guild-structure bias
q and set pin = 0.5 + q and pout = 0.5 − q. For the first set
of Na species we set the probability that they consume the Ma

resources to pin = 0.5 + q, while their probability to consume
the remaining Mb resources is pout = 0.5 − q. The Nb species
from the second group have opposite preferences: With proba-
bility pout = 0.5 − q they consume the first Ma resources and
with probability pin = 0.5 + q the remaining Mb resources.
Here q acts as a tuning variable for block structures. If q =
0.5, there are zero interactions between species that belong
to different guilds. If q = 0, there is no bias of any species
towards any resource [see Figs. 1(b) and 1(c)].

The consumer-resource model [Eqs. (1) and (2)], envi-
ronmental drive [Eqs. (5)–(8)], and resource guild structure
riα among consumers completely define the model. To illus-
trate its behavior and gain intuition, we first simulate a small
network with N = 6 species and M = 30 resources, with a
guild-structure bias of q = 0.4. The resource-utilization ma-
trix GGᵀ is given by Fig. 2(a). The specific set of parameters
is given in Sec. IV. The first Na = 3 species form one guild,
while the remaining Nb = 3 species form the other. To study
the impact of environmental drive on species abundances, we
simulate the ECRM under sinusoidal and OU environmental
drives, each sampled at three different ranges of timescales:
slow, fast, and with a mixture of timescales [Fig. 2(b)]. Ex-
ample traces of pairs of species within the same guild show
complex coupled dynamics depending on the environmental
timescales [Fig. 2(d)].

B. Pairwise measures of species couplings

To explore how the coupled dynamics of species abun-
dances can be informative about their resource overlap GGᵀ,
we consider observables of increasing complexity that mea-
sure the deviation from independence between the time traces
of two species.

1. Equal-time correlation C(0)

We first consider the equal-time correlation coefficient,
defined as

Ci j (0) = lim
T →∞

1

T

∫ T

0
si(t )s j (t )dt, (9)

which for finite data time-series size sampled at a finite sam-
pling rate is

Ci j (0) ≈ 1

T

T∑
t=1

si(t )s j (t ), (10)
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FIG. 2. Simulated guild-based ecosystem: an example environment-mediated consumer-resource model (number of species N = 6, number
of resources M = 30, and guild-structure bias q = 0.4) demonstrating that the relation between the equal-time species abundance correlation
C(0) and the underlying resource-utilization-overlap matrix GGᵀ depend on the timescale of the environmental drive. (a) Resource-utilization-
overlap matrix GGᵀ. The red squares indicate an example pair of interacting species. (b) Environmental drives are chosen to be sinusoidal, with
fast (red, ωα ∈ [1, 10]), slow (blue, ωα ∈ [0.01, 0.1]), and mixed timescales (green, ωα ∈ [0.03, 3]). (c) The correlation between the elements
of the equal-time correlation function C(0) and the elements of the resource-utilization matrix GGᵀ is positive when the environmental drive
is fast (red), negative when the drive is slow (blue), and shows no correlation when the drive is composed of a mixture of slow and fast
timescales (green). In each panel, r is Spearman’s rank correlation coefficient and p is the p value for the null hypothesis that there is no
correlation between C(0) and GGᵀ. Black arrows indicate the example pair of species in the red squares of (a). (d) Example segments of time
series of the log-transformed species abundances for the red-square pair of (a), under the three types of environmental drive given in (b). (e)
Cross-correlation function between the species abundances of the example red-square pair of (a). The equal-time correlation is the value of
C(τ ) at τ = 0.

where t = 1, . . . , T now denotes the time frame. As the equal-
time correlation describes how much the concentrations of
pairs of species fluctuate together, it is a measure commonly
used in detecting species-species interactions. However, it is
known that equal-time correlations cannot accurately repro-
duce the interactions [20].

Specifically, as shown in Fig. 2(c), in our example of six
species distributed into two guilds, when the environmental
drive is fast, Ci j (0) ∝ (GGᵀ)i j , while when the environmental
drive is slow, Ci j (0) ∝ −(GGᵀ)i j . Intuitively this happens
because fast resource dynamics drives coherent responses of
members within a guild, but slow resource dynamics leads
to competition within guilds (the underlying mechanism was
first explored and explained in detail in [28]). This problem is
more pronounced when environmental fluctuations are driven
by a mixture of timescales [middle panel in Fig. 2(c)]. There
is no correlation between the equal-time correlation C(0)
and the resource-utilization overlap GGᵀ (p value equals 0.4,
Spearman correlation test). In this example, the pair of species
with the strongest resource-utilization overlap [indicated by
red squares in Fig. 2(a)] has an equal-time correlation close to
0, as indicated by the black arrow in Fig. 2(c).

Without knowing a priori the timescale of the environmen-
tal fluctuation, the equal-time correlation C(0) does not return
a good enough estimator of the resource-utilization overlap.

2. Cross correlation with time delay reveals
species-interaction structure

Since equal-time correlations do not reveal the structure of
effective species-species interactions, we take a closer look at
time-series data. Let us focus again on the pair of species with
the strongest resource overlap [red squares in Fig. 2(a)]. As
shown by Fig. 2(d), the time evolution of species abundances
depends heavily on the environmental drive. Under a fast
environmental drive, the two species abundances track each
other closely, while under a slow drive, they exhibit a phase
shift. When the environmental drive is mixed with fast and
slow modes, the dynamics of each species also exhibits a
mixture of modes and the relation between the two species
is less clear.

Given a complicated time series, we need to consider
dynamical pairwise measures, such as the time-delayed cross-
correlation function

Ci j (τ ) = lim
T →∞

1

T

∫ T

0
si(t )s j (t + τ )dt . (11)

As shown in Fig. 2(e), under all three types of environmental
drive, the absolute value of the cross correlation at certain time
lags is large, which suggests that it carries information about
the species-species interaction structure. However, if one only
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FIG. 3. Dynamical pairwise observables reveal more about the resource-utilization-overlap structure than equal-time correlations.
(a) Schematic representation for calculating dynamical observables from the cross-correlation function. The pairwise cross-correlation function
(left) is Fourier transformed into the CPSD (middle) and squared and normalized to obtained the squared coherence (right). All plots show
results for the ECRM example in Fig. 2 under an environmental drive with mixed timescales. Pairs of species within the same guild are
indicated by red squares. The guild-structure bias is q = 0.4. (b) Scatter plots between pairwise observables for each pair of species and the
elements of the effective resource-utilization matrix GGᵀ for same data as in (a). Pairwise observables include the equal-time correlation
C(0) [reproduced from the middle panel of Fig. 2(b)], its absolute value |C(0)|, the total magnitude of the CPSD [Pi j = ∫

df |Pi j ( f )|], and
the total coherence [T C i j = ∫

df Cohi j ( f )]. The r is Spearman’s rank correlation coefficient. (c) Prediction performance of the pairwise
measures of species abundance for resource-utilization overlap, given by Spearman’s correlation coefficient between the measure and the
resource-utilization matrix value, as a function of the guild-structure bias q [same color code as in (b)]. Shaded areas represent standard
deviation across ten realizations of the network, each with ten random realizations of environmental drive given by a sinusoidal process
with ωα sampled log-uniformly ∈ [0.03, 3] (left) or by an OU process with ωα = 1 (right). The total duration of the simulated trajectory is
t f = 20 000. The sampling time step is �tsampling = 1.

considers a single time delay, e.g., τ = 0, the value can be
very close to 0.

Comparing across different pairs of species, we observe
that the cross-correlation function between species of the
same guild varies with a much larger amplitude than between
species from a different guild [Fig. 3(a), left panel; pairs
of distinct species belonging to the same guild are outlined
in red]. However, different pairs of interacting species show
signatures of strong cross correlations at different time delays
τ , implying that there is no a priori choice of any single time
delay that would reveal the interaction structure between all
pairs of species.

3. Spectral method for time-series analysis: Cross power
spectral density and coherence

In order to focus on the interplay of timescales, we refor-
mulated the dynamical pairwise measures in the frequency
domain. Spectral analysis has been used to probe many as-
pects of ecological systems [29]. Here we measure the cross
power spectral density (CPSD) by taking the Fourier trans-

form of the cross-correlation function,

Pi j ( f ) =
∫ ∞

−∞
Ci j (τ )e−i2π f τ dτ. (12)

We divide its magnitude squared by the power spectral density
of each of the two time series to define the (magnitude-
squared) coherence

Cohi j ( f ) = |Pi j ( f )|2
Pii( f )Pj j ( f )

. (13)

Coherence ranges between 0, when the two signals are un-
related, and 1, when they are perfectly correlated up to a
phase shift. It is used in signal processing to detect the relation
between two signals [30].

Figure 3(a) shows a schematic of how to compute the
CPSD and coherence from the cross-correlation function for
the example network in Fig. 2(a) with mixed timescales of
the environmental drive. Recalling that the underlying re-
source utilization overlap network has a block structure (the
first three species belong to the same guild and the last
three species belong to another guild), it becomes clear from
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Fig. 3(a) that both the magnitude of the CPSD and the co-
herence are larger between intraguild pairs of species than
between interguild species. As coherence further reduces the
impact of individual species (due to normalization), the dif-
ference between intra- and interguild pairs is larger in the
coherence than in the CPSD magnitude [Fig. 2(a)].

Both the CPSD and coherence are frequency dependent
and contain information about the relation between the species
abundance z scores si(t ) and s j (t ) at each frequency. To ob-
tain an aggregate measure of the coupling between species
abundances over many timescales, we consider the integral
of the CPSD magnitude and coherence across all frequencies.
Specifically,

P ≡
∫ fmax

0
|Pi j ( f )|df ≈

kmax∑
k=0

|Pi j ( fk )|� f , (14)

where � f is the frequency resolution we choose when
performing the discrete Fourier transform. Note that if we
integrated the CPSD without taking its magnitude, we would
recover the equal-time correlation by Parseval’s theorem.

Likewise, we define the total coherence as the integral of
the magnitude-squared coherence across all frequencies,

T Ci j ≡
∫ fmax

0
Cohi j ( f )df ≈

kmax∑
k=0

Cohi j ( fk )� f . (15)

The maximum frequency is given by the Nyquist frequency,
fmax = 1/2�tsampling. The frequency resolution � f is chosen
heuristically such that the power spectral density estimate
is relatively stable when � f is doubled or halved (� f =
fmax/15 for all the results presented in this paper). Using
the simulated ECRM data, we estimate the power spectral
density of the species abundance time series using the MVGC
Toolbox [31] and the MATLAB built-in function with Welch’s
method to reduce noise from using finite data. As shown in
Fig. 3(b), compared to the equal-time correlation C(0) and
its absolute value, both the total magnitude of the CPSD P
and the total coherence T C are much more informative about
the underlying resource-utilization-overlap matrix GGᵀ. Total
coherence is the best of the four predictors. This advantage of
the total coherence persists for ECRMs under both sinusoidal
and OU drives and over the range of guild-structure biases q
[Fig. 3(c)]. Thus, the two proposed measures P and T C offer
a proxy for the resource-overlap interactions between species.

C. Binary classifier for guild-structure detection

In many cases, one is interested in recovering the guild
structure of the community from time series [32]. Identifica-
tion of the guild structure can enable a massive dimensional
reduction in the dynamic description of the system and pro-
vide insight into key metabolic properties [33].

Motivated by this, we ask whether total coherence and
CPSD magnitude could be used to learn the large-scale guild
structure of GGᵀ. We use the four pairwise measures C(0),
|C(0)|, P , and T C as scores to perform a binary classification
between pairs of species belonging to the same guild and
pairs belonging to different guilds. We apply this approach
to our small N = 6 simulated ECRM system with two guilds
[Fig. 2(a)]. To obtain a consistent partition into guilds, we

FIG. 4. Guild detection of resource-utilization overlap using the
pairwise measures of species abundances with single-linkage clus-
tering. (a) Receiver operator curve for successfully distinguishing
same-guild from different-guild pairs of species using the four pair-
wise measures, from 50 random realizations of the simulated model
in Fig. 2. The guild-structure bias is set to q = 0.4. (b) Area under
the ROC for guild detection. The color code is the same as in (a).
Environmental drives are given by OU processes with ωα = 1. The
total duration is t f = 20 000. The sampling time step �tsampling = 1.

perform single-linkage clustering initiated from all pairs of
species whose pairwise measure is larger than a threshold
within the range of the pairwise measure. For example, if after
thresholding species i and j are determined to belong to the
same guild, as well as species j and k, then all three species i,
j, and k are grouped into to the same guild.

To visualize the performance of the binary classifiers, we
plot the receiver operator curve (ROC) across different thresh-
olds [Fig. 4(a)]. The total coherence outperforms all other
measures in correctly partitioning species into guilds. The
area under the ROC (AUC) shows the advantage of coherence
persists for all guild biases q [Fig. 4(b)]. For q = 0 there is no
guild structure to detect and all measures fail at the task, as
they should. The ROC and AUC of the equal-time correlation
predictor Ci j (0) show that it performs only slightly better than
random guessing (with the AUC equal to 0.5), for all values
of q. Taking its absolute value improves prediction beyond
random guessing, but is still worse than the spectral measures
P and T C.

D. Spectral methods work for general ECRM
systems with larger sizes

In natural ecological systems, both the number of guilds
and the number of species in each guild can be large. How
well can the dynamical pairwise observables predict the
resource-utilization overlap for different system sizes? We
now consider general ECRMs with a larger number of guilds.
To explore finite-size scaling, we consider three families of
ECRMs, with the numbers of species, resources, and guilds
given in Table I.

As we increase the size of the ECRMs by increasing the
species size N , we also increase the number of resources
in proportion, M ∝ N , and the number of guilds as k ∝√

N . We take pin = (1/2 + q)(N/6)−1/2 and pout = (1/2 −
q)(N/6)−1. The scalings with N are chosen such that the
average connectivity degree for each species in the effective
resource-utilization matrix GGᵀ becomes constant at large
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TABLE I. Parameters for the ECRM with different system sizes.

N M ∝ N k ∝ √
N

6 30 2
24 120 4
96 480 8

N (see Sec. IV B for details). The particular prefactors are
chosen so that the numbers are consistent with the N = 6 case
considered earlier.

We monitor the predictive performance of the same four
pairwise measures as before [C(0), |C(0)|, P , and T C] as we
increase the system size from N = 6 and k = 2 to N = 24
and k = 4 and then to N = 96 and k = 8 [Figs. 5(a), 5(e), and

5(i)]. We compute Spearman’s correlation coefficient between
the pairwise observables and the elements of the GGᵀ matrix
[Figs. 5(b), 5(f), and 5(j)] and the ROC of guild detection
after single-linkage clustering [Figs. 5(d), 5(h), and 5(i)].

By the choice of scaling for pin and pout, the GGᵀ matrix
is sparse for all system sizes. We can set a threshold on our
measures to perform link detection, i.e., identify whether
there exists an effective interaction between species due to
competition for the same resource. As shown in Fig. 5 for
q = 0.5 (and Fig. S1 in the Supplemental Material [34] for
q = 0.4), for all three system sizes tested, the total coherence
remains the best among the four predictors. The summary
statistics in Fig. S2 in Ref. [34] show that the total coherence
always performs the best among the four predictors, although
all get worse as the system size increases. For q = 0.5, guild
detection [Fig. S2(c) in Ref. [34]] has a better AUC than link

FIG. 5. Pairwise observables for the simulated ECRM ecosystem of different sizes (Table I), with q = 0.5. (a) Effective resource-utilization
matrix GGᵀ with N = 6 species, M = 30 resources, k = 2 guilds, and q = 0.5. (b) Correlation between pairwise measures of the species
abundances and the resource-utilization overlap. Measured pairwise observables include the equal-time correlation C(0) and its absolute value
|C(0)|, the total absolute value of the CPSD, and the total coherence. (c) ROC of link detection for the four pairwise observables. The color
code is the same as in (b); note that the total absolute value of the CPSD overlaps with the total coherence, as both measures return perfect
predictions. (d) Same as (c) but for guild detection, after performing single-linkage clustering on the pairwise metrics with a tunable threshold.
(e)–(h) Same as (a)–(d) but for N = 24, M = 120, and k = 4. (i)–(l) Same as (a)–(d) but for N = 96, M = 480, and k = 8. For all ECRMs,
the environment is driven by OU processes with the intrinsic timescale set to ωα = 1. For all system sizes, the total duration of the simulated
trajectory is set to t f = 20 000 and the sampling time step is set to �tsampling = 1.
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FIG. 6. Influence of finite data duration and sampling rate on
guild detection using pairwise measures of species abundance.
Shown is the AUC of the guild detection task using (a) equal-time
correlation C(0), (b) its absolute value |C(0)|, (c) the total absolute
value of the CPSD, and (d) the total coherence, as a function of
sampling duration t f and interval �tsampling. For reference the species
turnover timescale is d−1

x = 3.33. The results are averaged over 50
random realizations of the ECRMs with N = 6, with OU environ-
mental drive at ωα = 1 and guild-structure bias q = 0.4.

detection [Fig. S2(b) in Ref. [34]], especially for large system
sizes, due to error correction afforded by single-linkage
clustering. For q = 0.4, however, guild detection performance
is worse at larger system size, as single-linkage clustering
overcorrects given the presence of nonzero resource
competition across different guilds [Figs. S1(d) and S1(i)
in Ref. [34]]. Alternatively, one can perform single-linkage
clustering but only for one iteration, such that immediately
adjacent neighbors are now linked. While suggesting more
sophisticated community-detection methods, this middle
ground provides a better recovery of the guild structure
compared to link detection and guild detection with full
single-linkage clustering [Figs. S1(e) and S1(j) in Ref. [34]].

E. Reconstruction of the GGᵀ matrix depends
on sampling rate and total time-series length

The success of the CPSD and coherence in detecting guild
structures depends on the interplay of multiple timescales.
These timescales include the doubling timescale (γ r)−1 of
the species, their typical lifetime d−1

x , the environmental
fluctuation timescales ω−1

α , and their relaxation time d−1
R .

Additionally, there are experimental timescales: the total time
t f of data acquisition and sampling interval �tsampling. Here we
discuss the effects of the finite time series and sampling rate
on recovering the elements and structure of the GGᵀ matrix.

As we increase the total time of acquisition t f , the ac-
curacy of guild detection improves for all four observables
as measured by the AUC, as expected [Figs. 6(a)–6(d)]. For
equal-time measurements C(0) and |C(0)| [Figs. 6(a) and

6(b)], the sampling interval �tsampling does not change the
prediction significantly. However, for the total absolute CPSD
and the total coherence [Figs. 6(c) and 6(d)], the AUC for
guild detection shows an optimal value near �tsampling = 2
and 0.5, respectively, for which the AUC for guild detection is
largest for the biggest range of total data acquisition timescale.
For comparison, in our simulation the species death rate is
dx = 0.3, corresponding to a turnover timescale of 3. In the
limit of small t f and large �tsampling, the number of time points
is less than the number of time points required by the spectral
method given the frequency resolution we specified (for the
fast Fourier transform the number of data points needs to
be at least double the number of the frequency resolution),
which means the methods cannot work [bottom right corner
of Fig. 6(d)]. Similar results hold for Spearman’s correlation
between the pairwise metrics and the GGᵀ matrix element
(Fig. S3 in Ref. [34]).

In summary, predictions always benefit from longer time
traces, but there exists an optimal, finite sampling frequency
for the two spectral methods which perform best.

F. Reconstructing guild structure from relative
species abundances

When dealing with genomic data, often only relative abun-
dances of the species rather than absolute abundances are
available. We tested whether the CPSD and coherence ob-
servables remain useful for species structure inference from
relative abundances, for systems of different sizes.

Figure S4 in Ref. [34] shows that, for small numbers of
species (N = 6 and 24), total coherence has poor predictive
power when using relative abundances, while the total magni-
tude of the CPSD still performs well. This result is surprising
since coherence as a function of frequency has more structure
than the CPSD. However, total coherence outperforms other
measures for a large number of species (N = 96). This result
is consistent with previous work [20], where the impact of
relative abundance was reported to be less severe when the
number of species is large.

G. Reconstruction of guild structure with heterogeneity
in guild size and evenness

So far we have examined ECRMs where guild size is uni-
form across a community. Here we test whether the dynamical
observables still perform well when there is heterogeneity in
guild size or unevenness in species abundances.

Figure S5 in Ref. [34] shows that the ability to success-
fully detect links remains high for communities comprised of
guilds of variable size. Coherence remains the best predictor
among the four pairwise measures. Guild detection, however,
becomes worse when the ECRM allows for the sharing of
resources across different guilds (q = 0.4). Detectability de-
pends on guild size: While link detectability is unaffected
by guild structure, smaller guilds are harder to detect after
single-linkage clustering.

Another source of heterogeneity is species evenness, i.e.,
certain species can be more abundant in the community. To
allow variability in species abundances, especially across dif-
ferent guilds, we adjust the number of resources associated
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with each guild. Figure S6 in Ref. [34] shows that the local
guild detection is improved by species unevenness, especially
if species in small guilds are present at high relative abun-
dance. While local detectability is not monotonic with species
evenness, higher relative abundance improves the AUC. Thus,
a small guild (e.g., two species) in a community with larger
guilds may be misidentified, unless its members are highly
abundant.

H. Applying temporal metrics to marine data

To illustrate the usefulness of the CPSD and coherence
on real data, we tested our four pairwise metrics on a public
dataset consisting of time series of relative abundance of a
total of 49 637 bacterial and eukaryotic operational taxonomic
units (OTUs) from coastal plankton collected over 93 consec-
utive days [22]. For each of the 93 days we have three samples
for each OTU, and we use the averaged relative abundance
across the three samples as the relative abundance for each
OTU. As the spectral methods have so far been developed con-
sidering consecutive time points sampled at regular intervals,
we choose to analyze only the eukaryotic OTUs, because the
bacterial data contain missing days across all OTUs. Further-
more, since our methods have been developed and tested on
synthetic data without zero abundances, we limit our analysis
to the N = 31 eukaryotic OTUs which are present on each
of the 93 days. As the total number of eukaryotic OTUs is
much larger than the considered subset, we expect that the
total coherence and the total magnitude of the CPSD should
not be adversely effected by the use of relative abundances.

We use the time series of the relative abundances of the
N = 31 eukaryotic OTUs to compute the four pairwise met-
rics as described in the previous sections: the equal-time
correlation C(0), its absolute value |C(0)|, the total magnitude
of the CPSD P , and the total coherence T C. Ideally, we would
like to compare the pairwise metrics with the elements of
the resource-utilization-overlap matrix GGᵀ. However, since
there is no a priori measurement or knowledge of the guild
structure in natural communities, we use phylogenetic dis-
tance as a proxy, following previous work [35]. The intuition
is that the closer the species are genetically, the more likely
they are to share the resources [36].

Comparing the pairwise metrics of the species abundances
and the pairwise phylogenetic distance [Fig. 7(a)], all four
pairwise metrics exhibit a weak negative correlation with the
phylogenetic distance, indicating that more closely related
taxa are more likely to share resource-utilization capabilities,
which is consistent with the literature [35,37]. After binning
the phylogenetic distances using regular intervals and com-
puting the mean and average of the pairwise metrics in each
bin, the trend in negative correlations becomes more visible
[Fig. 7(b), colored dots]. To examine whether this negative
correlation is statistically significant, we create a null model
by destroying any phylogenetic correlation by randomly shuf-
fling the indices of the OTUs before computing the pairwise
metrics. The randomization is performed 105 times to collect
statistics. As shown by the gray error bars in Fig. 7(c), the
null model results in flat pairwise metrics for all metrics, as
a function of the phylogenetic distance. At large phylogenetic
distances, the data and the index-shuffled null model return

the same mean and variance, as indicated by the overlaying
error bars in Fig. 7(c).

Among the four metrics, total coherence exhibits the
biggest difference between the data and the null model for
small phylogenetic distances, with a p value of 5 × 10−5 for
the test of the mean in the first bin against the index-shuffled
null model (see Sec. IV F for details). These results indicate
that even for data collected experimentally in nature, total
coherence works well in distinguishing structures in OTUs
sharing common resources.

With the pairwise metrics, now we can infer guild
structures among the N = 31 eukaryotic OTUs using single-
linkage clustering with a tunable threshold on the metrics
[Fig. S7(a) in Ref. [34]]. As there is no a priori knowledge of
how those eukaryotic OTUs share resources, i.e., no ground
truth to compare the guild structure to, we take the strategy
of comparing the inferred structures across the four pairwise
metrics. The threshold for each metric is selected such that
the resulting number of clusters, including singletons, is the
same for all four pairwise metrics (k = 13). The thresholded
connections can be found in Fig. S7(b) in Ref. [34].

As shown by Fig. 7(c), different metrics yield different
predicted guild structures. Clustering based on coherence
gives two nontrivial clusters that exclusively contain OTUs
of the same class, which does not occur for other metrics.
The equal-time correlation C(0) and its absolute value |C(0)|
return similar networks. Meanwhile, the total absolute CPSD
gives a different network with one giant component and many
singletons. This further suggests that the coherence metrics
provide a useful predictor of species functional relationships.

III. DISCUSSION

We have shown that by judicious analysis of abundance
dynamics data, one can reliably learn patterns of resource
competition in microbial communities. Our success emerged
from three key perspectives that distinguish this study from
prior work.

First, rather than attempting to infer effective interactions
between taxa such as those described by a Lotka-Volterra
framework [38], we focus on resource-mediated interactions.
Consumer resource models have been shown to quantitatively
predict abundance and resource dynamics in communities
[6,18]. Further, resource-explicit formalisms do not suffer
from the ambiguities of effective interactions, especially in
the context of microbial communities [39]. Moreover, the
resource-centric picture of communities naturally motivates
us to focus on coarse patterns of resource-utilization overlap,
which are empirically supported by the existence of guilds in
communities. Guilds allow us to simplify the problem from
trying to infer every interaction in a community to inferring
a lower-dimensional structure that aggregates strains together
by resource preferences.

Within this dynamic resource-centric picture, our second
key innovation was to move beyond simple correlations C(0)
by employing spectral methods that utilize full temporal in-
formation. Our method stands in contrast to covariance-based
approaches [19,20] that estimate covariance or inverse covari-
ance matrices to infer associations but do not utilize dynamics.
One exception is a recent study that employs temporal delays
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FIG. 7. Pairwise metrics of the relative abundances of marine eukaryotic OTUs correlate with phylogeny. (a) Relative abundance of the
marine eukaryotic OTUs (downsampled to N = 31; see the text for details) over 93 days. Each color represents one of the 31 OTUs. Data
are from [22]. (b) Scatterplot of pairwise metrics of relative abundance exhibiting a weak anticorrelation with the pairwise sequence distance
(Jukes-Cantor distance). Pairwise measures include the equal-time correlation C(0) and its absolute value |C(0)|, the total magnitude of the
CPSD, and the total coherence. Spearman’s rank correlation coefficient r and the p value are given in each panel. (c) Binned average of the
pairwise metrics vs pairwise sequence distances. Binning is taken at regular intervals of the sequence distance. The mean across each bin is
plotted with a cross symbol (connected with lines to guide the eye) and error bars give the standard deviation within each bin. Shown in gray
are the results from a randomized control, where the order of indices of eukaryotic OTUs are shuffled randomly (number of shuffles equal
to 105). The p value for the mean of the pairwise metrics in the first bin to be different from the index-shuffled null model is given in each
panel (see Sec. IV F for details). (d) Resource-overlap networks inferred using the four pairwise metrics, with threshold set to produce k = 13
clusters including singletons. The phylum and class of each OTU is given by the color and the shape of the node, respectively, and in the legend
with the format phylum;class.
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and Granger causality to infer associations [40]. Similarly,
spectral metrics (CPSD and coherence) provide a high-fidelity
picture of resource overlaps in communities by extracting
information from multiple temporal delays. We expect these
methods will prove powerful for inferring the structure in a
complex community where the acquisition of high-resolution
time series has become commonplace.

Finally, our spectral methods not only embrace but rely
on the inherently dynamic nature of the environment Rα (t ).
In contrast, time-series methods, including those based on
Lotka-Volterra models [41], often assume steady-state dy-
namics [42,43] (with notable exceptions [24,25]). However,
it is empirically clear that microbes live in environments that
are inherently dynamic [14]. One of the most striking pieces
of evidence of the importance of resource dynamics in the
microbial world is recent physiological work showing that
bacteria dynamically allocate cellular resources in a manner
that optimizes growth under changing environments but not
steady-state conditions [44,45]. Therefore, we regard the fact
that our method relies on resource-driven abundance dynam-
ics as an empirically motivated strength.

Using this approach, our analysis of eukaryotic microbial
dynamics in a high-resolution marine dataset showed promis-
ing results in two domains. First, we observed that spectral
methods outperform simple correlations in detecting statis-
tically significant resource overlap between phylogenetically
related taxa [Fig. 7(b)]. Second, it is enticing that these meth-
ods yield distinct network architectures from the same data
[Fig. 7(c)]. An important avenue for future work is to more
carefully vet the predicted associations from these metrics
with synthetic communities.

Despite these successes, there are important avenues for
improvement. First, as discussed above, at present, our
method does not naturally deal with missing time points, un-
even temporal sampling, or zeros in the data. It is an important
avenue for future work to merge these methods with recent
principled advances for handling zeros in amplicon sequenc-
ing data [46] or utilizing Lomb-Scargle periodogram methods
for unevenly sampled data [47].

Finally, our work complements recent efforts to infer
consumer-resource models or metabolic parameters directly
from sequencing and metabolomic data [6,16,48]. The method
of Goyal et al. [48] attempts to infer a much more de-
tailed resource-exchange network by using genomic and
metabolomic data to pinpoint actual cross-feeding interac-
tions. An exciting avenue for future work would be to combine
the sophisticated spectral methods developed here with more
explicit genomic or metabolomic datasets.

IV. METHODS

A. Initialization of parameters of ECRMs

For all system sizes, the parameters of the ECRM systems
are set as follows. The uptake rate for nonzero resource intake
is set to r = 0.1. The yield γiα is given, drawn from a Gaussian
distribution with mean 1 and standard deviation 1/6. Redraws
are performed to ensure all yields are non-negative. The death
rate of the species is set to dx = 0.3, while the depletion rate
of the resource is set to dR = 0.5. For sinusoidal drives, the

timescales of the environmental fluctuation ωα are chosen ran-
domly from a log-uniform distribution with a predetermined
range to represent the mixture of multiple timescales in a real
environment and to avoid resonance. The phase φα is chosen
from a uniform random distribution between 0 and 2π . For
OU environmental drives, due to their stochastic nature, we
can choose the intrinsic frequencies ωα to be the same for all
resources α.

B. Finite-size scaling in ECRMs

In order to bridge the toy model with a small number of
species and guilds with realistic ecological systems with large
numbers of species and guilds, we scale the parameters of the
ECRM given different system sizes. As we increase the num-
ber of species N , we want to also increase both the number
of guilds k and the number of species within each guild N/k.
Hence, we set the number of guilds k ∝ √

N . The number of
resources should also increase as M ∝ N . Setting the proba-
bility of species i to have a nonzero intake of its preferred re-
source as pin and the probability of species i to have a nonzero
intake of its nonpreferred resource as pout, we can compute
the expectation value of the average degree of each species
in the effective species-species interaction due to resource-
utilization overlap, the expectation value of (GGᵀ)i j , etc.

Case 1: Species i and j belong to the same guild. The
probability that there is no link between two species is equal
to the probability that there is no common resource between
the two, which is

P((GGᵀ)i j = 0) = (
1 − p2

in

)M/k(
1 − p2

out

)M(1−1/k)
. (16)

Case 2: Species i and j do not belong to the same guild.
The probability that there is no link is

P((GGᵀ)i j = 0) = (
1 − pin pout

)2M/k(
1 − p2

out

)M(1−2/k)
.

(17)
Given those two cases, the average degree for each node is

d = [
1 − (1 − p2

in)M/k
(
1 − p2

out

)M(1−1/k)](N

k
− 1

)

+ [
1 − (1 − pin pout)

2M/k
(
1 − p2

out

)M(1−2/k)]
N

(
1 − 1

k

)
.

(18)

For proper scaling, we want that, in the limit of large N , the
average degree d converges to a constant value. The choice of
pin ∝ N−1/2 and pout ∝ N−1 satisfies this condition, by ensur-
ing that the average degrees towards in-guild and out-of-guild
species are both finite. Notice that this scaling results in a
1/N scaling for both the expectation value and the variance
of elements of the GGᵀ matrix.

C. Initiating guild structure with guild-size variability

To introduce more realistic heterogeneity in the ECRMs,
we introduce a tuning parameter qN , which sets geometrically
spaced guild sizes Nk = qk−1

N N1 and
∑

Nk = N . Furthermore,
to allow variability in species abundance, especially across
different guilds, we introduce another tuning parameter qM ,
which accordingly adjusts the number of resources associ-
ated within each guild, again by setting a geometric series,
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where Mk = qk−1
M M1 and

∑
Mk + N = M. The Nk and Mk are

rounded up to the nearest integer. If the sum of the rounded
up number is smaller than the total number of species N , the
missing species is added to the largest guild. If the sum of the
rounded up number is greater than the total number of species
N , the additional species is subtracted from the smallest guild,
unless the smallest guild has only two species, in which case
the additional species is subtracted from the second smallest
guild such that the minimum size of each guild is 2.

To give intuition, if qN = 1, all guild sizes are equal. The
further qN is from 1, the greater the differences in guild sizes.
If qM = qN , then on average each species is exposed to the
same number of resources and the species are even.

D. Local measure of detectability

We introduce a local measure of detectability. More specif-
ically, for guild k, the true positive rate is the ratio between
the number of detected adjacency links between all species
present in guild k and the number of possible pairs, Nk (Nk −
1)/2. The guild-specific false positive rate is defined as the
probability to falsely classify a link between a species i in
guild k with a species j outside of guild k.

E. Measuring sequence distance in marine eukaryotic OTUs

To measure sequence distance, we first align the 18S eu-
karyotic rRNA sequences of the Nsub = 31 eukaryotic OTUs
using the multiple alignment program for amino acid or
nucleotide sequences [49]. Then the sequence distance is
computed for each pair of OTUs, using the built-in MATLAB

function seqpdist, namely, the Jukes-Cantor distance.

F. Statistical tests for binned pairwise metrics against
the index-shuffled null model

For analyzing the structure in the marine eukaryotic
OTU time-series data, we conduct statistical tests for the

binned pairwise metrics against the index-shuffled null model.
Specifically, we shuffle the index of species randomly and
then compute the pairwise measurements. This null model
preserves the set of all elements of the pairwise measures, but
destroys any association with the species relationships.

The statistical test conducted in Fig. 7(b) checks whether
the mean of the eight pairwise measurements in the first
bin are significantly larger than in the index-shuffled ran-
domization. We perform index shuffling 105 times. For each
randomization, we compute the mean in the first bin. We
compute the p value as the proportion of shuffling experiments
that yield a larger mean in the first bin than the observed
one.
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