
Quantifying selection in immune receptor repertoires
Yuval Elhanatia, Anand Muruganb, Curtis G. Callan, Jr.c,1, Thierry Morad, and Aleksandra M. Walczaka

aLaboratoire de Physique Théorique, Unité Mixte de Recherche 8549 and dLaboratoire de Physique Statistique, Unité Mixte de Recherche 8550, Centre
National de la Recherche Scientifique and École Normale Supérieure, 75005 Paris, France; bDepartment of Applied Physics, Stanford University, Stanford,
CA 94305; and cJoseph Henry Laboratories, Princeton University, Princeton, NJ 08544

Contributed by Curtis G. Callan, Jr., May 22, 2014 (sent for review April 15, 2014)

The efficient recognition of pathogens by the adaptive immune
system relies on the diversity of receptors displayed at the surface
of immune cells. T-cell receptor diversity results from an initial
random DNA editing process, called VDJ recombination, followed
by functional selection of cells according to the interaction of their
surface receptors with self and foreign antigenic peptides. Using
high-throughput sequence data from the β-chain of human T-cell
receptors, we infer factors that quantify the overall effect of se-
lection on the elements of receptor sequence composition: the
V and J gene choice and the length and amino acid composition
of the variable region. We find a significant correlation between
biases induced by VDJ recombination and our inferred selection
factors together with a reduction of diversity during selection.
Both effects suggest that natural selection acting on the recombi-
nation process has anticipated the selection pressures experienced
during somatic evolution. The inferred selection factors differ little
between donors or between naive and memory repertoires. The
number of sequences shared between donors is well-predicted by
our model, indicating a stochastic origin of such public sequences.
Our approach is based on a probabilistic maximum likelihood
method, which is necessary to disentangle the effects of selection
from biases inherent in the recombination process.
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The T-cell response of the adaptive immune system begins
when receptor proteins on the surface of these cells recog-

nize a pathogen peptide displayed by an antigen-presenting cell.
The immune cell repertoire of a given individual is comprised of
many clones, each with a distinct surface receptor. This diversity,
which is central to the ability of the immune system to defeat
pathogens, is initially created by a stochastic process of germline
DNA editing (called VDJ recombination) that gives each new
immune cell a unique surface receptor gene. This initial reper-
toire is subsequently modified by selective forces, including
nonpathogen-related thymic selection against excessive (or in-
sufficient) recognition of self proteins, which are also stochastic
in nature. Because of this stochasticity and the large T-cell di-
versity, these repertoires are best described by probability dis-
tributions. In this paper, we apply a probabilistic approach to
sequence data to obtain quantitative measures of the overall (not
necessarily pathogenic) selection pressures that shape T-cell
receptor repertoires.
New receptor genes are formed by randomly choosing alleles

from a set of genomic templates for the subregions (V, D, and J)
of the complete gene. Insertion and deletion of nucleotides in
the junctional regions between the V and D and D and J genes
greatly enhance diversity beyond pure VDJ combinatorics (1).
The most variable region of the gene is between the last amino
acids of the V segment and the beginning of the J segment; it
codes for the Complementarity Determining Region 3 (CDR3)
loop of the receptor protein, a region known to be functionally
important in recognition (2). Previous studies have shown that
immune cell receptors are not uniform in terms of VDJ gene
segment use (3–6) or probability of generation (1) and that
certain receptors are more likely than others to be shared by
different individuals (4, 7). The statistical properties of the

immune repertoire are, thus, rather complex, and their accurate
determination requires sophisticated methods.
Recent advances in sequencing technology have made it possible

to sample the T-cell receptor diversity of individual subjects in great
depth (8). The availability of such data has, in turn, led to the de-
velopment of sequence statistics-based approaches to the study of
immune cell diversity (9, 10). In particular, we recently quantitatively
characterized the preselection diversity of the human T-cell reper-
toire by learning the probabilistic rules of VDJ recombination from
out-of-frame DNA sequences that cannot be subject to functional
selection and whose statistics therefore reflect only the recombina-
tion process (1). After generation, T cells undergo a somatic selec-
tion process in the thymus (11) and later in the periphery (12). Cells
that pass thymic selection enter the peripheral repertoire as naive T
cells, and the subset of naive cells that eventually engage in an im-
mune response will survive as a long-lived memory pool. Although
we now understand the statistical properties of the initial repertoire
of immune receptors (1) and despite some theoretical studies of
thymic selection at the molecular level (13, 14), a quantitative un-
derstanding of how selection modifies those statistics to produce the
naive and memory repertoires is lacking.
In this paper, we build on our understanding of the pre-

selection distribution of T-cell receptors to derive a statistical
method for identifying and quantifying selection pressures in the
adaptive immune system. We apply this method to naive and
memory DNA sequences of human T-cell β-chains obtained
from peripheral blood samples of nine healthy individuals. Our
goal is to characterize the likelihood that any given sequence,
after it is generated, will survive selection for the ensemble of
properties needed to pass into the peripheral repertoire(s). Our
analysis reveals strong and reproducible signatures of selection
on specific amino acids in the CDR3 sequence and on the usage
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of V and J genes. Most strikingly, we find significant correlation
between the generation probability of a sequence and the prob-
ability that it will pass selection. This correlation suggests that
natural selection, which acts on very long timescales to shape the
generation mechanism itself, may have tuned it to anticipate so-
matic selection, which acts on single cells throughout the lifetime
of an individual. The quantitative features of selection inferred
from our model vary very little between donors, indicating that
these features are universal. In addition, our measures of selec-
tion pressure on the memory and naive repertoires are statistically
indistinguishable, consistent with the hypothesis that the memory
pool is a random subsample of the naive pool.

Analysis
We analyzed human CD4+ T-cell β-chain DNA sequence reads
(60- or 101-nucleotide long) centered around the CDR3 region.
T cells were obtained from nine individuals and sorted into naive
(CD45RO−) and memory (CD45RO+) subsets, yielding data-
sets of ∼200,000 unique naive and ∼120,000 unique memory
sequences per individual on average. The datasets are the same
as those used in ref. 1 and were obtained by previously described
methods (15, 16).
In ref. 1, we used the out-of-frame sequences to characterize

the receptor generation process. That analysis yielded an accurate
model for the probability Ppreð~σÞ that a VDJ recombination event
will produce a β-chain gene consistent with the sequence read ~σ
(for any ~σ). In this study, we focus instead on the in-frame se-
quences free of stop codons, with the goal of quantifying how their
probability of occurrence, Ppostð~σÞ, differs from the preselection
distribution Ppreð~σÞ. (We only consider the presence or absence
of a sequence ~σ and not the size of its clone.) Here, we distin-
guish between the read~σ and the entire β-chain sequence, which
is characterized uniquely by the V and J gene choices (denoted
by V and J) as well as the CDR3 region~τ; the latter is defined to
run from a conserved Cys near the end of the V segment to the
last amino acid of the read (we note that the last amino acid in
the read is separated from a conserved Phe in the J gene by two
variable amino acids). The CDR3 sequence ~τ can be uniquely
read off from each sequence read; by contrast, the V and J may
not be uniquely identifiable (because of the relatively short read
length). Because V and J may play a role in selection outside the
read ~σ, we must consider selection in terms of the full β-chain
ð~τ;V ; JÞ rather than the incomplete ~σ.
For each β-chain sequence ð~τ;V ; JÞ, we define a selection

factor Q = Ppost/Ppre that quantifies whether selection (thymic
selection or subsequent selection in the periphery) has enriched
or impoverished the frequency of that sequence compared with
the preselection ensemble. Because Ppre varies over many orders
of magnitude, such a relative enhancement factor is the only way
to define selection strength. Our goal is to find a model for Q,
such that the distribution Ppostð~τ;V ; JÞ=Qð~τ;V ; JÞPpreð~τ;V ; JÞ
gives a good account of an observed set of selected sequences.
We cannot directly estimate Ppostð~τ;V ; JÞ from the data, but as
we outline in Fig. 1A, we can use a reduced complexity model for
Q to infer it (and therefore Ppost) from the data. Specifically, we
will show that the following factorized model for Q captures the
main features of selection:

Q
�
~τ;V ; J

�
=
Ppost

�
~τ;V ; J

�

Ppre
�
~τ;V ; J

� =
1
Z
qLqVJ ∏

L

i=1
qi;LðaiÞ; [1]

where (a1, . . . , aL) is the amino acid sequence of the CDR3 (i.e.,
the translation of~τ), and L is its length. The factors qL, qi;L(a), and
qVJ denote selective pressures on the CDR3 length, its composi-
tion, and the associated VJ identities, respectively. Note that the D
segment is entirely included in this junctional region, and therefore,

selection acting on it is encoded in the qi;L factors. Z enforces the
model normalization condition

P
~τ;V ;JQð~τ;V ; JÞPpreð~τ;V ; JÞ= 1.

Because V and J cannot always be inferred deterministically
from the read ~σ, the V and J assignments of any given read will
have to be treated as probabilistically defined hidden variables. In
addition, because of correlations in Ppre, the q factors cannot be
identified with marginal enrichment factors [therefore, for exam-
ple, Pi;L,data(ai)/Pi;L,pre(ai) cannot be set equal to qi;L(ai)]. For these
reasons, we must use a maximum likelihood procedure to learn the
qL, qi;L, and qVJ factors of Eq. 1. We use an expectation maximi-
zation algorithm that iteratively modifies the q values until the
observed marginal frequencies—CDR3 length distribution, amino
acid usage as a function of CDR3 position, and VJ usage—in the
data match those implied by the model distribution in Eq. 1, with
the preselection distribution Ppre being taken as a fixed, known
input. The procedure is schematically depicted in Fig. 1B (full
details are in SI Appendix).
Our model for the selection factor Q assumes factorization on

a small set of sequence features with no interactions between
these features. This choice is in the same spirit as the classic
position weight matrix method for identifying transcription fac-
tor binding sites (17). We have verified that such interactions
are, in fact, not necessary to describe the data: Fig. 2B plots the
covariances of amino acid pairs as predicted by Ppost vs. the
observed values in the data, and SI Appendix, Fig. S10 displays
a similar comparison of the covariances of (V, J) with L on the
one hand and the (V, J) identity with amino acid choice on the
other hand. All of the pairwise correlations in the data are well-
predicted by the model, although Q does not model them di-
rectly. Nonzero pairwise correlations are, in fact, inherited from

A

B

Fig. 1. Graphical representation of our method. (A) T-cell receptor β-chain
sequences are formed during VDJ recombination. Sequences from this
probability distribution, described by Ppre, are then selected with a factor Q
defined for each sequence, resulting in the observed Ppost distribution of
receptor sequences. Selection is assumed to act independently on the V and J
genes, the length of the CDR3 region, and each of the amino acids, ai,
therein. (B) A schematic of the fitting procedure: the parameters are set so
that Ppost fits the marginal frequencies of amino acids at each position, the
distribution of CDR3 lengths, and VJ gene choices. Because the latter is not
known unambiguously from the observed sequences, it is estimated prob-
abilistically using the model itself in an iterative procedure.
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the preselection distribution, which has correlations of its own
(shown by the green points in Fig. 2B).
Another assumption of our model is that selection acts at the

level of the amino acid sequence, regardless of the underlying
codons. To test this, we learned more general models, where
a represented one of 61 possible codons instead of one of 20 aa.
We found that codons coding for the same residue had similar
selection factors (SI Appendix, Fig. S2), except near the edges of
the CDR3, where amino acids may actually come from genomic
V and J segments and reflect their codon biases.
To compare the different donors, we learned a distinct model

for each donor and cell type (memory or naive) as well as a uni-
versal model for all sequences of a given type from all donors
taken together (details are in SI Appendix). We also learned

models from random subsets of the sequence dataset to assess
the effects of low-number statistical noise.

Results
Characteristics of Selection and Repertoire Diversity. The length,
single-residue, and VJ selection factors, learned from the naive
datasets of all donors taken together, are presented in Fig. 2 A,
C, and D. The qL factor (Fig. 2A) simply reflects the substantial
reduction in variance in CDR3 lengths between the preselection
ensemble and the observed sequence datasets. The qVJ factor
shows that the different V and J genes are subject to a wide
range of selection factors (note that these factors act in addition
to the quite varied gene segment use probabilities in Ppre).
The position-dependent amino acid selection factors qi;L(a)
are also quite variable but have striking systematic features,
such as uniform suppression (or enhancement) away from the
CDR3 region boundaries. We looked for correlations between
the qi;L(a) factors and a variety of amino acid biochemical
properties (18): hydrophobicity, charge, pH, polarity, volume,
and propensities to be found in α- or β-structures in turns at the
surface of a binding interface, on the rim, or in the core (19)
(details in SI Appendix). We found no significant correlations,
except for a negative correlation with amino acid volume and
α-helix association as well as a positive correlation with the
propensities to be in turns or the core of an interacting complex
(SI Appendix, Fig. S7).
To estimate differences between datasets, we calculated the

correlation coefficients between the logs of the qVJ and qi;L(a)
selection factors (SI Appendix, Fig. S4). Comparing naive vs.
naive, memory vs. memory, or naive vs. memory between donors
(Fig. 3 A–C shows an example for qi;L, and SI Appendix, Fig. S3
shows an example for qVJ) gave correlation coefficients of ∼0.9
in log qi;L, whereas the naive vs. memory repertoires of the same
donor gave 0.95. To get a lower bound on small-number statis-
tical noise, we also compared the factors inferred from artificial
datasets obtained by randomly shuffling sequences between
donors (SI Appendix), yielding an average correlation coefficient
of 0.98. Repeating the analysis for log qVJ, we found correlation
coefficients of ∼0.8 between datasets of different donors and
0.84 for the naive and memory dataset of the same donor, all of
which must be compared with 0.94, which was obtained between
shuffled datasets. We also calculated Jensen–Shannon diver-
gences (SI Appendix) between the Ppost distributions of all donors
and found them to be small—0.07 bits on average. Thus, the
observed differences between donors of qi;L and qVJ are small
and consistent with their expected statistical variability.
We use Shannon entropy, S=−

P
τ;~V ;JPpostð~τ;V ; JÞ · log2

Ppostð~τ;V ; JÞ, to quantify the diversity of the naive and memory
distributions. Entropy is a diversity measure that accounts for
nonuniformity of the distribution, and it is additive in in-
dependent components. Because S= log2  Ω when there are Ω
equally likely outcomes, the diversity index 2S can be viewed as
an effective number of states. The entropy of the naive repertoire
according to the model is 38 bits (corresponding to a diversity
of ∼2.7·1011), which is down from 43.5 bits in the preselection
repertoire (Fig. 3D). The majority of this 5.5-bits (or 50-fold)
reduction in diversity comes from insertions and deletions, which
accounted for most of the diversity in the preselection repertoire.
The entropies of the memory and naive repertoires are the same,
indicating that selection in the periphery does not further reduce
diversity.
Knowing the postselection distribution of sequences, we can ask

how different features of the recombination scenario fare in the
face of selection. We do not mean to imply that somatic selection
acts on the scenarios themselves—it acts on the final product—but
it is an a posteriori assessment of the fitness of particular rear-
rangements. For example, the distributions of insertions at VD
and DJ junctions in the postselection ensemble have shorter tails
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Fig. 2. Characteristics of selection. (A) CDR3 length distributions pre- and
postselection and the length selection factor qL (green). Selection makes the
length distribution of CDR3 regions in the preselection repertoire more
peaked for the naive and memory repertoires (overlapping). Error bars show
standard deviation over nine individuals. (B) Comparison between data and
the model of the connected pairwise correlation functions, which were not
fitted by our model. The excellent agreement validates the inference pro-
cedure. As a control, the prediction from the preselection model (green)
does not agree with the data as well. (C) Values of the inferred amino acid
selection factors for each amino acid, ordered by length of the CDR3 region
(ordinate) and position in the region (abscissa). (D) Values of the VJ gene
selection factors.
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(Fig. 3 E and F), whereas the distribution of deletions at the
junctions seems little affected by selection (SI Appendix, Fig. S5),
although large numbers of deletions are selected against.

Selection Factor Q as a Measure of Fitness. The selection factor Q
is a proxy for the probability of an in-frame sequence after it
is generated by recombination to survive the different forms of
selection to which it is subjected: the proper folding of the T-cell
receptor (TCR) protein, appropriate binding to self peptides,
etc. One can think of Q as an intrinsic physical property of the
β-chain, and it is instructive to compare Q distributions of the
various sequence repertoires of interest: preselection model Ppre,
postselection model Ppost, and postselection observed sequences;
for each of these repertoires, we assign a Q value to each se-
quence using the inferred model and create Q-value histograms,
denoted by Ppre(Q), Ppost(Q), and Pdata(Q), respectively (SI Ap-
pendix, Eqs. S34–S37 shows details of the calculations).
We observe that the data sequences are enriched in large Q

values compared with preselection sequences (Fig. 4 A, Inset and
B, Inset), consistent with the interpretation of Q as a selection
factor. Furthermore, because the definition of Ppost implies that
Ppost(Q) = QPpre(Q), we expect Pdata(Q)/Ppre(Q) = Q if the se-
lection model accurately describes the data. This ratio is plotted
in Fig. 4, and we see that, for Q ≤ 5 (accounting for more than
91% of the data sequences), this ratio is, indeed, equal to Q,
whereas for Q > Qmax ∼ 7 (accounting for less than 3% of the
data sequences), the ratio plateaus. Thus, only the small pop-
ulation of high-Q (fittest) data sequences fails to satisfy this
stringent model prediction.
The approach of projecting genotypes onto a single pheno-

typic variable and using the distribution of that variable to

identify selection effects has previously been used to characterize
the fitness landscape of transcription factor binding sites (20, 21).
Although in that problem, the phenotypic variable, equivalent to
our log Q, is simply the binding affinity of the sequence to the
transcription factor, we have (so far) not been able to identify
a simple physical quantity linked to Q.
The high-Q plateau suggests that sequences with Q > Qmax all

have the same selective advantage within the resolution of the
model. We can use this line of reasoning to put bounds on the
probability for rearranged TCR sequences to pass selection. If
we assume that Q is proportional to the probability for sequence
ð~τ;V ; JÞ to be selected, then Pselð~τ;V ; JÞ= α Qð~τ;V ; JÞ. Because
Psel cannot exceed unity, Q cannot exceed α−1 or α<Q−1

max. The
mean probability that a sequence produced by VDJ rearrange-
ment will pass selection is

P
~τ;V ;JPpreð~τ;V ; JÞPselð~τ;V ; JÞ= α (as

follows from the normalization condition on Ppost). Thus, an
upper limit on the average fraction of rearranged TCRs to pass
selection is α<Q−1

max ’ 15%. This limit is consistent with existing
estimates (2) for passing positive and negative thymic selection:
10–30% for positive selection only and ∼5% for both together.
Our analysis only includes the β-chain, and including the α-chain
could further reduce our estimate.
The saturation phenomenon indicates that our model is too

coarse-grained to describe the very fit (high-Q) sequences. Be-
cause of its factorized structure, our model can only account for
the coarse features of selection and may not capture very
individual-specific traits, such as avoidance of self (corresponding
to Q � 1 in localized regions of the sequence space) or response
to pathogens (Q � 1 for particular sequences). This individual-
dependent ruggedness of the fitness landscape Q, schematized in
Fig. 4C, is probably ignored by our description and may be hard
to model in general. To check that the saturation does not affect
our inference procedure, we relearned our model parameters
from simulated data, where sequences were generated from Ppre
and then selected with probability min(Q/Qmax, 1) (details in SI
Appendix). We found that essentially the same model was re-
covered (SI Appendix, Fig. S6).
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of sequence-wide selection factors Q between the observed sequences and
the preselection ensemble (red line), plotted as a function of Q for (A) naive
and (B) memory repertoires. The model prediction Ppost(Q)/Ppre(Q) = Q is
shown in black, and the preselection and observed distributions of Q are
shown in Insets. The selection ratio saturates around approximately seven,
which may be interpreted as the maximum probability of being selected.
Naive and memory repertoires show similar behaviors. (C) A cartoon of the
effective selection landscape captured by our model (red line). Our method
does not capture localized selection pressures (such as avoiding self) specific
to each individual but captures general global properties.
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Natural Selection Anticipates Somatic Selection.Comparing the pre-
and postselection length distributions in Fig. 2A shows that the
CDR3 lengths that were the most probable to be produced by
recombination are also more likely to be selected. Formally, the
Spearman rank correlation coefficient between Ppre(L) and qL is
0.76, showing good correlation between the probability of a CDR3
length and the corresponding selection factor. We asked whether
this correlation was also present in the other sequence features.
The histogram of Spearman correlations between the selection
factors qi;L(a) and the preselection amino acid use Pi;L,pre(a) for
different lengths and positions (i, L) (Fig. 5A) shows a clear
majority of positive correlations. Likewise, the selection factors qVJ
are positively correlated with the preselection VJ use PVJ,pre (Spear-
man rank correlation = 0.3, P < 2·10−20).
The correlations observed for each particular feature of the

sequence (CDR3 length, amino acid composition, and VJ use)
combine to create a global correlation between the prob-
ability Ppreð~τ;V ; JÞ that a sequence ~τ;V ; J was generated by
recombination and its propensity Qð~τ;V ; JÞ to be selected
(Spearman rank correlation = 0.4, P = 0) (Fig. 5B). Consistent
with this observation, the postselection repertoire is enriched in
sequences that have a high probability to be produced by re-
combination (Fig. 5C). This enrichment is well-predicted by
the model, providing another validation of its predictions at the
sequence-wide level.
Taken together, these results suggest that the mechanism of VDJ

recombination has evolved to preferentially produce sequences that
are more likely to be selected by thymic or peripheral selection.

Shared Sequences Between Individuals. The observation of unique
sequences that are shared between different donors has sug-
gested that these sequences make up a public repertoire com-
mon to many individuals that is formed through convergent
evolution or a common source. However, it is also possible that
these common sequences are just statistically more frequent (6)
and likely to be randomly recombined in two individuals in-
dependently, as discussed by Venturi et al. (7, 22). In other

words, public sequences could just be chance events. Here, we
revisit this question by asking whether the number of observed
shared sequences between individuals is consistent with random
choice from our inferred sequence distribution Ppost.
We estimated the expected number of shared sequences be-

tween groups of donors in two ways: (i) by assuming that each
donor had its own private model learned from his own sequences
or (ii) by assuming that sequences are drawn from a universal
model learned from all sequences together (details on how these
estimates are obtained from the models are in SI Appendix).
Although the latter ignores small but perhaps, significant dif-
ferences between the donors, the former may exaggerate them
where statistics are poor. In Fig. 6A, we plot, for each pair of
donors, the expected number of shared nucleotide sequences in
their naive repertoires under assumptions i and ii vs. the observed
number. The number is well-predicted under both assumptions:
the universal model assumption gives a slight overestimate, and
the private model gives a slight underestimate. We repeat the
analysis for sequences that are observed to be common to at least
three or four donors (Fig. 6 B and C). The universal model pre-
dicts their number better than the private models, although it still
slightly overestimates it.
These results suggest that shared sequences are, indeed, the

result of pure chance. If that is so, shared sequences should have
a higher occurrence probability than average; specifically, the
model predicts that the sequences that are shared between at
least two donors are distributed according to P2

post (SI Appendix).
We test this prediction by plotting the distribution of Ppost for
regular sequences as well as pairwise-shared sequences according
to the model and in the naive datasets (Fig. 6D), and we
find excellent agreement. In general, sequences that are shared

A B

C

Fig. 5. Correlations between the pre- and postselection repertoires. (A)
A histogram of Spearman correlation coefficient (CC) values between the qi;

L(a) selection factors in the CDR3 region and their generation proba-
bilities Pi:L,pre(a) for all i, L shows an abundance of positive correlations.
(B) Heat map of the joint distribution of the preselection probability dis-
tribution Ppre and selection factors Q for each sequence shows that the two
quantities are correlated. (C) Sequences in the observed selected repertoire
(green line) had a higher probability to have been generated by re-
combination than unselected sequences (blue line). Agreement between the
postselection model (red line) and data distribution (green line) is a validation
of the model.
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Fig. 6. Shared sequences between individuals. (A) The mean number of
shared sequences between any pair of individuals compared with the
number expected by chance (model prediction) for one common model for
all individuals (red crosses) and private models learned independently for
each individual (blue crosses). Error bars are standard deviations from dis-
tributions over pairs. The distribution of shared sequences between (B) triplets
and (C) quadruplets of individuals for the data (black histogram) from com-
mon (red line) and private (blue line) models. (D) The shared sequences are
most likely to be generated and selected: comparison of the Ppost postselection
distribution for sequences from the preselection (dotted line) and post-
selection repertoires (according to the model in gray and the data in black) as
well as the sequences shared by at least two donors (model prediction in
magenta and data in red).
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between at least n individuals by chance should be distributed
according to Pn

post. For triplets and quadruplets, this model pre-
diction is not as well-verified (SI Appendix, Fig. S8). This dis-
crepancy may be explained by the fact that such sequences are
outliers with very high occurrence probabilities and may not
be well-captured by the model, which was learned on typical
sequences.
We repeated these analyses for sequences shared between the

memory repertoires of different individuals with very similar
conclusions, except for donors 2 and 3 and donors 2 and 7, who
shared many more sequences than expected by chance (SI Ap-
pendix, Fig. S9). We conclude that the vast majority of shared
sequences occurs by chance and is well-predicted by our model
of random recombination and selection.

Discussion
We have introduced and calculated a selection factor Qð~σÞ that
serves as a measure of selection acting on a given receptor se-
quence ~σ in the somatic evolution of the immune repertoire.
Using this measure, we show that the observed repertoires have
undergone significant selection starting from the initial reper-
toire produced by VDJ recombination.
We find little difference between the naive and memory rep-

ertoires, which is in agreement with recent findings showing no
correlation between TCR sequence and T-cell fate (23). We also
find little difference between the repertoires of different donors,
which is perhaps surprising, because the donors have distinct
HLA types and could, therefore, experience markedly different
selective pressures. Also, memory sequences have undergone ad-
ditional selection compared with the naive ones—pathogen recog-
nition—and could show different signatures of selection. A possible
interpretation of both findings is that our model only captures
coarse and universal features of selection related to the general
fitness of receptors and not fine-grained, individual-specific se-
lective pressures, such as avoidance of self, or recognition of
particular pathogen epitopes, as illustrated schematically in Fig.
4C. A strategy for incorporating these highly specific effects in
our analysis has yet to be defined. In other words, our selection
factors may smooth out the complex landscapes of specific rep-
ertoires and fail to capture individual-specific tall peaks or deep

valleys in the landscape of selection factors. To really probe these
fine-grained individual-specific details, we need to develop meth-
ods based on accurate sequence counts. Another interesting fu-
ture direction would be to see whether, at this global level, the
signatures of selection are similar between (relatively) isolated
populations. Lastly, comparing data from different species (mice
and fish), particularly where inbred individuals with the same
HLA type can be compared, would be an interesting avenue for
addressing these issues.
Our results suggest that natural selection has refined the VDJ

recombination process over evolutionary timescales to produce
a preselection repertoire that anticipates the downstream actions
of somatic selection: sequences that are likely to fail selection are
not very likely to be produced in the first place. Because of this
rich become richer effect, selection reduces the diversity of the
repertoire by a factor of 50 in terms of diversity index. This re-
duction in diversity does not mean that only 2% of the sequences
pass selection: our results are consistent with an acceptance ratio
as large as 15%. This paradoxical result is possible because se-
lection, by preferentially keeping clones that were more likely to
be generated, gets rid of the many rare clones that are re-
sponsible for the large initial sequence diversity. We do not have
a mechanistic understanding of how the VDJ recombination
process has evolved to achieve this result. Exploration of this
question would require an analysis of data on multiple species in
different environments.
To summarize, our work has provided the first, to our

knowledge, quantitative statistical description of the way that
thymic selection and later, peripheral selection modify the TCR
sequence repertoire that emerges from VDJ recombination.
These results provide a detailed characterization of the back-
ground against which one would have to work to detect sequence
signatures of more subtle selection effects, such as those asso-
ciated with autoimmunity and pathogen response.
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I. DATA

The DNA nucleotide data used in our analysis con-
sists of human CD4+ naive (CD45RO-) or memory
(CD45RO+) β chain sequences from 9 healthy indi-
viduals, sequenced and made available to us by H.
Robins and already used in [1]. Reads are 60 base
pair long for 6 donors and 101 base pair long for 3
donors (individuals 2, 3 and 7) and contain the CDR3
region and neighboring V and J gene nucleotides. All
end at the same position in the J gene, with four nu-
cleotides between this position and the first nucleotide
of the conserved phenylalanine. The data were divided
into out-of-frame reads (non-coding), used to learn the
pre-selection model as described in [1] and in-frame
(coding) reads used in the analysis presented in this
paper. The sequence data we used are available at
http://princeton.edu/~ccallan/TCRPaper/data/.

In our study we limit ourselves to unique sequences.
The experimental procedure and initial assessment of the
quality of the reads were done in the Robins lab following
the procedures described in [2, 3]. Each sequence was
read multiple times, allowing for the correction of most
sequencing errors. The numbers of unique sequences used
in each dataset is shown in Table SI.

Naive Memory

Donor 1 311917 177744

Donor 2 242254 135567

Donor 3 195007 119906

Donor 4 130958 142017

Donor 5 147848 32468

Donor 6 187245 104119

Donor 7 251335 136419

Donor 8 42326 120527

Donor 9 254349 89830

Table S I: Number of unique coding sequences in each
datasets.

The alignment to all possible V and J genes was done
using the curated datasets in the IMGT database [4].
There are 48 V genes, 2 D genes and 13 J genes plus a
number of pseudo V genes that cannot lead to a function-
ing receptor due to stop codons. We discarded sequences

∗

that were associated to a pseudo-gene as our model only
accounts for coding genes. The germline sequences of the
genes used in our analysis are the same as were used in
[1] to analyze the generative V(D)J recombination pro-
cess. The complete list of gene sequences can be found at
http://princeton.edu/~ccallan/TCRPaper/genes/.

II. PRE-SELECTION MODEL

The pre-selection, or generative model, assumes the
following structure for the probability distribution of re-
combination scenarios S [1]:

Ppre(S) =P (V )P (D,J)P (insVD)P (insDJ)

P (delV|V )P (dellD,delrD|D)P (delJ|J)

P (s1)P (s2|s1) · · ·P (sinsVD|sinsVD−1)

P (t1)P (t2|t1) · · ·P (tinsDJ|tinsDJ−1),

(1)

where a scenario is given by the VDJ choice, the
number of insertions insVD, insDJ and the num-
ber of deletions (delV,dellD), (delrD,delJ) at each
of the two junctions, together with the identi-
ties (s1, . . . , sinsVD),(t1, . . . , tinsDJ) of the inserted nu-
cleotides. It is worth noting that the insertions are as-
sumed to be independent of the identities of the genes
between which insertions are made. By contrast, the
deletion probabilities are allowed to depend on the iden-
tity of the gene being deleted. The validity of these as-
sumptions is verified a posteriori.

III. MODEL FITTING

A. Maximum likelihood formulation

The model probability to observe a given coding nu-
cleotide sequence is:

Ppost(~τ , V, J) = Q(~τ , V, J)Ppre(~τ , V, J), (2)

where ~τ = (τ1, . . . , τ3L) is the nucleotide sequence of the
CDR3 (defined as running from the conserved cysteine
in the V segment up to the last amino acid in the read,
leaving two amino acids between the last read amino acid
and the conserved phenylalanine in the J segment), L is
the length of the CDR3, and V and J index the choice
of the germline V and J segments (which completely de-
termine the sequence outside the CDR3 region). The D
segment is entirely absorved into ~τ , and is not explicitly

mailto:
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tracked in assessing selection. The selection factor Q is
assumed to take the following factorized form:

Q(~τ , V, J) =
1

Z
qL qV,J

L∏
i=1

qi;L(ai). (3)

where ~a = (a1, . . . , aL) is the amino-acid sequence of the
CDR3, and Z is a normalization constant that enforces∑

~τ,V,J

Ppost(~τ , V, J) = 1. (4)

The probability, Ppre(~τ , V, J), of generating a specific
sequence in a V(D)J recombination event can be ob-
tained from the noncoding sequence reads by the meth-
ods explained in [1]. Specifically, the pre-selection model
gives the probability Ppre(S) of a recombination scenario
S = (V,D, J, insVD, insDJ,delV, . . .) as given by Eq. 1.
A scenario S completely determines the sequence ~τ , but
the converse is not true. The pre-selection probability
for a coding sequence is thus given by

Ppre(~τ , V, J) =
1

pcoding

∑
S→(~τ,V,J)

Ppre(S) (5)

where we sum over scenarios resulting in a particular
CDR3 sequence ~τ and a particular V, J pair. The nor-
malization factor pcoding ≈ 0.26 corrects for the fact that
a randomly generated sequence is not always productive
(i.e. in-frame and with no stop codon). From this point
on, we regard the initial generation probability of any
specific read as known. When we make statements about
the pre-selection distribution of CDR3 properties, such as
length or amino acid utilization, they are derived from
synthetic repertoires drawn from the above pre-selection
distribution.

We want to infer the parameters qL, qV,J and qi;L(·) of
the model from the observed coding sequence repertoires.
Formally we want to maximize the likelihood of the data
given the model. Unfortunately the sequence reads from
the data are not long enough to fully specify the V and
J segments, so we cannot use Ppost(~τ , V, J) as our raw
likelihood. Instead, we need to write the probability of
observing a given (truncated) read ~σ, of length 60 or 101
nucleotides, depending on the donor:

Ppost(~σ) =
∑

(V,J,~τ)→~σ

Ppost(~τ , V, J). (6)

where we note again that (~τ , V, J) fully specifies ~σ, while
~σ fully specifies ~τ , but not V and J. Given a dataset of
N sequences, ~σ1, . . . , ~σN (see Fig. S1 for notations), the
likelihood reads:

L(Q) =

N∏
a=1

Ppost(~σ
a). (7)

Our goal is maximize L with respect to the parameters
qL, qV,J , and qi;L(·) (globally refered to as Q).

a
CDR3

sequence read (60 or 100 nt)

. . .

V J

data sequences

generated sequences (V and J are known)

ξM

ξ1

1

N

. . .

1

M

V1

VM

J 1

J M

1

N

Fig. S 1: Summary of the notations used in this paper for the
sequences. The CDR3 region is defined from the conserved
cysteine around the end of the V segment to the last amino-
acid in the read, leaving two amino acids to the conserved
phenylalanine in the J segment. The nucleotides in the read
are defined as σi, the nucleotides in the CDR3 region as τi
and the amino acids in the CDR3 region as ai. The data
sequences therefore can be defined in terms of ~σ, or their V ,
J genes and ~τ . The generated sequences, with known V and

J genes, are defined in terms of ~ξ for the whole sequence or ~ρ
for only the CDR3.

B. Expectation maximization

Calculating Ppost(~σ) is computationally intensive.
Given the form of the model, it seems more natural
to work with Ppost(~τ , V, J), but this likelihood involves
the “hidden” variables V and J . To circumvent this
problem, we use the expectation maximization algorithm
[5, 6]. This algorithm uses an iterative two-step process,
with two sets of model parameters Q and Q′. The log-
likelihood of the data is calculated using the set of param-
eters Q′; in the “Expectation” step, this log-likelihood is
averaged over the hidden variables with their posterior
probabilities, which are calculated using the second set
of parameters Q. In the “Maximization” step, this av-
erage log-likelihood is maximized over the first set Q′,
while keeping the second set Q fixed. Then Q is updated
to the optimal value of Q′, and the two steps are repeated
iteratively until convergence.

In practice, starting with a test set of parameters Q,
we calculate, for each sequence of the data, the posterior
probability of a (V, J) pair:

Ppost(Va, Ja|~σa) =
Q(~τa, Va, Ja)Ppre(~τ

a, Va, Ja)∑
V,J Q(~τa, V, J)Ppre(~τa, V, J)

. (8)

The log-likelihood, expressed in terms of the hidden vari-
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ables V and J , is maximized after averaging over V and
J using that posterior. Specifically we will maximize:

L̂(Q′|Q) =

N∑
a=1

〈logPpost(~τ
a, Va, Ja;Q′)〉Q

≡
N∑
a=1

∑
V a,Ja

Ppost(Va, Ja|~σa;Q) logPpost(~τ
a, Va, Ja;Q′).

(9)

Here we have added the Q dependencies explicitly be-
cause there are two different parameter sets Q and
Q′. The maximization is performed over Q′, which
parametrizes the log-likelihood itself, while keeping Q,
which parametrizes how the average is done over the hid-
den variables, constant. After each maximization step we
substitute:

Q← argmaxQ′L̂(Q′|Q), (10)

and iterate until convergence. This procedure is guaran-
teed to find a local maximum of the likelihood L(Q).

C. Equivalence with fitting marginal probabilities

The expectation-maximization step can be simplified
by noting that at the maximum, derivatives vanish:

∂L̂(Q′|Q)

∂Q′
= 0. (11)

Precisely, we take derivatives with each of the param-
eters, qL, qV J etc. and set them to zero. Since
Ppost(~τ , V, J) is naturally factorized in the Q parameters,

we obtain simple expressions, e.g. ∂L̂/∂ log q′L = 0 gives:

N∑
a=1

∑
V a,Ja

Ppost(Va, Ja|~σa;Q)

(
δLa,L −

∂ logZ

∂ log q′L

)
= 0,

(12)
where δa,b is Kronecker’s delta function. The term in the
sum gives the total number of sequences in the data with
length L. Besides we have:

∂ logZ

∂ log q′L
=
∑
~τ,V,J

δL(~τ),LPpost(~τ , V, J ;Q′) = Ppost(L;Q′).

(13)
Hence the maximality condition simply becomes:

Pdata(L) = Ppost(L;Q′), (14)

i.e. that the length distribution of the model must be
equal to that of the data. Similarly, maximizing with
respect to qi;L(ai) entails that single amino-acid frequen-
cies at a given position are matched between data and
model:

Pi;L,data(ai) = Pi;L,post(ai;Q
′). (15)

The condition for qV J is slightly different, because we do
not directly have the frequencies of V and J in the data.
This is replaced by their expected frequency under the
posterior Ppost(Va, Ja|~σa) taken with parameters Q:

1

N

N∑
a=1

Ppost(V, J |~σa;Q) = Ppost(V, J ;Q′), (16)

where again the left-hand side is the empirical distribu-
tion of V and J (indirectly estimated with the help of the
model with parameters Q), and the right-hand side is the
model distribution of the same quantities (estimated with
parameters Q′, which are then varied to achieve equal-
ity with the data estimate). The approach of iteratively
adjusting model parameters to match a corresponding
set of data marginals is a conceptually clear and com-
putationally effective implementation of the expectation
maximization algorithm.

D. Gauge

As defined above, the model is degenerate: for each
i, L, the factors qi;L(a) and Z may be multiplied by a
common constant without affecting the model. We need
to fix a convention, or gauge, to lift this degeneracy. We
impose that, for each i, L:

20∑
a=1

Pi;L,pre(a)qi;L(a) = 1. (17)

where Pi;L,pre(a) is the probability of having amino-acid
a at position i in CDR3s of length L.

E. Numerical implementation

To solve the fitting equations (14)-(16) in practice, we
use a gradient descent algorithm:

qL ← qL + ε [Pdata(L)− Ppost(L;Q′)] , (18)

and similarly for qi;L and qV J . To do this, we
must be able to calculate the marginals Ppost(L;Q′),
Pi;L,post(ai;Q

′) and Ppost(V, J ;Q′) from the model at
each step.

This leaves us with the problem of estimating
marginals in the model, which we do using importance
sampling. Although it is easy to sample sequences from
Ppre by picking a random recombination scenario, sam-
pling from Ppost = QPpre is much harder, as the qi;L, qL
and qV J factors introduce complex dependencies between
the different features of the recombination scenario. To
overcome this issue, we sample a large number M of
(~τ , V, J) triplets from Ppre(~τ , V, J), and, when estimating
Ppost expectation values, weight the contribution of each
sequence with its Q(~τ , V, J) value (this is a particularly
simple instance of importance sampling). The generated
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Fig. S 2: The qi;L(a) selection factors learned for codons (red crosses) agree with those learned for amino acids (blue). The
qi;L(a) are plotted for each position in the CDR3 region (panels from 1 to 12) for naive CDR3 sequences of length 12, as a
function of the amino acids at each position. A given amino acid at a given position can come from different codons, which are
marked by multiple crosses at that position. Codons or amino acids for which there was not enough data to infer the selection
factors are not represented.
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Fig. S 3: The scatter of VJ gene selection factors qV J between donors A and B for naive (A) and memory repertoires (B),
as well as between the memory and naive repertoires of the same individual (C) shows that the memory and naive repertoires
are statistically similar to each other and across individuals. See Fig. S4 for the correlation analysis of all individuals and cell
types.
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Fig. S 4: Correlation coefficients between selection factors
obtained for models learned for different donors and cell type
(naive and memory). The compared factors are the amino-
acid selection factors qi;L (A) and the VJ gene selection fac-
tors qV J (B). Each position along the two axes in each plot
corresponds to a different individual. The naive dataset of
donor 8, and the memory dataset of donor 5 were removed
because of too low statistics. In all heat maps, the x and y
axes correspond to different donors (1-7;9 for naive, 1-4;6-9
for memory, and 1,2,3,4,6,7,9 for comparison between naive
and memory).

triplets are denoted by [(~ρ1, V1, J1), . . . , (~ρM , VM , JM )],

and the corresponding reads by (~ξ1, . . . , ~ξM ) (see Fig. S1
for notations). The marginal probability distribution of
lengths, for instance, is estimated by

Ppost(L;Q′) ≈
∑M
b=1 δLb,LQ

′(~ρb, Vb, Jb)∑M
b=1Q

′(~ρb, Vb, Jb)
. (19)

and similar expressions give estimates of Pi;L,post(ai;Q
′)

and Ppost(V, J ;Q′). Since we are optimizing over Q′, the
sequences (~ρb, Vb, Jb) can be generated once and for all at
the beginning of the algorithm. Then the marginal prob-
abilities are updated according to the modified Q′ using
Eq. 19. Finally, the normalization constant is evaluated
by calculating:

Z ≈ 1

M

M∑
b=1

qLb
qVbJb

Lb∏
i=1

qi;Lb
(abi ). (20)

so that

∑
~τ,V,J

Ppost(~τ , V, J) ≈ 1

M

M∑
b=1

Q(~ρb, Vb, Jb) = 1. (21)
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Fig. S 5: The effects of selection on deletion profiles. Distri-
bution of V (A), D left-hand side (B), D right-hand side (C),
and J (D) deletions in the pre-selected (black lin e), naive
(colored line) and memory (gray dashed line) repertoires. Er-
ror bars show standard deviation over 9 individuals. Results
using 9 separate models learned for each of the individuals.
The deletion distributions for the memory repertoire are the
same as for the naive repertoire. Selection has a slight effect
on favoring distributions with non-extreme deletion values of
deletions for V and J deletions, and does not have a signifi-
cant effect on D deletions.

F. Equivalence with minimum discriminatory
information

The principle of minimum discriminatory information
is to look for a distribution that reproduces exactly some
mean observables of the data, such as position-dependent
amino-acid frequencies, while being minimally biased
with respect to some background distribution. When
the background distribution is uniform, this principle is
equivalent to the principle of maximum entropy.

Taking Ppre as our background distribution, assume
we are looking for the distribution Ppost that satisfies
Eqs. (14)-(16) while minimizing the divergence or relative
entropy with respect to Ppre, defined as:

DKL(Ppost‖Ppre) =
∑
~τ,V,J

Ppost(~τ , V, J) log
Ppost(~τ , V, J)

Ppre(~τ , V, J)
.

(22)

Solving this problem is mathematically equivalent
to solving the maximum likelihood problem described
above.

We present the values of these minimized DKL diver-
gences for each donor in Table II.
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DKL

Donor 1 0.9646

Donor 2 0.9598

Donor 3 0.9945

Donor 4 0.9664

Donor 5 0.9402

Donor 6 0.9999

Donor 7 1.0195

Donor 8 1.1730

Donor 9 1.0831

Universal Donor 0.9175

Table S II: Kullback-Leibler divergence between the pre and
post-selection distributions (see Eq. 22).

IV. INDIVIDUAL, UNIVERSAL AND
SHUFFLED DONORS

We partition the data in three different ways to learn
the model. First, we learn a distinct model for each
donor, and for each of the naive and memory pools. For
each donor, we have a distinct Ppre learned from the out-
of-frame sequences of that donor (although in fact they
differ little from donor to donor as discussed in [1]). Sec-
ond, we pool all the sequences of a given type (naive
or memory) from all nine donors together, and learn a
“universal” or average model. For this we use a mean
Ppre averaged over all nine donors, and then learn Q us-
ing all sequences. Third, to assess the effect of finite-size
sampling in the universal model, we partition the data
from all donors into nine random subsamples of equal
sizes. This way we can estimate how much variability
one should expect from just sampling noise.

V. SELF-CONSISTENCY OF THE MODEL

We check the self-consistency of the assumption that
Q has a factorized form by calculating the covariances
between the different sequence features (V, J), L and
(a1, . . . , aL). We plot the model predictions for these co-
variances against the same quantities calculated from the
data (Fig. 2B of the main text and Fig. S10). We observe
a very good agreement, which validates the factorization
assumption.

VI. ENTROPY, DISTRIBUTIONS OF Ppre, Ppost

AND Q

To estimate global statistics, such as entropy, from the

model, we draw a large set of sequences (~ξ1, . . . , . . . , ~ξM )
from Ppre, and weight them according to the inferred
(normalized) Q values. Specifically, for each generated
sequence, we estimate its primitive generation probabil-

ity by summing over all the possible scenarios that could
have given rise to it:

Ppre(~ξ
b) =

1

pcoding

∑
S→ξb

Ppre(S) (23)

where ~ξb is the full nucleotide sequence, including the
CDR3 ~ρb as well as the Vb and Jb segments. The entropy
(in bits) of the selected sequence repertoire is defined as

H[Ppost] = −
∑
~σ

Ppost(~σ) log2 Ppost(~σ) (24)

and, to include selection effects, we estimate it by

H[Ppost] ≈ −
1

M

M∑
b=1

Q(~ρb, Vb, Jb) log
[
Q(~ρb, Vb, Jb)Ppre(~ξ

b)
]
.

(25)
The difference in the entropies of the pre- and post-

selection repertoires for each donor (∼ 5.5 bits) can be
linked to this Kullback-Leibler divergence by the follow-
ing relation:

Spre − Spost =

DKL(Ppost‖Ppre) + 〈(Q− 1) log2 Ppre〉pre,

where 〈· · ·〉pre denotes an average over the
pre-selection ensemble Ppre, approximated by
((~ρ1, V1, J1), . . . , (~ρM , VM , JM )).

The Kullback-Leibler divergence (≈ 1 bit, see Table
SII) is much smaller than the difference of entropies be-
tween the distributions (≈ 4.5 bits, see main text). Eq. 26
allows us to interpret that the main reduction in entropy
can be attributed to the fact that selection simply ampli-
fies the characteristics of the pre-selection distribution
(as discussed in the “Natural selection anticipates so-
matic selection” section in the main text). This is ev-
idenced by the strong correlation between Q and Ppre

(Fig. 5B of the main text) which results in the second
term in Eq. 26 being the main contribution to entropy
reduction.

The distributions of Ppre, Ppost and Q over the selected
sequences are determined from the same draw of M se-
quences from Ppre, weighted by the normalized selection
factors Q. For example the distribution of logPpre is:

P(logPpre) ≈
1

M

M∑
b=1

Q(~ρb, Vb, Jb)δ
[
logPpre − logPpre(~ξ

b)
]
.

(26)
Marginal distributions over pairs of amino-acids

(ai, aj) at two positions i and j can also be calculated
using the ~ρb sequences and weighting them with Q. This
can be generalized to arbitrary marginals or statistics.

VII. SHARED SEQUENCES

The number of shared sequences in a subset of donors
is counted based on the nucleotide sequences. This em-
pirical number can then be compared to two kinds of
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Fig. S 6: The saturation of the Pdata(Q)/Ppre(Q) ratio
does not affect the inference of the model. We simulated
a dataset from Ppre and selected sequences with probability
min[Q(~σ)/7, 1]. The plot compares the qi;L(a) selection fac-
tors directly inferred from data (ordinate) to values inferred
from such simulated data (blue dots: simulation). The scat-
ter in these points is compared to the scatter obtained from
learning the selection factors using a random subset of the
data (red dots: sample). The size of the points denotes the
probability Pi;l,data(a) in the data repertoire.

theoretical predictions. Either by assuming that the se-
quences of each donor were generated and selected by a

“private” model P
(α)
post, where α denotes the donor, i.e. a

model inferred from the sequences of donor α; or by as-
suming that sequences were generated and selected by a

“common” or universal model P
(u)
post inferred from all se-

quences together. The latter is justified by the fact that
differences between private models are small, and could
reflect spurious noise that would exaggerate differences
between individuals.

If we assume private models, the expected number of
shared sequences between donors α and β is:

NαNβ
∑
~σ

P
(α)
post(~σ)P

(β)
post(~σ), (27)

where Nα and Nβ are the numbers of sequences in each
donor dataset. To estimate that number, we collect se-
quences that are shared between the generated datasets

{~ξa} of two (or more) donors, and reweight them by Q:

NαNβ
MαMβ

∑
(~ρ,V,J)∈α∩β

Q(α)(~ρ, V, J)Q(β)(~ρ, V, J), (28)

where Mα and Mβ are the number of generated sequences
for each donor model, and where the sum is over the se-

quences found in the {~ξa} dataset of both donors. Similar
equations are used for comparing more than two donors.

If we assume a common model, the expected number
of shared sequences reads:

NαNβ
∑
~σ

[P
(u)
post(~σ)]2. (29)

This can be estimated by:

NαNβ
M

M∑
b=1

P (u)
pre (~ξb)[Q(u)(~ρb, Vb, Jb)]

2, (30)

where {~ξa} are sequences generated from the mean VDJ

recombination model P
(u)
pre . Similarly, the number of

shared sequences between a triplet of donors α, β, γ is:

NαNβNγ
M

M∑
b=1

[P (u)
pre (~ξb)]2[Q(u)(~ρb, Vb, Jb)]

3, (31)

and likewise for quadruplets and more.
The expected numbers of shared sequences calculated

above are averages. Their distribution is given by a Pois-
son distribution of the same mean. We use these Pois-
son distribution to estimate the error bars in Fig. 6A of
the main text and S9A, as well as the distributions in
Fig. 6B-C and S9B-C.

If we assume a common model, sequences that are
shared between at least n individuals are distributed ac-
cording to ∝ [P

(u)
post]

n. To explore the statistics of these

sequences, we take our ~ρb sequences generated from P
(u)
pre

and weigh them with [P
(u)
pre (~ρb)]n−1[Q(u)(~ρb)]n. For ex-

ample, to estimate the distribution of logPpost in shared
sequences as in Fig. 6D of the main text (for pairs), and
Fig. S8 (for triplets and quadruplets), we calculate:

P(logPpost) ≈
1

M

M∑
b=1

[P (u)
pre (~ξb)]n−1[Q(u)(~ρb, Vb, Jb)]

n

× δ
[
logPpost − logP

(u)
post(

~ξb)
]
.

(32)

Sampling from shared sequences is equivalent to sam-
pling from the high-probability, large deviation regime of
the distribution. This statement can be made more phys-
ically intuitive by rewriting Ppost as a Boltzmann distri-

bution e−E/T with T = 1 and E = − logPpost. Consider-
ing sequences observed in at least n donors, is equivalent
to sampling from (1/Z(n))e−nE (where Z(n) is a normal-
isation constant), i.e. the Boltzmann distribution with
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A. CC [q i ;L(a) , alpha (a) ]

A 1.29 L 1.30
R 0.96 K 1.23
N 0.90 M 1.47
D 1.04 F 1.07
C 1.11 P 0.52
Q 1.27 S 0.82
E 1.44 T 0.82
G 0.56 W 0.99
H 1.22 Y 0.72
I 0.97 V 0.91

B. CC [q i ;L(a) , beta (a) ]

A 0.90 L 1.02
R 0.99 K 0.77
N 0.76 M 0.97
D 0.72 F 1.32
C 0.74 P 0.64
Q 0.80 S 0.95
E 0.75 T 1.21
G 0.92 W 1.14
H 1.08 Y 1.25
I 1.45 V 1.49

C. CC [q i ;L(a) , turn (a) ]

A 0.78 L 0.59
R 0.88 K 0.96
N 1.28 M 0.39
D 1.41 F 0.58
C 0.80 P 1.91
Q 0.97 S 1.33
E 1.00 T 1.03
G 1.64 W 0.75
H 0.69 Y 1.05
I 0.51 V 0.47

D. CC [q i ;L(a) , surface(a) ]

A 0.065 L 0.063
R 0.059 K 0.080
N 0.053 M 0.016
D 0.074 F 0.029
C 0.015 P 0.054
Q 0.051 S 0.071
E 0.089 T 0.065
G 0.070 W 0.012
H 0.025 Y 0.033
I 0.035 V 0.048

E. CC [q i ;L(a) , rim (a) ]

A 0.047 L 0.052
R 0.068 K 0.105
N 0.062 M 0.017
D 0.071 F 0.021
C 0.015 P 0.052
Q 0.053 S 0.072
E 0.094 T 0.064
G 0.071 W 0.007
H 0.022 Y 0.032
I 0.032 V 0.048

F. CC [q i ;L(a) , core (a) ]

A 0.049 L 0.078
R 0.066 K 0.050
N 0.058 M 0.027
D 0.051 F 0.051
C 0.020 P 0.051
Q 0.051 S 0.057
E 0.051 T 0.064
G 0.060 W 0.022
H 0.034 Y 0.070
I 0.047 V 0.049

Fr
ac

tio
n 

of
 p

os
iti

on
s

G. CC [q i ;L(a) , charge(a) ]

A 0 L 0
R 1 K 1
N 0 M 0
D - 1 F 0
C 0 P 0
Q 0 S 0
E - 1 T 0
G 0 W 0
H 0 Y 0
I 0 V 0

H. CC [q i ;L(a) , pH (a) ]

A 0 L 0
R 2 K 2
N 0 M 0
D - 2 F 0
C - 2 P 0
Q 1 S - 1
E - 2 T - 1
G 0 W 1
H 1 Y - 1
I 0 V 0

−0.5 0 0.5

I. CC [q i ;L(a) , polar (a) ]

A 0 L 0
R 1 K 1
N 1 M 0
D 1 F 0
C 0 P 0
Q 1 S 1
E 1 T 0
G 0 W 1
H 1 Y 1
I 0 V 0

−0.5 0 0.5

J. CC [q i ;L(a) , hydrop(a) ]

A 1.8 L 3.8
R - 4.5 K - 3.9
N - 3.5 M 1.9
D - 3.5 F 2.8
C 2.5 P - 1.6
Q - 3.5 S - 0.8
E - 3.5 T - 0.7
G - 0.4 W - 0.9
H - 3.2 Y - 1.3
I 4.5 V 4.2

−0.5 0 0.5
Spearman’s correlation

K. CC [q i ;L(a) , volume(a) ]

A 67 L 124
R 148 K 135
N 96 M 124
D 91 F 135
C 86 P 90
Q 114 S 73
E 109 T 93
G 48 W 163
H 118 Y 141
I 124 V 105

Fig. S 7: Correlation of the qi;L selection factors with several biochemical properties. Each panel shows the histogram, over
all positions and lengths, of Spearman’s correlation coefficient between the qi;L(a) values for a given amino acid and the
biochemical properties of that amino acid. The following biochemical properties are considered (from left to right, top to
bottom): preference to appear in alpha helices (A), beta sheets (B), turns (C) (source for (A-C): Table 3.3 [7]). Residues that
are exposed to solvent in protein-protein complexes (following definitions and data from [8], specifically Fig. S6 in the SI) are
divided intothree groups: surface (interface) residues that have unchanged accessibility area when the interaction partner is
present (D), rim (interface) residues that have changed accessibility area, but no atoms with zero accessibility in the complex
(E) and core (interface) residues that have changed accessibility area and at least one atom with zero accessibility in the
complex (F). Rim residues roughly correspond to the periphery of the interface region, and core residues correspond to the
center. Finally we plot the basic biochemical amino acid properties (source: http://en.wikipedia.org/wiki/Amino acid

and http://en.wikipedia.org/wiki/Proteinogenic amino acid): charge (G), pH (H), polarity (I), hydrophobicity (J) and
volume (K). For all properties the actual numerical values used to calculate the correlations are listed in the inset tables. We
see a positive correlation trend with turns and core residues and a negative correlation trend with the preference of amino acids
to appear in alpha helices and volume.
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Fig. S 8: Model prediction (magenta) and observed (red)
distributions of Ppost in the naive sequences that are shared
between at least three (left) or four (right) donors. The model
discrepancy may be attributed to its failure to capture the
very highly probable sequences.
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Fig. S 9: Comparison between data and model for the number
of shared sequences in the memory repertoires, in pairs (A),
triplets (B) and quadruplets (C) of individuals.

T = 1/n. Sequences shared between more and more indi-
viduals correspond to lower and lower temperatures, and
thus lower energies and higher probabilities. In the low
temperature regime, the roughness of the landscape de-
picted in Fig. 4C of the main text is starting to become
important, and may not be well captured by our model,
as suggested by Fig. S8.

VIII. CODON MODEL

It is reasonable to assume that selection acts on the
protein structure, at the amino acid level. But each
amino acid can be obtained using a number of differ-

ent codons, which could in principle each have a differ-
ent selection factor. We checked the robustness of our
selection coefficients by learning an alternative model in
which selection acts on codons. We present the results of
this alternative codon model in Fig. S2 on the example
of CDR3 sequences of length 12. We show the qi;L(a)
selection factors at each position for each amino acid,
and compare them to the selection factors obtained for
the codons coding for that amino acid. We see that, es-
pecially in the bulk of the CDR3 sequence, selection at
the level of codons or amino acids are equivalent, prov-
ing the generality of our approach. We observe a very
slight correlation between the discrepancies of the selec-
tion factors learned for the codon and amino acid mod-
els (log(qcodoni:L (a))− log(qaai:L(a))) and the G/C content of
these codons for amino acids at position 3 from the initial
cysteine (correlation coefficient of 0.09 calculated with a
p-value of 0.04) and the last position before the J primer
(correlation coefficient of 0.1 calculated with a p-value of
0.01).

IX. ADDITIONAL EFFECTS OF SELECTION
ON REPERTOIRE PROPERTIES

In the main text we present several repertoire prop-
erties, such as insertion profiles and comparisons of
the qi;L(a) selection factors between naive and memory
repertoires. In Fig. S5 we plot the deletion profiles for
V , J and D-lefthand side and D-righthand side dele-
tions, comparing the distributions for the pre-selection,
naive and memory repertoires. We note that the deletion
profiles for the V and J distributions are more peaked,
favoring intermediate deletion values. However the D
distributions are little affected by selection. Similarly to
the case of insertion distributions shown in the main text
in Fig. 3E-F, the naive and memory distributions appear
indistinguishable within the error bars.

In Fig. 3A-C of the main text, the selection factors
qi;L(a) acting on amino acids are compared between in-
dividuals and cell type. Similarly, the selection factors
acting on the genes qV J are statistically indistinguish-
able between the memory and naive repertoires for one
individual, compared to the variability between the naive
(or memory) repertoires taken from two sample individ-
uals (see Fig. S3).

To compare the repertoires of individuals as well as
the naive and memory repertoires with each other, we
consider the correlation coefficients between the selec-
tion factors log qi;L, and between the VJ gene selection
factor log qV J , of different individuals (Fig. S4). Correla-
tions between memory and naive repertoires are similar
to those between naive-naive or memory-memory reper-
toires for different individuals; all are a bit smaller than
the correlations between the artificial, shuffled sequence
datasets, where the discrepancy is entirely attributable
to statistical noise. These observations lead us to the
conclusion that at this level of description, the selection
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Fig. S 10: Comparison of the covariances between the model
and data between (V, J) and L (top) and (V, J) and ai given
L on the other hand (bottom). The model, which assumes
that the selection factors factorize, predicts the observed co-
variances well, thus validating this factorization assumption.

processes that shape the memory and naive repertoires
are very similar with each other and between different
individuals.

We also calculated the Jensen-Shannon divergence

JS(P
(α)
post, P

(β)
post) between individual models, where the JS

divergence between two distributions P and Q is defined
as:

JS(P,Q) =
1

2

∑
x

P (x) log
P (x)

M(x)
+

1

2

∑
x

Q(x) log
Q(x)

M(x)

(33)
with M(x) = 1

2 [P (x) +Q(x)]. This measure is preferable
to the Kullback-Leibler divergence because it is symmet-
ric. The values of this divergence for all pairs of donors
are shown in Table SIII.

1 2 3 4 5 6 7 8

2 0.02

3 0.11 0.11

4 0.03 0.03 0.10

5 0.07 0.07 0.13 0.07

6 0.03 0.03 0.10 0.04 0.05

7 0.03 0.03 0.12 0.03 0.08 0.04

8 0.08 0.07 0.14 0.07 0.12 0.07 0.08

9 0.07 0.08 0.15 0.07 0.11 0.07 0.06 0.13

Table S III: Jensen-Shannon divergence between the Ppost dis-
tributions for each donor.

X. SATURATION OF THE SELECTION RATIO

We consider distributions of the selection factor Q in
the pre-selection ensemble Ppre(Q), in the post-selection
ensemble according to the model Ppost(Q), and in the ac-
tual data sequences Pdata(Q). These three distributions
are formally defined as:

Ppre(Q) =
1

M

M∑
b=1

δ
[
Q−Q(~ρb, Vb, Jb)

]
. (34)

Ppost(Q) =
1

M

M∑
b=1

Q(~ρb, Vb, Jb)δ
[
Q−Q(~ρb, Vb, Jb)

]
(35)

= QPpre(Q). (36)

Pdata(Q) =
1

N

N∑
a=1

∑
Va,Ja

Ppost(Va, Ja|~σa)

×δ [Q−Q(~τa, Va, Ja)] (37)

As can be seen in Fig. 4 of the main text, the
ratio of the distribution of global selection factors
Pdata(Q)/Ppre(Q) saturates for large values of Q. To
make sure that this saturation does not impair our abil-
ity to correctly infer the selection factors, we simulated
a dataset from Ppre and selected sequences with proba-
bility min[Q(~σ)/7, 1] to mimic the effects of this plateau.
We then inferred the selection coefficients for this arti-
ficial dataset. We see that the saturation does not af-
fect our ability to correctly infer the selection coefficients
(Fig. S6) and the variability in the inferred qi;L(a) selec-
tion factors is of the same order as from using random
subsamples of the original data.

We also checked that this saturation did not affect
much the prediction for the number of shared sequences,
by repeating the procedure replacing Q by max(Q, 7) in

Sec. VII. For example,
∑
~σ[P

(u)
post(~σ)]2, the probability for

any two sequences to be the same, only decreased by 2%,∑
~σ[P

(u)
post(~σ)]3, the probability for any three sequences to

be the same, by 6%, and
∑
~σ[P

(u)
post(~σ)]4 by 8%.
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XI. BIOCHEMICAL CORRELATIONS

To check for correlations of our inferred qi;L(a) selec-
tion factors with known biochemical properties, we calcu-
lated Spearman’s coefficient between the selection factors
and a number of standard quantities (see Fig. S7 for the
full list). We find that the selection factors do not corre-
late well with most standard properties, such as charge,
hydrophobicity and polarity. However we do find a trend
of positive correlation with amino acids that are likely
to appear in turns (Fig. S7 C) and ones that have been
identified as those that make the core of the interface
in a protein-protein complexes (Fig. S7 F) [8]. We find

a trend of negative correlations with amino acids that
have large volume (Fig. S7 K) and are likely to appear in
alpha helices (Fig. S7 A). These observations are consis-
tent with the fact that structurally CDR3 regions form
loops and bulky amino acids as well as stabilizing alpha
helix-like interactions would interfere with this structure.
Core amino acids are at the center of the interface and
are known to be the main contributors to interface recog-
nition and affinity. On the other hand interface rim and
non-interface (surface) residues, which are both in touch
to various degrees with the solvent and are not crucial
interface forming elements, show similar non-distinctive
correlation patterns.
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