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Abstract

Natural protein sequences contain a record of their history. A common constraint in a

given protein family is the ability to fold to specific structures, and it has been shown possi-

ble to infer the main native ensemble by analyzing covariations in extant sequences. Still,

many natural proteins that fold into the same structural topology show different stabiliza-

tion energies, and these are often related to their physiological behavior. We propose a

description for the energetic variation given by sequence modifications in repeat proteins,

systems for which the overall problem is simplified by their inherent symmetry. We explic-

itly account for single amino acid and pair-wise interactions and treat higher order correla-

tions with a single term. We show that the resulting evolutionary field can be interpreted

with structural detail. We trace the variations in the energetic scores of natural proteins

and relate them to their experimental characterization. The resulting energetic evolution-

ary field allows the prediction of the folding free energy change for several mutants, and

can be used to generate synthetic sequences that are statistically indistinguishable from

the natural counterparts.

Author summary

Unlike most natural proteins that are made with apparently random strings of amino

acids, repeat-proteins are formed with tandem stretches of similar elements. The statistical

description for these occurrences can be captured with a simple energetic model that

accounts for evolutionary mechanism that gave rise to these proteins. The resulting ener-

getic model can be used to infer folding stability and can generate sequences that are

indistinguishable from the natural ones.
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Introduction

Repeat proteins are composed of tandem repetitions of similar structural motifs of about 20 to

40 amino acids. Under appropriate conditions, these polymers fold into elongated, non-globu-

lar structures (Fig 1). It is apparent that the overall architecture is stabilized mainly by short

range interactions, in contrast to most globular protein domains that usually adopt very intri-

cate topologies [1]. In their natural context, repeat proteins are frequently found mediating

protein-protein interactions, with a specificity rivaling that of antibodies [2–4]. Given their

structural simplicity and potential technological applications, repeat-proteins are a prime tar-

get for protein design, with very successful examples for a variety of topologies [5–7]. Most of

the current design strategies target the creation of rigid native structures with desired folds

that, although beautiful, often lose biological functionality [8]. It is becoming clear that the

population of ‘excited states’ is crucial for protein function [9], and thus tackling energetic

inhomogeneities in protein structures may be crucial for understanding how biological

activities emerge [10]. The challenge thus relies in finding an appropriate description for the

‘energy’ of each system, a daunting task for large molecular objects such as natural proteins.

In principle, the natural variations observed for proteins of the same family must contain

information about the sequence-structure mapping. A simple model that just takes into

account the frequency of each amino acid in each position is insufficient to capture collective

effects, yet, for some architectures it is surprisingly good for the synthesis of non-natural

repeat-proteins by ‘consensus’ design [11–14]. It is apparent that in the case of repeat proteins

the local signals play inordinately large roles in the energy distribution, just as expected from

their topology [15] and hence, small heterogeneities can be propagated from the local repeat

units to higher orders affecting the overall structure and dynamics [16, 17]. Thus, collective

effects may be approximated as small perturbations to local potentials, simplifying the ener-

getic description of complex natural systems [18].

In the last years new methods to analyze correlated mutations across a family of proteins

have arisen (mfDCA [19], plmDCA [20, 21], Gremlin [22] to name a few). The main hypothe-

sis behind these methods is that biochemical changes produced by a point mutation should be

compensated by other mutations (along evolutionary timescales) to maintain protein viability

or function. These methods can also be used to disentangle relevant direct correlations from

indirect ones. They are very successful at predicting spatial contacts and interactions for

many protein topologies [23–27]. Nevertheless, these methods do not take into account the

chemical nature of the amino acids, which can be codifying inhomogeneities in the energetic

distribution that are crucial for the activity of repeat-proteins [28, 29]. On this basis, different

approaches have been proposed recently to include chemical details in the correlation analyses

[30], trying to predict folding stability [31], conformational heterogeneity [23, 32, 33], muta-

tional effect in the interaction in two-component signaling proteins [27] or the global effect on

Fig 1. Repeat proteins are elongated objects with internal symmetry. Representative structures of

members of the repeat proteins families studied. On left, ankyrin repeat (PDB id:1N0R [38]), center

tetratricopeptide-like repeats (PDB id:1NA0 [11]) and right leucine-rich repeats (PDB id:4IM6). The defined

repeated unit is highlighted in orange.

https://doi.org/10.1371/journal.pcbi.1005584.g001

Repeat protein energetics from evolution

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005584 June 15, 2017 2 / 16

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1005584.g001
https://doi.org/10.1371/journal.pcbi.1005584


antibiotic resistance from sequences of β-lactamases [34, 35]. As many other tools, these were

optimized to perform well on globular proteins, and their application to repeat proteins is not

straightforward. Besides the point-mutation mechanism, repeat proteins are believed to evolve

via duplication and rearrangement of repeats [36], resulting in an inherent symmetry which

usually confounds sequence analyses [17]. Making use of this symmetry, we have previously

proposed a specific version of mfDCA and plmDCA for repeat proteins [37]. In this work we

develop an alternative ‘evolutionary field’, able to disentangle biases generated by the repetitive

nature of these proteins and which explicitly includes the information of the amino acids that

compose a protein. We show that it is able to reflect biochemical properties of the analyzed

proteins. We take advantage of the elongated and repetitive structure of these proteins (Fig 1)

to extract as much information as possible from the data, and apply the general ideas on three

specific families, ankyrin repeats (ANK), leucine-rich repeats (LRR) and tetratricopeptide-like

repeats (TPR).

Evolutionary energy for repeat proteins

To study the co-occurrence of mutations in a sequence alignment of a particular protein fam-

ily, [39] proposed a Hamiltonian or energy expression which resembles a Potts model:

Eð~sÞ ¼ �
XL

i¼1

hiðaiÞ þ
XL

i¼1

XL

j¼i

Jijðai; bjÞ

" #

ð1Þ

where the set of {hi(ai)} parameters, one for each amino acid in each position, accounts for a

local propensity of having a specific residue on a particular site of the protein, and the set of

{Jij(ai, bj)} indicates the strength of the ‘evolutionary’ interaction between each possible amino

acid in every pair of positions along the protein. There are q = 21 possible values of ai and bj,
one for each amino acid and one for the gaps included on the multiple sequence alignments.

This expression is evaluated on a particular sequence on an alignment, and the summations go

over the L columns of the alignment. A sequence is more favorable or more energetic if it gets

lower values of Eð~sÞ. It can be expected that the population of sequences follows a Boltzmann

distribution Pð~sÞ ¼ 1

Z e
� Eð~sÞ [40]. The parameters are thus fitted to reproduce the frequencies of

occurrence of each amino acid in each position (fi(ai)) and the joint frequencies of amino acids

(fij(ai, bj)) in an alignment of natural sequences used as input:

fiðaiÞ ¼
X

ak;k6¼i

Pð~sÞ ð2Þ

fijðai; bjÞ ¼
X

ak;k6¼i;j

Pð~sÞ ð3Þ

Nevertheless, for repeat proteins there is another feature we want to capture with an evolution-

ary energy: the high identity of amino acids constituting consecutive repeats, arisen by the repet-

itiveness of these families and probably a signature of their evolutionary mechanisms (Fig 2).

Therefore, we propose the following model for repeat proteins:

Eð~sÞ ¼ �
XL

i¼1

hiðaiÞ þ
XL

i¼1

XL

j¼i

Jijðai; bjÞ � lIdð~sÞ

" #

ð4Þ

This expression is designed to be applied in sequences constituted by two repeats. λId is a

parameter that aims at reproducing the probabilities of the percentage of identity (%Id)

between consecutive repeats in natural proteins (pid). Basically, it accounts for higher order
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correlations not captured by the pairwise terms. For a given sequence we calculate the %Id

of the adjacent repeats and sum the parameter λId corresponding to that %Id value. When

the correct parameters are obtained, this equation can be used to produce an ensemble of

sequences consistent with the constraints (fi(ai), fij(ai, bj) and pid). We work with pairs of

repeats as it is the minimum unit that includes the interaction between repeats and the possi-

bility of measure sequence identity between consecutive repeats. In the following section we

will show the convergence of the method and the relevant information that can be obtained

from it. For further details about the procedure to assign values to the parameters, please refer

to Methods section.

Results

Evolutionary energy reproduces ensembles of sequences with natural

frequencies and repeat protein characteristics

We construct an alignment of pairs of repeats for each family: ANK (PFAM id PF00023, and

final alignment of 20513 sequences of L = 66 residues each), TPR (PFAM id PF00515, and

final alignment of 10020 sequences of L = 68 residues each) and LRR (PFAM id PF13516, and

final alignment of 18839 sequences of L = 48 residues each). See Methods for further details

of construction. We measure fi(ai), fij(ai, bj) and pid. Using a gradient descent procedure we

obtain a set of parameters in eq 4 which are able to reproduce fi(ai), fij(ai, bj) and pid. In princi-

ple, the number of parameters is large: Lq hi parameters,
ðLqÞ2 � Lq

2
Jij parameters and L

2
þ 1 λId.

For example, for pairs of ANK repeats this means 1386 hi, 959805 Jij and 34 λId. To reduce the

Fig 2. The proposed model fits the frequencies of amino acids and natural repeat identities pid. On A, we compare

marginal frequencies fi(ai) (red) and joint frequencies fij(ai, bj) (black) on the natural ensemble of sequences (x-axis) and on

the set of sequences generated by the model (y-axis). On B, we calculate the distribution of identity between repeats pid for

consecutive repeats (solid line), and for natural repeats which are not consecutive, i.e. they are not next to each other in the

primary structure (dot lines). Consecutive repeats present a population with high identity between repeats that any pairs of

repeats do not show. We compare the distribution produced by the model pmodelid (dots).

https://doi.org/10.1371/journal.pcbi.1005584.g002
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number of free parameters to fit we use a L1-regularization which fixes to zero those parame-

ters which do not contribute significantly to fit the frequencies. This regularization allows us

to set to exactly zero between 85 and 91% of the Jij parameters which, when they are free to

vary, only reach small values (S3 Fig). We bound the maximum error permitted in the fre-

quency estimations to 0.02. Refer to Methods for more details.

In the three families studied, the parameters obtained allow us to generate ensembles of

sequences which reproduce natural fi(ai), fij(ai, bj) and pid (Fig 2A). Notice that most frequen-

cies are fitted with an error of an order of magnitude lower than the maximum bound imposed

(S2 Fig).

The pid distributions are also very well reproduced (Fig 2B). Not only the general shape, but

also the populated long tail for highly similar repeats. It is not possible to obtain the same dis-

tribution only by fitting amino acid frequencies fi(ai) and fij(ai, bj), it is mandatory to explicitly

include the pid by including the parameters λId (S1 Fig), suggesting that higher order correla-

tions must be accounted for describing these systems.

Evolutionary energy distinguishes between proteins on a given family

and other polypeptides

Once the set of parameters {hi(ai), Jij(ai, bj), λId} is obtained, it can be used to score any

sequence of L amino acids via eq 4. In this section we test if this measure is capable of distin-

guishing polypeptides that fold in a three dimensional structure similar to members of the

repeat protein family from those that do not.

We calculate the distribution of energies of different sets of sequences (Fig 3). The ensem-

bles of natural sequences of each protein family used to learn the parameters have a unimodal

distribution of energies centered around -100 (Fig 3, red lines). These distributions are clearly

differentiated from the energies of random chains of residues (Fig 3, yellow lines), which con-

stitute a basic negative control for our model.

For a positive control we evaluate designed proteins which have been experimentally syn-

thesized. For the ANK family, we consider the library of repeat sequences built by Plückthun’s

laboratory [13] (green lines, Fig 3A). This library was constructed by fixing on each repeat

Fig 3. Energy score distribution for different ensembles of sequences for ANK (A panel), TPR (B) and LRR (C). Red lines, natural sequences used to

train the model on eq 4. Blue lines, sequences simulated by Monte Carlo under expression 4. In the three families, it overlaps with natural sequences,

suggesting that simulated sequences imitate the natural ensemble. Yellow lines, strings of random amino acids used as negative control. They show that the

energy distinguishes between polypeptides belonging to a protein family and other strings of amino acids. Green lines, squares, diamonds and triangles,

energies for designed proteins.

https://doi.org/10.1371/journal.pcbi.1005584.g003
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26 positions out of 33 to the most frequent residue in the multiple sequence alignment. This

resulted in a set of sequences that have small variations with respect to the ANK consensus

(the sequence with the most frequent amino acid in each position). In our expression, they

score a very low energy distribution, overlapping with the most negative tail of the distribution

of natural sequences. It is notable that consensus designed ANK have been shown experimen-

tally to be extremely stable. For the TPR family, consensus designed was done by Regan’s

laboratory [11, 12]. All pairs of repeats synthesized have the same amino acid sequence, and

it’s energy score is indicated by a green full square in Fig 3B. Again, the designed sequence

matches values at the most left side of the energy distribution of natural sequences, and coinci-

dentally reports high folding stability. From it, other variants with few point mutations to

improve binding to a specific ligand have been synthesized. As shown in empty green squares

[41] and diamonds [42] in Fig 3B, they have higher energy, but still in the left most side of nat-

ural sequences distribution. Recently, a different design strategy was done [43]. Based on a

non-repetitive protein, but similar to TPR fold, they put togheter various repetitions of the

fold, using TPR loops to link them. They obtained a three-repeats protein whose pair of repeats

energy are represented on triangles on Fig 3B. This time, they match natural sequences distri-

bution in higher values.

Finally, for the LRR family we contrast with the library of proteins designed by Plückthun’s

group based on the consensus sequence [14]. The repetition they considered has 57 amino

acids, which includes two types of repeats, one of 28 residues and the other one of 29. As the

repeat we are using for LRR is 24 residues long, we aligned both definitions and evaluated

the library removing the amino acids not matching our definition. Again, their scores form a

narrow distribution, but this time it is not placed on the most favorable side of the natural

sequences distribution (Fig 3C). Coincidentally, selected species studied do not show such a

high folding stability as the ANK library did.

With these parameters, we are able to generate an ensemble of sequences which are in

agreement with the constraints used, via a Monte Carlo simulation (see Methods). The distri-

bution of energies of these simulated sequences matches the natural sequences energies distri-

bution with remarkable accuracy. Moreover, we randomly choose 100 sequences from the

natural ensemble and 100 sequences from the simulated one, perform a Smith-Waterman

pairwise alignment all against all, calculate the pair similarity using BLOSUM62 matrix and

used it as a distance method to plot a dendogram of the sequences (S4 Fig). Both species appear

interspersed, showing that it is not possible to distinguish a natural sequence from a con-

structed one. Also, we tested familiarity to the ANK family as defined in [44] and found over-

lapping distributions for both species (S5 Fig). Therefore, simulated sequences represent

possible variants to natural repeats. The wide distribution of natural proteins suggests that it

should be possible to engineer sequences with more variable repeats, more dissimilar among

neighbors and to the consensus than the ones published up to date.

Low evolutionary energy sequences have similar repeats

Are there any invariant properties shared by low energy sequences? Given that repeat-

proteins may evolve by other mechanisms besides point substitutions, we analyze if low

energy sequences are constituted by highly similar repeats and if they are close to consensus

sequences.

On Fig 4A we show the relation between the %Id between the repeats and the energy of the

sequence. It is evident that low energy sequences are constructed by pairs of highly similar

repeats. This could be a transitive effect: if low energy sequences are very similar to the consen-

sus sequence, and the consensus sequence is formed by two identical repeats, we would be

Repeat protein energetics from evolution
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seeing that more similarity between repeats causes lower energies. We can see that it is not the

case (Fig 4B). We plot the %Id to the consensus against the energy of each sequence. The con-

sensus was calculated with the most frequent amino acid in each position on sequences used as

input. We can see that there is no evident correlation between the energy and the similarity to

the consensus. Thus, low energy sequences that differ from the consensus one may be con-

structed. Also, there are no sequences which get a high %Id to the consensus. We conclude

that there are different repeats which have low energies within a protein family, and not only

the consensus sequence.

Evolutionary energy and folding stability change upon point mutations

Consensus designed ANK proteins are very stable upon chemical and thermal denaturation

[13], and, as shown in Fig 3 also score a very low evolutionary energy according to eq 4. Can

we quantify the relationship between the stability and the evolutionary energy?

A potential test can be performed by comparing to experiments in which the effect of point

mutations was evaluated. These incorporate one, two or three point mutations in natural pro-

teins, and characterize the unfolding free energy ΔG of the wildtype and the mutated variant.

A higher ΔG reports a more stable protein. We compare the change in the ΔG between the

mutated and the wildtype protein (ΔΔG), and the difference of energy for their sequences

according to eq 4.

Fig 4. Most favorable simulated sequences have very similar repeats, yet they are different to the consensus repeat. On A, we plot the energy vs.

the identity between the repeats that constitute the sequence. Even though the deviation is large, most stable sequences tend to have more similar

repeats. On B, we plot the energies of simulated sequences vs the identity to the consensus of the family. In all cases, the identity to the consensus is

small and uncorrelated to the energy, indicating that sequences which differ significantly from the consensus can be stable variants of the family.

https://doi.org/10.1371/journal.pcbi.1005584.g004
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Although the energy expression is learned for pairs of repeats, we can easily extend it to an

array of repeats making use of the elongated structure of repeat proteins in which only adja-

cent repeats interact. From our expression we have parameters assigned to intra-repeat

positions (hi with i ¼ 1 . . . L
2

and Jij with i; j ¼ 1 . . . L
2
), and inter-repeat interactions (Jij with

i ¼ 1 . . . L
2

and j ¼ L
2
þ 1 . . . L, and λId). Then for each repeat we can assign an internal energy

PL=2

i¼1
hiðaiÞ þ

PL=2

i¼1

PL=2

j>i Jijðai; bjÞ and a interaction energy
PL=2

i¼1

PL
j¼L=2þ1

Jijðai; bjÞ þ lId ,

which of course depends on the amino acids constituting each repeat.

On Fig 5A, we show the comparison between ΔΔG and the evolutionary energy calculated

using Eq 4, done for three different ANK proteins: IκBα [45, 46], Notch [47] and p16 [48]. It

should be noted that different experimental techniques return different values for ΔG for the

same protein, non overlapping within experimental error, pointing that other factors contrib-

ute to the experimental quantification of ΔΔG. A linear fit returns R2� 0.61. From 152 muta-

tions we analyzed, 124 (82%) are predicted favorable when the mutation stabilized the folding

of the structure, and unfavorable when they have also been measured to destabilize. The pre-

dictions that deviated the most are mutations in Notch from Serine to Proline, which is a struc-

tural disruptor, and were not considered in the linear fit. A comparison against FoldX [49]

predictions can be found on S6 Fig.

On Fig 5B, we show reported mutations on pp32 [50], a protein belonging to LRR family.

Again, measurements with different methods report different values of ΔΔG. The linear fit

returns a poor R2� 0.21, but 30 (75%) mutations are both predicted and reported unstabilizing.

A similar comparison was performed by [31] for small globular proteins with an expression

related to Eq 1. To reduce the number of interaction parameters Jij(ai, bj) they explicitly used

Fig 5. Variation of energy score as a predictor of the folding stability upon point mutations. We compare difference in unfolding ΔG between a

wildtype protein and a mutated variant (x-axis) and the change in energy according to Eq 4. Error bars indicate the experimental standard deviation. On

A, for proteins belonging to ANK family, and on B for LRR.

https://doi.org/10.1371/journal.pcbi.1005584.g005
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structural information and set to zero all interactions between positions which are not in con-

tact in the native structure. In contrast, we use a L1-regularization to fix to zero those parame-

ters which do not contribute significantly to the fitting process and obtain Jij(ai, bj) = 0 and

Jij(ai, bj) 6¼ 0 in all pairs of positions, regardless they are supposed to be in contact or not in the

3D structure.

Interaction parameters are related to the structure and the sequence

symmetry

Are the obtained parameters related to structural properties of these proteins? Local fields,

hi(ai), should account for the local propensity of each amino acid in each position, and there-

fore are expected to be related to fi(ai). Fig 6A shows that the inferred hi(ai) parameters are dif-

ferent from the initial condition ln(fi(ai)) for the ANK family; that is, the values obtained for

the parameters that account for higher order correlations are relevant. In red we highlight the

points related to the consensus amino acid in each position. All of these residues have a strong

local field associated to them, justifying why the construction of sequences with these amino

acids results in foldable proteins. We also show a contact map of two ANK repeats (PDB id:

1N0R) on Fig 6B: gray background indicates that the two positions given by x and y axis are in

contact in the native structure, and white that they are not. On the upper triangle of the figure

and in blue crosses, we mark the positions involved in the highest Jij parameters, i.e. those

which imply higher coupling. A darker blue indicates that there are more Jij (more combina-

tions of amino acids) between those positions. Most of the highest Jij match a pair of positions

in contact in the 3D structure, or two which correspond to the same residue in the adjacent

repeat patterns, i.e. i-th position in the first repeat and position j = i+33 in the second repeat.

In red crosses we show the lowest Jij, that mark a negative constraint. Again, a darker red

Fig 6. For the ANK family, on panel A we compare the parameters hi(ai) to the marginal frequencies. The site-independent model (and initial

condition) states that hi(ai) = ln(fi(ai)). For the final model, this relation is tuned by the higher order correlations. On red, the parameters associated with the

most common amino acid in each position are highlighted. On panel B, we compare the contact map of a pair of repeats of 1N0R (gray shadow) and the

highest (blue) and lowest (red) Jij(ai, bj) parameters. The color scale indicates how many parameters involves the two positions (due to different sets of amino

acids). Most extreme values fall into residues in contact or in the equivalent position of a repeat.

https://doi.org/10.1371/journal.pcbi.1005584.g006
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means that there are more Jij with low values between those positions. It is apparent that these

also involve mostly residues in contact, but shows that other regions are responsible for nega-

tive design.

Discussion

We propose a statistical model to account for fine details of the energy distribution in families

of repeat proteins using only the sequences of amino acids. The model consists of a specializa-

tion of a Potts model to account for the local and pair-wise interactions and an extra term that

includes higher order correlations, accounting for the similarity between consecutive repeats.

The model is constrained by evolutionary characteristics of the families of proteins: we mea-

sure the frequencies of amino acids, co-occurrence of amino acids and the identity between

repeats in extant natural proteins. To statistically define these quantities it is necessary to have

a large set of sequences, which we showed are currently available for several repeat-protein

families [37]. No information about the native folded conformation is required. The computa-

tion of the evolutionary energy field is computationally demanding, mostly due to long times

spent in rigorous Monte Carlo simulations, but once the fitting is done the parameters can be

used to score individual sequences fast and easily.

We studied three popular repeat protein families: ANK, TPR and LRR. After pre-processing

of the alignments, we had enough sequences (� 20500, 10000 and 18800 respectively) to fit

the model to pairs of repeats of each family. We scored the evolutionary energy of all natural

sequences in PFAM, and it allowed us to clearly distinguish between natural proteins and ran-

dom sequences of amino acids: the first have energy values< -50 and show a large spread

while all random sequences have energy values� 0. We evaluated designed repeat proteins

which have been shown to fold and found that they score within the natural sequences distri-

bution of energies. For the ANK and TPR families, these designed proteins have been shown

to be highly stable upon thermal and chemical denaturation and, coincidentally, they are

located at the most favorable side of the energy distribution of natural proteins, suggesting that

the evolutionary energy score can be related to folding stability.

The energetic model can be used in Monte Carlo simulations to generate sequences that

agree with the natural constraints of a given protein family. This ensemble of simulated

sequences matches the amino acid frequencies, the identity between repeats and also the

energy distribution of natural proteins. We found this set of simulated sequences is statistically

indistinguishable from natural counterparts. Thus, the proposed model can be used as a tool

to design repeat-protein sequences that have all the natural characteristics evaluated to date.

Repeat proteins bind to other polypeptides and are candidates for specific binder scaffolds.

Designed repeat proteins have been successfully synthesized and adapted to biomedical appli-

cations. Nevertheless, consensus design limits the possible variants as only a small proportion

of residues are free to vary. Furthermore, they are extremely stable. Including coupling infor-

mation can wide the possible sequences that can be studied, and could lead to more malleabil-

ity of the designed molecules. Moreover, the stability change upon single point mutation can

be well predicted by the model using just sequence information. For the ANK family,

evolutionary energy variations correlate with the experimental values with an R2�0.6. This

improves FoldX [49] performance, which additionally requires a reference structure. More-

over, from the 152 experiments analyzed, the 82% predicts the direction of the stability change

upon a point mutation. For the LRR family, the correlation is considerably lower, but 75% of

the mutations are both predicted and reported in the available bibliography as destabilizing.

For both the simulated sequences and for natural counterparts, we found that the similarity

between consecutive repeats correlates with lower energy values, and that these are not
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necessarily similar to the consensus sequence of the family, pointing out that duplication of

stretches of sequences may well be an important factor in the evolution of these systems [51].

The existence of a simple and reliable energy function to score the ‘evolutionary energy’ of

repeat-proteins can be used to trace the biological forces that acted upon their history, and to

explore to which extent these conflict with the physical necessities of the systems [52]. Map-

ping the energy inhomogeneities along the repeat-arrays may allow us to infer the population

of excited states in these proteins, many of which have been related to their physiological

mechanisms.

Methods

Sequence alignments

Multiple sequence alignments of repeats were obtained from PFAM 27.0 [53]. The aligned

sequences usually have misdetected initial and final residues. The amino acids at the ends of

the repeat-detection do occur in the polypeptide chains (they are not actual deletions) and

incorporating them improves the statistics of the real sequences. We completed these positions

with the amino acids present on the actual proteins using the provided headers on the align-

ment and crossing information with UniProt database [54]. This leads to a reduction on the

number of gaps in our alignments, which usually derives into noisy predictions in correlation

analyses [31]. After, we created the alignment of pairs of repeats, joining sequences of repeats

which are consecutive in a natural protein. Finally, we removed insertions from the alignments

by deleting positions which have gaps in more than 80% of the sequences in the alignment.

Frequency calculations

Our model fits the occurrence of amino acids in every position, which we call the marginal fre-

quency of residue ai at position i of the alignment and denote fi(ai), and the joint occurrence of

two amino acids ai and bj simultaneously at two different positions of the alignment, fij(ai, bj).
To avoid biases by the overrepresentation of some proteins in the database, we used CD-HIT

[55] to cluster sequences at 90% of identity and chose a representative sequence from each

cluster. Finally, we computed by counting the fi(ai) and fij(ai, bj), and divided by the total num-

ber of sequences.

pid calculations

From the same alignment explained in Frequencies calculations, for a sequence which has L
residues constituting two consecutive repeats, the %Id between the repeats is the number of

amino acids in positions i and iþ L
2
, for i ¼ 1 . . . L

2
which are exactly the same. Gaps are treated

as an amino acid. Once we have the values for all sequences in an alignment, we define pid as

the proportion of sequences within the alignment with the same %Id between repeats.

Construction of an ensemble of sequences in agreement with a energy

equation

Given a set of parameters hi, Jij, λId and Eq 4, we use a Monte Carlo procedure and the Metrop-

olis criterion to generate an ensemble of N sequences of length L each. We initiate with a ran-

dom string of L residues. At each step, we produce a point mutation in any position. If this

mutation is favorable, i.e. the energy is lower than that of the original sequence, we accept

the mutation. If not, we accept the mutation with a probability of e−ΔE, where ΔE is the differ-

ence of energy between the original and the mutated sequence. When accepted, the mutated
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sequence is used as the original one for next step. We add one sequence to our final ensemble

every t steps (we used t = 1000).

Learning the parameters for the model

Our model is proposed to reproduce fi(ai), fij(ai, bj) and pid from the alignment of natural

sequences. To learn the set of parameters hi, Jij, λId which reproduce them, we used a gradient

descent procedure. In each step, an ensemble of N = 80000 sample sequences was produced

via Monte Carlo using as energy the expression 4 and the trial parameters. We measured its

marginal, joint frequencies and pid and updated the local parameters according to:

htþ1
i  hti � �s fiðaiÞ � f

model
i ðaiÞ

� �
ð5Þ

As the number of parameters for coupling is large (= 212L2), we used a regularization L1 to

force to 0 those parameters which are not contributing significantly to the modeled frequen-

cies. Then, we update these parameters by:

Jtþ1
ij  

0 if Jtij ¼ 0 and jfiðai; bjÞ � f modeli ðai; bjÞj < g

�j fijðai; bjÞ � f modelij ðai; bjÞ � gsignðfijðai; bjÞ � f modelij ðai; bjÞÞ
h i

if Jtij ¼ 0 and jfijðai; bjÞ � f modelij ðai; bjÞj > g

Jtij þ �j fijðai; bjÞ � f
model
ij ðai; bjÞ � gsignðJtijÞ

h i
if Jtij þ �jðfijðai; bjÞ � f

model
ij ðai; bjÞ � gsignðJtijÞ

h i
� Jtij > 0

0 if Jtij þ �jðfijðai; bjÞ � f
model
ij ðai; bjÞ � gsignðJtijÞ

h i
� Jtij < 0

ð6Þ

8
>>>>>>>>>><

>>>>>>>>>>:

Finally, the parameters λId are updated according to:

l
tþ1

Id  l
t
Id þ �ID pidð%IdÞ � p

model
id ð%IdÞ

� �
ð7Þ

We iterated until the maximum difference between the predicted frequencies and the natu-

ral sequences was below 0.02. This value was chosen according to the robustness of the fre-

quencies estimations on the available data. We calculated the frequencies on half of the

available sequences and compared the results to the frequencies counts on all the available

sequences. The largest differences were slightly below 0.02. We believe that this maximum

error thus reflects the actual error in the data and it is not reasonable to ask the model for

more accuracy than that of the data itself. The code was written in C++ and is available at

GitHub: https://github.com/proteinphysiologylab/2017_Espadaetal.

Supporting information

S1 Fig. Distribution of %Id of sequences generated by model on eq 1 (main text) in dotted

lines and by model 4 (main text) in solid lines. In black dots, the natural sequences’ distribu-

tion of %Id.

(PDF)

S2 Fig. Histogram of frequency errors.

(PDF)

S3 Fig. Change of Jij parameters under regularization.

(PNG)
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S4 Fig. Dendrogram based on pair-wise similarity. Natural and simulated sequences are

indistinguishable from pairwise similarity.

(PDF)

S5 Fig. A) Logos for the MSA of natural pairs of ANK repeats (top), of simulated pairs of

ANK repeats (center) and low energy pairs of simulated ANK repeats (bottom). B) Distri-

bution of familiarity, as defined in Turjanski et al (2016) for the same sets of sequences. Simu-

lated sequences reproduce the distribution of natural proteins and are indistinguishable.

(PNG)

S6 Fig. For the ANK family, we compared the results of our models on folding stability

with FoldX, a popular tool used to predict stability changes upon mutation. As FoldX

requires a reference structure, some of the constructions tested in the protein Notch cannot be

analyzed, so we excluded them from our predictions for a fair comparison. It can be seen that,

overall, our model (right panel) is a better predictor than foldX (left panel) of stability changes

upon mutation, and has the advantage of using just the sequence information.

(PNG)

S7 Fig. At left, comparison between the local field parameters hi(ai) and the marginal fre-

quencies fi(ai). At center, contact map (grey indicates position in contact, white not in contact

on the native structure). On blue, pairs of positions involved in highest Jij(ai, bj), red lowest

Jij(ai, bj). At right, pairs of amino acids involved in the highest Jij(ai, bj) parameters (on blue)

and in the lowest Jij(ai, bj) (on red). ANK at the top. TPR at the center. LRR at the bottom.

(PDF)
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