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Separating intrinsic interactions from extrinsic correlations in a network of sensory neurons
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Correlations in sensory neural networks have both extrinsic and intrinsic origins. Extrinsic or stimulus
correlations arise from shared inputs to the network and, thus, depend strongly on the stimulus ensemble. Intrinsic
or noise correlations reflect biophysical mechanisms of interactions between neurons, which are expected to be
robust to changes in the stimulus ensemble. Despite the importance of this distinction for understanding how
sensory networks encode information collectively, no method exists to reliably separate intrinsic interactions
from extrinsic correlations in neural activity data, limiting our ability to build predictive models of the network
response. In this paper we introduce a general strategy to infer population models of interacting neurons that
collectively encode stimulus information. The key to disentangling intrinsic from extrinsic correlations is to infer
the couplings between neurons separately from the encoding model and to combine the two using corrections
calculated in a mean-field approximation. We demonstrate the effectiveness of this approach in retinal recordings.
The same coupling network is inferred from responses to radically different stimulus ensembles, showing that
these couplings indeed reflect stimulus-independent interactions between neurons. The inferred model predicts
accurately the collective response of retinal ganglion cell populations as a function of the stimulus.
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I. INTRODUCTION

A challenge shared by many fields of quantitative biol-
ogy is to understand how populations of interacting agents
respond collectively to common drives. Examples include
the concerted action and coevolution of amino acids in the
function of large proteins [1], the processing of complex
signals by biochemical and gene regulation networks [2], and
the collective motion of cells [3] and animals [4] in response
to environmental cues.

This question also plays a central role in sensory neuro-
science, where an important goal is to build network models
to describe how the collective activity of neural populations
encodes sensory stimuli. Pioneering work initiated in the
retina [5–8] proposed the use of disordered Ising models to
characterize the joint activity of neurons in early sensory
systems [9–13], sensory cortices [14], and beyond [15–18].
Motivated by the principle of maximum entropy [19], these
models represent neurons as binary spins (spike or silence),
biased by local fields and interacting through a network of
pairwise couplings. The model parameters are fitted to re-
produce the empirical mean neuron activities and pairwise
correlations between them. Similarly motivated models of sta-
tistical physics [20] have been successfully applied to a variety
of biological problems, including protein families [21,22] and
animal flocks [23].

A major limitation of this approach in the context of sen-
sory systems is that the inferred couplings are only effective
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and do not directly follow network circuitry. Instead, they
reflect two different sources of correlations. On one hand, two
neurons can be correlated because they receive correlated or
common inputs. For example, in the retina, if the stimulus
is correlated over space, nearby neurons will receive similar
inputs and consequently will respond synchronously. This
type of correlation has been termed “signal correlation” and
strongly depends on the actual stimulus and its statistics. On
the other hand, neurons might be correlated because of actual
interactions in the neural network, either because they are
connected directly through gap junctions [24,25] or indirect
pathways [26] or because they receive the same noise sources
from photoreceptors [27]. This type of correlation has been
termed “noise correlation” and results from the physiological
wiring of the network [26]. Similar network effects are present
in many other sensory systems [28–30]. When fitting Ising
models, signal and noise correlations are mixed together and
difficult to disentangle. Consequently, the inferred couplings
reflect not only properties of the network circuitry, but also
incidental properties of the actual stimulus.

The inability to separate extrinsic from intrinsic correla-
tions limits the interpretability of these models and their ca-
pacity to generalize across different conditions. For example,
if two Ising models are trained on the neural responses to
two different types of stimuli, their interactions terms will be
different [9]. The model thus cannot generalize and fails to
predict the collective behavior in response to a different type
of stimulus. Interpreting a change in the interaction terms will
also be difficult: it could trivially reflect changes in the stimu-
lus statistics or could correspond to changes in the network of
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couplings and the way the network processes stimuli (adap-
tation). Modeling the influence of the stimulus is therefore
crucial to understanding the collective processing performed
by sensory networks. Models with stimulus-dependent fields
and couplings have been proposed to describe stimulus cor-
relations and network effects [11,31,32]. However, here we
argue that the strategy proposed to fit these models from
neural recordings does not ensure proper disentanglement
between these two sources of correlated activity. Thus, a
general strategy to accurately separate stimulus and noise
correlations in neural networks so as to construct predictive
models of activity is still lacking.

Here we propose a general method to achieve this task.
We define a population encoding model where each neuron’s
spiking probability is governed by its couplings to other
neurons and by an external, time-dependent field encoding
the effect of the stimulus. We describe a working strategy for
learning the parameters of this model from neural recordings.
First, we infer the coupling matrix from population responses
to repetitions of short films. Second, we model how each
neuron’s firing rate depends on the stimulus, while disregard-
ing noise correlations. Third, we use a mean-field [Thouless-
Anderson-Palmer (TAP)] approximation to calculate the value
of the fluctuating field as a function of the stimulus from those
predicted rates, corrected by the influence of the network.

We apply our model to describe the responses of retinal
neurons to a visual stimulus. We quantify the importance of
noise correlations in this system, and we fit the corresponding
coupling matrix from recordings of responses to repeated
films. We then combine this coupling matrix with a previously
proposed model of stimulus encoding fitted on single cells
[33] to obtain a complete model that reproduces the popu-
lation response. We show that this strategy can be used to
obtain accurate predictions across different stimulus statistics.
We have therefore found a way to design and train models
of population responses that can generalize across different
stimulus ensembles. The method can be applied to any system
where a single-cell encoding model is available.

II. A GENERAL POPULATION MODEL

A. Model definition

We start by introducing a general model of the activity
of a population of correlated neurons, labeled i = 1, . . . , N ,
in response to a stimulus. This probabilistic model accounts
for both arbitrary single-cell dependenc ies on the stimulus
and direct interactions between cells. Let us denote by ni the
number of spikes emitted by cell i during a short time bin. The
probability distribution of spiking patterns n = (n1, . . . , nN )
in response to a time-dependent stimulus S is given by

Ppop(n|t ) = 1

Z
exp [−H1(n, t ) − H2(n)], (1)

where Z is a normalization constant and

H1(n, t ) = −
N∑

i=1

[
hi (t )ni − γ n2

i − δ n3
i − ln ni!

]
, (2)

H2(n) = −
∑
i�j

Jijninj . (3)

H1 and H2 encode extrinsic and intrinsic sources of cor-
relations in the population, respectively. The first term H1

accounts for the behavior of single cells in response to the
stimulus. hi (t ) = ĥi[St ] corresponds to a time-dependent ex-
ternal field applied to neuron i, which reflects the influence
of the past stimulus St at time t . The functional form and
parametrization of ĥi as a function of the stimulus are pre-
scribed later and depend on the particular sensory system and
stimulus of interest. The quadratic, cubic, and factorial terms
in ni (t ) in H1 correspond to a correction to the Poisson dis-
tribution of spikes allowing for general dependencies between
the mean and the variance of ni . These corrections have been
shown to be essential for describing single neurons [34]. The
second interaction term H2 is parametrized by a matrix of
couplings between neurons, J = (Jij ).

Given recordings of the activity of a neural population
presented with a known sensory stimulation, the goal is to
infer the parameters of the model to best predict the collective
response to arbitrary stimuli.

B. Why direct likelihood maximization cannot be used

Our goal is to infer couplings that solely reflect noise
correlations, for two reasons. First, this makes the values of
the different parameters easier to interpret. Second, while the
stimulus correlation will systematically change with the stim-
ulus statistics, noise correlations may reflect some intrinsic
network properties, and the corresponding couplings should
be robust to the stimulus statistics. By separating the two types
of correlations, we want to develop models that can generalize
and predict responses to stimulus ensembles that are radically
different from the ones they were trained on.

One strategy to infer the population model, (1), could be
to estimate all the parameters by maximizing the likelihood
in the complete data set. However, this approach does not
explicitly separate noise and signal correlations in the data
and is expected to misestimate the coupling matrix in the
inference procedure. This effect comes from the fact that the
stimulus encoding model is never perfect. As a result, when
the stimulus-dependent fields hi (t ) fail to perfectly reproduce
single neuron activities, the interaction field

∑
j Jij σj may try

to compensate this error by drawing additional information
about the stimulus from the activity of other neurons, instead
of reserving these couplings for accounting for noise corre-
lations. Previous work [31] combining a simple (i.e., linear)
stimulus encoding model with neuron-neuron couplings, and
using maximum likelihood as an inference method, shows
a clear example of this effect: the addition of couplings
improves the prediction of single-cell firing rates (Fig. 2(b)
in [31]). An extreme version of this phenomenon is also
demonstrated in Fig. 15 in Ref. [13], where the response of
one neuron to a natural scene is predicted from the responses
of the other neurons without any use of a stimulus.

It should also be noted that the full maximum-likelihood
task can be computationally difficult. The inference of precise
single-cell encoding models such as described in [33] and the
inference of complete interaction networks are each compu-
tationally costly, and combining both in a single maximum-
likelihood maximization would require the development of
new methods and algorithms.
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To demonstrate the effect described above in a computa-
tionally tractable case, we inferred a generalized linear model
(GLM) to our retinal data (see Sec. III A for a description of
the data). The GLM is arguably the most popular model to
account for some dependence on the stimulus and for noise
correlations using linear filters [32]. Note that the GLM is not
expected to accurately describe retinal activity because of its
linear assumptions [33], but it can still be used to make our
point that its inference mixes signal and noise correlations. As
shown in Appendix A, straightforward likelihood maximiza-
tion does not guarantee that coupling terms only reflect noise
correlations; rather, they reflect an uncontrolled combination
or mixture of signal and noise correlations, which have very
different biological interpretations.

In summary, from previous observations and the analysis
of our own data with the GLM, we conclude that direct
maximum-likelihood optimization of the model’s parameters
is not appropriate and will give biased estimates of the model
parameters, in particular, of the coupling network.

C. Inference of neuronal couplings

In order to obtain the parameter values Jij that account
solely for noise correlations, we need a model that reproduces
perfectly the time course of the firing rate of each neuron,
thereby setting aside the question of its dependence on the
stimulus. To construct such a model, we use repetitions of the
same stimulation to estimate the empirical firing rate of each
cell i, λi (t ) (the average number of spikes in each time bin
across repetitions). We then let the time-dependent fields hi (t )
in the population model, (1), be inferred from the responses
to the repeated stimulus along with the couplings Jij , by
maximizing the likelihood following [31]. In the maximum-
likelihood fit, the fields hi (t ) act as Lagrange multipliers (or
chemical potentials if the spike count is viewed as a particle
number) enforcing the firing rate value of each neuron in
each time bin, 〈ni (t )〉 = λi (t ), while the couplings Jij enforce
the noise correlations averaged over the repeated stimulus:
(1/T )

∑T
t=1〈(ni (t ) − λi (t ))(nj (t ) − λj (t ))〉. Thanks to these

constraints, the time courses of the firing rates are exactly
reproduced by construction, and so are the resulting stimulus
correlations. The inference of the couplings thus only reflects
noise correlations.

Note that the model inferred in this way is not a stimulus
encoding model: it cannot predict the spiking activity in
response to a stimulus sequence different from the one used in
the repetition. To do this, we need to learn how hi (t ) depends
on the stimulus, which is the object of the next step in the
inference.

D. Conditionally independent model

Let us now assume that a model can be built to predict the
firing rate λi (t ) of each neuron as a function of the presented
stimulus, λi (t ) = λ̂i[St ]. This step depends on the specific
sensory system studied, as well as on the stimulus ensemble.
We see an explicit example of such a model in the case of the
retina in Sec. III D.

From these firing rate predictions, we derive a noninteract-
ing model of neurons in which the interaction term H2 has

been removed,

PCI(n|t ) = 1

Z
exp [−H1(n, t )], (4)

where the fields are set as a function of the stimulus,
hi (t ) = ĥ0

i [St ], to enforce the constraint 〈ni (t )〉CI = λ̂i[St ].
This model is conditionally independent, meaning that neu-
rons respond independently of each other when conditioned
on a given stimulus.

E. Putting it together: Mean-field correction to network effects

Now that we have inferred the parameters of the interaction
network (Jij ) and of the conditionally independent model (the
functions ĥ0

i ), the last step is to combine them to obtain the
complete population encoding model, (1). In doing so, we
must be careful to correct for the effect of the network on the
activity of each neuron.

Because of the interaction term H2, each cell receives an
additional field

∑
j Jijnj from the rest of the network. This

field is stochastic and explains noise correlations. However, it
also generates a mean contribution �ĥi[St ] that affects the cell
firing rate. This contribution thus needs to be removed from
the stimulus-dependent field: ĥi[St ] = ĥ0

i [St ] − �ĥi[St ].
To estimate this correction, we compute the TAP free

energy formalism of the model, (1) [35], and use it to derive an
approximation for �ĥi . We follow [36] and [37] and apply a
second-order Plefka expansion [38] (see Appendix B for more
details). The result is

�ĥi ≈
∑
j �=i

Jij λ̂j + Jii (V
′(λ̂i ) + 2λ̂i )

+ 1

2
V ′(λ̂i )

∑
j �=i

J 2
ijV (λ̂j ) + 1

2
J 2

iiW
′(λ̂i ), (5)

where the first two terms are the mean-field contributions of
the network and self-couplings, whereas the last two are their
Onsager [39] reaction terms. In (5) we have introduced the
functions

V (λ) ≡ 〈n2〉λ − 〈n〉2
λ, (6)

W (λ) ≡ 〈n4〉λ − 〈n2〉2
λ − (〈n3〉λ − 〈n2〉λ〈n〉λ)2

V (λ)
, (7)

where 〈·〉λ denote averages according to the distribution

Pλ(n) = 1

Z
exp[h(λ)n − γ n2 − δn3 − ln(n!)], (8)

where h(λ) is set to enforce 〈n〉 = λ. Note that the correction,
(5), depends only on the stimulus through the predicted firing
rates λ̂[St ], and not on the spike counts ni (t ), as desired.

This computation completes the procedure. The popula-
tion model, (1), now endowed with stimulus-dependent field
functions ĥi[St ], spike count parameters γ and δ, and network
couplings Jij , can be used to predict the population response
to any stimulus S (including stimuli not used during training).
Next we apply the procedure to the retinal network.
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FIG. 1. Ex vivo recording of a retinal ganglion cell shows short-time-scale noise correlations. (a) Top: Activity of one ganglion cell over
repeated presentations of the same stimulus. Bottom: firing rate of the cell across time. (b) Receptive field mosaic of the isolated OFF ganglion
cells. (c) Empirical cross-covariance between two example cells (green trace) superimposed on the covariance between their average firing rate
(black trace). The difference, which is large only at short time scales, is the noise correlation. (d) Zero-lag noise correlation as a function of the
cell pair distance. The black point refers to the pair of neurons plotted in C. The dashed red line shows an exponential fit with a spatial scale of
0.11 mm.

III. APPLICATION TO THE RETINA

A. Description of the data

We reanalyzed a data set of ex vivo recording of the activity
of retinal ganglion cells (RGCs) in Long-Evans adult rats
using a multielectrode array [33] [see Fig. 1(a), top, for an
example response]. The stimulus consisted of a video of two
parallel bars, whose trajectories followed the statistics of two
independent overdamped stochastic oscillators. Additionally,
a white-noise stimulus (random binary checkerboard) was
projected for 1 h to allow for receptive field estimation and
RGC type identification. Raw voltage traces were stored and
spike-sorted off-line through a custom spike sorting algorithm
[40]. We applied a standard clustering analysis based on the
cell response to various stimuli to isolate a population of OFF
ganglion cells of the same type. Their receptive fields tiled the
visual field to form a mosaic [Fig. 1(b)].

The ganglion cell spike times were binned in (1/60)-s time
windows (locked to the stimulus frame rate) to estimate the
empirical spike counts, ni (t ), for cell i in time bin t . The stim-
ulus alternated between nonrepeated sequences of random bar
trajectories and a repeated sequence of randomly moving bars,
displayed 54 times. Nonrepeated sequences were divided into
training (two-thirds of the total) and testing (one-third) sets.
Repeated sequences were equally divided into training and
testing sets by splitting the repeated trajectory into two halves.

B. Stimulus and noise correlations

Before describing the inference of the model, we first
briefly characterize the amount and properties of the stimulus
and noise correlations. To this end, we estimate the mean
firing rate λi (t ) as a function of time in response to the
repeated stimulus sequence as the empirical mean of ni (t )
across repetitions [Fig. 1(a), bottom] and its temporal aver-
age as λi ≡ (1/T )

∑T
t=1 λi (t ), where t = 1, . . . , T spans the

duration of the repeated stimulus. We measure the covariance
between pairs of cells [example in Fig. 1(c)] computed from
the repeated data set between two cells. The total pairwise

covariance, represented in green in Fig. 1(c), is the sum of the
stimulus and noise covariances,

ctot
ij (τ ) = cS

ij (τ ) + cN
ij (τ ), (9)

with

ctot
ij (τ ) = 1

T

T∑
t=1

〈(ni (t ) − λi )(nj (t + τ ) − λj )〉rep, (10)

cS
ij (τ ) = 1

T

T∑
t=1

(λi (t ) − λi )(λj (t + τ ) − λj ), (11)

cN
ij (τ ) = 1

T

T∑
t=1

〈(ni (t ) − λi (t ))(nj (t + τ ) − λj (t + τ ))〉rep,

(12)

where 〈·〉rep represents averages over stimulus repetitions. The
stimulus covariance, shown in black in Fig. 1(c), can be
calculated from the empirical firing rates λi (t ). The noise
covariance corresponds to the difference between the total
and the stimulus covariance. Figure 1(c) shows that this
difference is significantly different from 0 only at zero lag,
(τ = 0), meaning that noise correlations happen on a short
time scale. This suggests that they may be due to gap junctions
[26,41]. Only cells that are physically close (as measured
by the distance between the neurons’ receptive fields) have
large noise correlations [Fig. 1(d)], and their values strongly
decrease with distance.

C. Coupling network

We applied the procedure described in Sec. II C to the
responses to the repeated stimulus to learn the coupling
matrix J. The inference was performed by maximizing the
log-likelihood (see, for example, [42]). We added a small
L2 penalty (with coefficient η L2 ∼ 2 × 10−6) on the fields
hi (t ) to avoid divergences to −∞ when λi (t ) = 0. In order
to avoid spurious nonzero values, we also add an L1 penalty
(with coefficient η L1 = 0.04). We further imposed that Jii be
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FIG. 2. Time-dependent inference provides good estimates of the interaction network. (a) Comparison between the inferred interaction
from the first (later used as training) and the second (later used as testing) halves of the repeated data set. The black line is the identity.
(b) Comparison of the predicted noise correlations when the interaction matrix J learned using the training set is applied to the testing set. The
black line is the identity. (c) The behavior with distance of the inferred interactions scales similarly to that of noise correlations [see Fig. 1(d)],
although it goes to at shorter distances. The dashed red line is an exponential fit with spatial constant 0.08 mm.

independent of i, for consistency with the single-cell model
(see below).

Figure 2 shows the results of the inference. To evaluate
the robustness of the inference with respect to a change in
the stimulus realization, in Fig. 2(a) we plot the interactions
inferred from the training set against those inferred from
another training set of the same size, where the bars followed
a different trajectory. The comparison shows that inferred
networks are robust against a change of stimulus.

To check the validity of this approach, in Fig. 2(b) we
compare empirical noise correlations obtained with the test
data set with those predicted by the model. To obtain this
prediction, we freeze the J matrix obtained from the inference
on the training set and we reinfer the hi (t ) to match the
firing rates of the testing set. The inferred coupling matrix
is able to well predict the noise correlations on a part of the
recording that had not been used to learn them. Figure 2(c)
shows the behavior of the interaction parameters as a function
of the distance between the two neurons’ receptive fields. Jij

decreases with distance slightly more rapidly than the noise
correlations (see Fig. 1 for comparison).

D. A feed-forward single-cell model

To apply the procedure of Sec. II D, we need a model for
the encoding of the stimulus by single neurons. We use a
previously proposed feed-forward model [33] that was specif-
ically developed to predict responses to two-bar stimuli. The
stimulus S(x, t ), representing the time behavior of each pixel,
is first convolved with a Gaussian and biphasic factorized
kernel KBP(x, t ) and then passed through rectified quadratic
units with the two possible polarities

�±(x, t ) =
[∫

dx ′ dt ′ KBP(x − x ′, t − t ′)S(x ′, t ′)
]2

±
, (13)

where [y]+ = max(y, 0) and [y]− = min(y, 0) . The inter-
mediate variable �(x, t ) is then fed into a second nonlinear
stage: for each cell i, it is first convolved with a receptive field

K±
i (x, t ) and then passed through a nonlinear function,

λ̂i[St ] = fi

(∫
dx dt ′ (K+

i (x, t − t ′)�+(x, t )

+K−
i (x, t − t ′)�−(x, t ))

)
, (14)

with fi (y) = ai ln[1 + exp (bi (y + ci ))].
To infer the parameters of the model we follow a simplified

version of [43], where only the second nonlinear stage is
learned. We keep the first stage fixed on a setting that has
been shown to work well [33]. For the second stage we apply
an iterative procedure where we maximize the log-likelihood
of the data under the model given by Eq. (4), penalized by
a weighted sum of the L1 and L2 norms of the parameter
vector. We used the nonrepeated training set to compute the
log-likelihood gradient. To avoid overfitting we early-stopped
the iterative procedure when the log-likelihood computed on
the nonrepeated testing set stopped increasing. L1 and L2
penalties were optimized by maximizing the performance
on the repeated data set that we use later for training the
population model.

In Fig. 3(a) we compare the time course of the empirical
firing rate, λi (t ), with the prediction of the inferred model
for an example cell. By computing the Pearson correlation
among these two temporal traces (ρ = 0.87), we can estimate
the performance of the model for each cell. In Fig. 3(b) we
compare this performance with the reliability of the retinal
spike activity, estimated as the correlation between two dis-
joint subsets of responses to the repeated stimulus and found
that they were comparable. In Fig. 3(c) we show how the
model predicts the empirical stimulus covariances. Even if a
small underestimation is present, the model accounts for more
than 84% of the empirical value (slope of a linear fit).

E. Complete population model

The final step is to combine the single-cell model and
the interaction network, as explained in Sec. II E. In Fig. 4
we compare the performance of the population, (1), and
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FIG. 3. Predictions of the conditionally independent feed-forward model. (a) For an example cell, the model-predicted firing rate (red
trace) is superimposed on the empirical one (green trace). By computing the correlation between the two traces (ρ = 0.87) we can estimate
the model performance. (b) Scatterplot of the model performance vs the cell reliability, computed as the correlation between two halves of the
repeated data set. The black point refers to the cell in panel A. (c) Model-predicted stimulus covariances account for more than 84% of the
stimulus covariance (slope of a linear fit) but systematically underestimate their empirical value. The black line is the identity.

conditionally independent, (4), models in a testing set that
was not used for learning. In Figs. 4(a) and 4(b), we check
that inferring the population model still preserves the quality
of the prediction of single-cell activity obtained with the
independent model. We compare the performance of the two
models in reproducing the firing rate of the recorded cells
[same quantity as in Fig. 3(b)]. The firing rate is a stimulus-
dependent quantity, and accordingly, the two models show
a similar performance. The fact that the population model’s
performance is not degraded compared to that of the single-
cell model validates the approximations made to calculate the
corrections �ĥ[St ] within the TAP approach. In addition, the
fact that this performance is not improved is also a positive
sign: it implies that the couplings do not try to compensate
for failings of the encoding model and only reflects noise
correlations. Figure 4(b) shows that the two models show a
similar performance also for spike count variance.

However, the population model largely outperforms the
conditionally independent model in predicting the population
joint activity. Figure 4(c) shows how the population model
accounts well for noise covariances in a testing set (blue
points). By construction, the conditionally independent model
predicts vanishing noise covariance (red points).

The complete interacting model can be used to predict
the stochastic correlated activity of the network in response
to yet unseen visual stimulation. To demonstrate this capa-
bility, we quantified its performance in predicting spikes in
a cell elicited by stimuli that were not shown in the infer-
ence procedure and given the activity of all the other cells,
P (ni |{nj }j �=i , St ), and compared it to that of the conditionally
independent model [Eq. (4)]. The population model showed a
substantial gain in log-likelihood relative to the noninteracting
model [Fig. 4(d)], especially for large spiking events [for
instance, for events with 3 spikes, a mean log-likelihood

(a) (b) (c) (d)
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FIG. 4. Population model predicts empirical noise covariances and performs as well as the conditional-independent model on stimulus-
dependent quantities. (a) The performance in estimating the cell firing rate [same as Fig. 3(b)] of the population model is equivalent to that
of the conditionally independent model. (b) Both models also have the same performance in predicting the spike count variance. (c) The
population model predicts empirical noise covariances when applied to a testing set (blue points), while the conditionally independent model
predicts zero-noise covariances (red). (d) The population model predicts the spiking activity of neurons in response to yet unseen stimuli and
given the activity of other cells better than the conditionally independent model, as measured by the log-likelihood difference between the two
models averaged over all cells and time bins (conditioned on the number of observed spikes in the bin). In particular, including network effects
becomes more important as cells have a larger spiking activity.
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FIG. 5. Inferred couplings generalize from one stimulus ensem-
ble to another. (a) Scatterplot of the inferred couplings from the
response to the two-bar stimulation (x axis) vs those from the
response to the checkerboard. (b) Population model prediction of
empirical noise covariances in response to the two bars when the
couplings are inferred from repeated checkerboard stimulation.

difference of 1.5 means a typical likelihood gain of
exp(1.5) ≈ 4.5]. This result indicates that including properly
inferred network effects improves the prediction of the re-
sponse.

F. Robustness of the inference of the couplings to the choice of
stimulus

A major challenge in fitting complex encoding models
to neural responses is that they rarely generalize well. Here
we ask if the interaction network can be inferred from a
qualitatively different stimulus and then applied to our two-
bar stimulation. To test for this, we infer the couplings as in
Sec. III C, but on the response to repeated white noise (random
checkerboard) stimuli. In Fig. 5(a) we compare the couplings
inferred from the white-noise stimulus to the couplings in-
ferred from the two-bar stimulus. We then use the coupling
matrix J learned for the white-noise stimulus in a complete
population model to predict the response to two-bar stimuli
(fitted following Secs. III D and III E). In Fig. 5(b) we show
that this model predicts noise covariances when applied to the
two-bar testing set.

This demonstrates that our inference method allows us
to generalize from one stimulus type to another and that
the inferred couplings between neurons are invariant to the
stimulus.

IV. DISCUSSION

We have introduced a model for the spiking activity of
a population of sensory neurons responding to a stimulus,
in which extrinsic and intrinsic correlations are clearly sepa-
rated. Our method is general and could be applied to structures
other than the retina. It could also be extended to models
where the influence of the stimulus on single-cell activity is
described by nonlinear models different from those illustrated
here, e.g., a deep network with more layers [44].

Our inference strategy allows us to infer couplings be-
tween neurons that only reflect noise correlations between
neurons, without the interference of stimulus effects due to
artifacts of the inference procedure. Such effects can arise
when the inference procedure tries to use the activity of other
cells as a surrogate for the stimulus itself to improve the
predictability of a given cell, compensating for nonlinearities
in the stimulus dependence that are unaccounted for by the
model. The inferred couplings thus show a weak dependence
on the stimulus ensemble driving the neuronal response, in
contrast to previous attempts where the stimulus ensemble had
a major influence on the couplings [9]. Note that checkerboard
and two-bar stimulations drive very different responses of the
retina. It is thus a remarkable result that noise correlations
in the response to a complex film of moving objects can be
predicted by couplings inferred from responses to white-noise
stimuli. This result can thus be seen as a first step toward
the construction of a full model that accounts for large and
heterogeneous stimulus ensembles.

Although our goal was only to build effective, predic-
tive models of network activity, one can speculate on the
biophysical interpretation of the inferred parameters. Since
retinal ganglion cells do not share synaptic connections, the
inferred effective couplings likely reflect gap junctions [26] or
common noisy inputs from upstream layers [41]. These inter-
actions are symmetric and fast and are modeled by same-time
effective couplings Jij in our model, in accordance with the
short-ranged, short-lived nature of the observed correlations
[Figs. 1(c) and 1(d)]. However, our approach could be gen-
eralized to account for delayed interactions and asymmetric
cross-correlations through the inference of time-delayed in-
teraction terms Jij (�t )ni (t )nj (t + �t ). Such couplings could
be inferred from responses to repeated stimuli in the same way
as described in this paper. Although including time delays is
not necessary for the retina, it may be useful for modeling
other sensory areas where temporal correlations are more
complex [14].

Having models that account for noise correlations is a
crucial first step to study their impact on coding complex
stimuli. This impact can be quantified by comparing the popu-
lation model to the conditionally independent model (Jij = 0)
or to alternative population models with different coupling
matrices. By comparing the computations performed by these
models, future works will be able to clarify how these fast
noise correlations affect coding in the retina.

The same strategy can be used in other sensory structures
or any other noisy interacting biological systems responding
to external inputs. In particular, similar approaches could be
used to distinguish common inputs from direct regulatory in-
teractions (causal or direct) in gene regulation networks [45],
to infer the effect of environmental cues on interacting animal
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FIG. 6. (a) Total response covariances predicted by the coupled GLM model (y axis) versus response covariances measured from the data
(x axis). Each point corresponds to a single neuron pair. (b) Noise covariances predicted by the coupled GLM model (y axis) versus noise
covariances measured from the data (x axis). (c) Firing rate of a single example cell [green; also plotted in Fig. 2(a)], alongside the predictions
of the coupled (“population”; blue) and uncoupled (“conditionally independent”; red) GLM models. (d) Correlation coefficient between the
firing rate predicted by the coupled (y axis) and that by the uncoupled (x axis) GLM models and data, for each cell. The cell shown in (c) is
indicated in black.

groups such as bird flocks and fish schools [46–48] from field
data, or to disentangle phylogenic correlations from epistatic
interactions between residues in protein families [49].
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APPENDIX A: GENERALIZED LINEAR
MODEL ANALYSIS

We fitted a GLM to the responses of Nr = 25 OFF cells
in response to the moving bar stimuli. We discretized the
response and stimulus using temporal bins of length 1.667 ms
(i.e., 600 Hz; 10 times smaller than the temporal bins used
for the model described in this paper). The response of the
ith neuron at time t is described by an integer ni (t ) denoting
the number of spikes fired by the ith neuron in the t th time
bin. The spatial location of the presented bar stimuli was
discretized into Nx = 100 equisized bins. The stimulus at
time t was denoted by a binary vector xt , of which the ith
component [xi (t )] was set to 1 when one of the bars was
centered on the corresponding spatial location at time t and
to 0 otherwise.

In a GLM, the spiking response of each neuron is assumed
to be Poisson distributed, with the mean number of spikes of
the ith neuron at time t given by exp (ri (t )), where

ri (t )=
Nx∑
j=1

Nw−1∑
k=0

wijkxj (t − k) +
Nr∑
j=1

Nv∑
k=1

vijknj (t − k) + bi.

(A1)

In this equation, bi denotes a constant bias term, wijk is an
element of the temporal stimulus filter (of size [Nr,Nx,Nw]),

and vijk is an element of the recurrent filter (of size
[Nr,Nr,Nv]). We used a stimulus filter of length Nw =
200 (i.e., ∼300 ms) and recurrent filters of length Nv = 15
(i.e., ∼25 ms).

Model parameters were fitted by maximizing an objective
function consisting of the log-likelihood (which, for a Poisson
distribution, is given up to a parameter-independent constant
by L = ∑

i,t [ni (t )ri (t ) − eri (t )]) minus an L2 norm regular-
ization term that promoted smooth filters and thus prevented
overfitting. The regularization parameters were chosen to
maximize the log-likelihood on test data, held out during
model fitting. Further, to reduce the number of parameters,
and thus further reduce overfitting, we assumed that the
stimulus filter could be described as the sum of Nrank = 3
spatiotemporally separable filters, each given by a spatial
filter multiplied by a temporal filter (i.e., wijk = ∑Nrank

l=1 ul
ij a

l
ik ,

where u and a here denote the spatial and temporal filters,
respectively). Relaxing this assumption (by increasing Nrank)
did not improve the quality of the model fit.

We evaluated the performance of the GLM model in fitting
the covariances between the responses of pairs of neurons
[Fig. 6(a)]. Interestingly, despite giving a reasonable fit of
the total response covariances (Pearson correlation = 0.87),
the model gave a poor fit of the noise covariances [compare
Fig. 6(b) with Fig 4(c)]. We wondered whether this could be
because the recurrent filters, v, not only captured interactions
between neurons, but also compensated for the inability of
the feed-forward filters, w, to fully capture the effects of the
stimulus on neural firing rates. To see if this was the case, we
compared the coupled “population model” described above,
with firing rates given by Eq. (A1), with an uncoupled “con-
ditionally independent” model, where the recurrent filters,
v, were set to 0. We found that the coupled GLM model
resulted in improved predictions of the recorded PSTH for
nearly all recorded OFF cells, compared to the uncoupled
model [Figs. 6(c) and 6(d)]. This suggests that, rather than
just fitting the interactions between different neurons, the
coupled GLM model used the recurrent filters, v, to improve
the prediction of how each neuron responded to the stimulus.
However, it remains to be seen whether further differences
between the GLM and the Ising model (e.g., time-dependent
recurrent filters, Poisson-distributed firing rates) could also
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contribute to their different performances in predicting the
noise covariances.

APPENDIX B: CONSTRUCTION OF THE MEAN-FIELD
THEORY AND THOULESS-ANDERSON-PALMER

CORRECTION

We are interested in computing the TAP correction to the
fields hi (t ) due to the addition of the coupling term J; see
Eq. (1). Because we are not interested in the TAP expression
for couplings or in that for covariances, we can construct the
mean-field theory for a single time bin. Otherwise, because
the couplings are constant in time we should have considered
the whole model. To apply the Plefka expansion we introduce

F [α, h, J ] ≡ − ln
∑

n

exp {−H1(n) − αH2(n)}, (B1)

where we neglect the t dependence of H1 because here we
focus on a single time bin. The Legendre transform of (B1)
reads

G[α,λ, J ] =
∑

i

h̃iλi + F [α, h̃, J ], (B2)

where h̃ = h̃[α,λ] is defined implicitly from

∂
( ∑

i hiλi + F [α, h, J ]
)

∂hi

∣∣∣∣∣
h=h̃

= λi − 〈ni〉(α)|h=h̃ = 0, (B3)

where 〈. . . 〉(α) is the average with respect to the distribu-
tion related to the free energy, (B1). Our goal is to expand
G(α,λ, j ) in powers of α up to the second order. First, we
evaluate the derivatives,

G′[α,λ, J ] = 〈H2(n)〉(α), (B4)

G′′[α,λ, J ] = −〈H2(n)2〉(α)
c

−
∑

g

∂h̃g

∂α
〈H2(n)(ng − λg )〉(α), (B5)

∂h̃g

∂α
= −〈H2(n)(ng − λg )〉(α)

〈
n2

g

〉(α)
c

, (B6)

where, to obtain the last equality, we applied the implicit func-
tion theorem to Eq. (B3). The Plefka approximation consists
of estimating G[λ, J ] = G[α = 1,λ, J ] from the expansion
around α = 0 evaluated at α = 1:

G[λ, J ] ≈ G[0,λ, J ] + G′[0,λ, J ] + 1
2G′′[0,λ, J ]. (B7)

We need G[α,λ, J ] and its derivatives at α = 0. To this
aim we note that h̃i[α = 0,λ] = h̃i[λi], as for α = 0 the
system units become independent and consequently h̃i de-
pends only on λi . For α = 0, in fact, the distribution over
{ni}Ni=1 factorizes over a set of single variable distributions.
This allows us to compute model expectations at α = 0.
For future convenience, we define the moments of such
distributions

P (s) ≡ 〈ns〉(α=0) (B8)

so that the terms in the expansion become

G[0,λ, J ] =
∑

i

h̃iλi + F [α = 0, h̃], (B9)

G′[0,λ, J ] = −
∑
i<j

Jijλiλj −
∑

i

JiiP
(2)
i , (B10)

G′′[0,λ, J ] = −
∑
i<j

J 2
ij

(
P

(2)
i − λ2

i

)(
P

(2)
j − λ2

j

)

−
∑

i

J 2
ii Wi, (B11)

where W has been defined in Eq. (7).
The mean-field equation for the fields h can be easily

obtained by a reverse Legendre transform of Eq. (B7),

hi = ∂G[λ, J ]

∂λi

(B12)

= h̃i[λi] + ∂G′[0,λ, J ]

∂λi

+ 1

2

∂G′′[0,λ, J ]

∂λi

, (B13)

which provides the expression, (5), for the TAP correction.
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