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Neural noise sets a limit to information transmission in sensory systems.
In several areas, the spiking response (to a repeated stimulus) has shown
a higher degree of regularity than predicted by a Poisson process. How-
ever, a simple model to explain this low variability is still lacking. Here
we introduce a new model, with a correction to Poisson statistics, that
can accurately predict the regularity of neural spike trains in response to
a repeated stimulus. The model has only two parameters but can repro-
duce the observed variability in retinal recordings in various conditions.
We show analytically why this approximation can work. In a model of
the spike-emitting process where a refractory period is assumed, we
derive that our simple correction can well approximate the spike train
statistics over a broad range of firing rates. Our model can be easily
plugged to stimulus processing models, like a linear-nonlinear model or
its generalizations, to replace the Poisson spike train hypothesis that is
commonly assumed. It estimates the amount of information transmitted
much more accurately than Poisson models in retinal recordings. Thanks
to its simplicity, this model has the potential to explain low variability
in other areas.
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1 Introduction

Neural variability imposes constraints on the way neurons transmit and
process information (Movshon, 2000) and has been extensively studied in
the mammalian visual system (Barlow & Levick, 1969; Heggelund & Albus,
1978; Tolhurst, Movshon, & Thompson, 1981; Kara, Reinagel, & Reid, 2000)
and beyond (de Ruyter van Steveninck, Lewen, Strong, Koberle, & Bialek,
1997; Baddeley et al., 1997; DeWeese & Zador, 2003; Churchland et al., 2010).
The Fano factor (the ratio of the spike count variance to the mean) is often
used to characterize such variability. Many studies have reported various
values for the Fano factor depending on brain area (Kara et al., 2000) or ex-
perimental condition (Churchland et al., 2010). AFano factor lower than one
suggests that neurons spike regularly, a condition sometimes termed un-
derdispersion (Gur, Beylin, & Snodderly, 1997; Kara et al., 2000; Barberini,
Horwitz, & Newsome, 2001; DeWeese & Zador, 2003; Maimon & Assad,
2009). A Fano factor above one is termed overdispersion (Baddeley et al.,
1997; Churchland et al., 2010).

A common model for a neural spike count is to assume Poisson statistics,
where the variance in the number of spikes emitted is equal to its mean and
the Fano factor is thus one. Like the classical linear nonlinear poisson (LNP;
Chichilnisky, 2001), many models describing how stimuli are processed
by individual neurons rely on this assumption. New models are therefore
needed to account for the deviations from Poisson statistics observed in the
data. Several models have been proposed to account for overdispersion in
the spike count distribution (Goris, Movshon, & Simoncelli, 2014; Scott &
Pillow, 2012; Charles et al., 2017). For underdispersed spike count distri-
bution, a few models have been proposed, but they come with specific con-
straints. One possibility is to use a spike history filter that allows past spikes
to inhibit the probability of emitting a new spike at present (Pillow et al.,
2008). However, this approach requires defining the probability of spiking
over very small time bins (e.g., 1 ms), and consequently needs several pa-
rameters or strong regularization to describe the spike history filter. Other
models have been proposed, but some have many parameters (e.g., approx-
imately seven for each cell in Gao, Busing, Shenoy, & Cunningham, 2015),
and may therefore require very large data sets to learn the model or make
specific assumptions that may not always be verified in the data (Sellers,
Borle, & Shmueli, 2012; Stevenson, 2016). Overall, it is unclear if a general
yet simple model can account for the spike count distribution found in the
data (Charles et al., 2017).

Here we present a simple model that can account for underdispersion
in the spike count variability, with only two parameters. Our starting as-
sumption is that the deviation from Poisson statistics comes from the re-
fractory period—the fact that there is a minimal time interval between two
spikes. We start from the analytic form of the spike count probability taken
by a spike generation process composed of an absolute refractory period
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followed by a Poisson process, and show that it can be approximated by a
model with only one parameter to fit to the data. We further simplify the
model to make it amenable to log-likelihood maximization. We then relax
our assumption by allowing for a relative refractory period (Berry & Meis-
ter, 1998) and derive a more flexible model with two parameters that can
accurately predict neural variability. The simple form of this model makes
it possible to plug it on classical stimulus processing models (e.g., linear-
nonlinear (LN) model; Pillow et al., 2008) or more complex cascade mod-
els (Deny et al., 2017), that can be fitted with log-likelihood maximization.
We test our model on retinal data and find that it outperforms the Pois-
son model, as well as other statistical models proposed in the literature to
account for underdispersion. Either our model performs better at describ-
ing the data or other models need more parameters for an equally accurate
description. When combined with classical stimulus processing models,
our model is able to predict the variance of the spike count over time, as
well as the amount of information conveyed by single neurons, much bet-
ter than classical models relying on Poisson processes. We thus propose a
simple model for neural variability, with only two parameters, that can be
used in combination with any stimulus processing model to account for
sub-Poisson neural variability.

2 Sub-Poisson Behavior of Retinal Ganglion Cells

We used previously published data (Deny et al., 2017) where we recorded
ganglion cells from the rat retina using multielectrode arrays (Marre et al.,
2012; Yger et al., 2016). Two types of ganglion cells, ON and OFF, with recep-
tive fields tiling the visual space, were isolated in these experiments (n = 25
and n = 19 cells, respectively). Cells were then stimulated with the video of
two parallel horizontal bars performing a Brownian motion along the verti-
cal direction (Deny et al., 2017). Some stimuli sequences were repeated and
triggered reliable responses from ganglion cells (see Figures 1A and 1B, top
panels).

We then binned the retinal ganglion cell (RGC) responses with 16.7 ms
time windows �T locked to the frame update of the video stimulation
(60 Hz). For each cell i in each time bin t and for each stimulus repetition rep,
we associated an integer spike count nrep

i (t) equal to the number of emitted
spikes in that time window. In order to analyze the cell reliability as a func-
tion of the firing rate, for each cell and time bin, we computed the mean
(λi(t)) and variance (Vi(t)) of this spike count across repetitions of the same
stimulus. In Figures 1A and 1B, (bottom panels), we show the firing rate
of two example ON and OFF cells, together with its fluctuation across the
repetitions (colored areas). For comparison, we also show the fluctuations
that can be expected from a Poisson process, that is, with a variance equal
to its mean. During transients of high activity, cells are more reliable than
what can be expected.
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Figure 1: Sub-Poisson behavior of RGCs. (A) Top: Example raster plot for one
OFF cell. Bottom: Firing rate behavior for the same cell. Colored (resp. black)
area delimits the empirical (resp. Poisson) noise, as mean +/− 1 SD. (B) Same as
panel A but for an example ON cell. (C) Top: Histogram of the observed means
of the spike count across stimulus repetitions (time bin of 16.7 ms) pooled across
all cells of the same type. Time bins with zero mean have been excluded. Bot-
tom: Mean of spike count across stimulus repetitions plotted against its vari-
ance. Each point corresponds to one cell in one time bin. Multiple points are su-
perimposed. Green solid line: Average of points with similar mean. Black line:
Prediction from a Poisson distributed spike count. (D) Same as in panel C but
for ON cells. Note the increase of activity with respect to OFF cells.

Figures 1C and 1D show that both ON and OFF cells have a sub-Poisson
variability. Variances of spike counts are much lower than their means, and
their ratio (the Fano factor, equal to 1 for Poisson distributions) is not only
smaller than one but decreases with the mean. Note that here and for the rest
of the letter, we pool together all the cells of the same type when estimating
the parameters of the spike generators. We found that spike statistics were
remarkably homogeneous across cells of the same type, and this gives us
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more data to fit different models. However, the same process could have
been applied on a single cell, with enough repetitions of the same stimulus.

These results are consistent with previous findings (Berry & Meister,
1998; Kara et al., 2000): ganglion cells emit spikes more reliably than a
Poisson process. Consequently, a model for predicting the RGC response
that accounts for noise with a Poisson generator—for example, the LNP
model (Chichilnisky, 2001)—largely underestimates this spiking precision.
We then search for a simple model to account for this relation between sig-
nal and noise.

3 Spike Count Statistics for a Refractory Neuron

Absolute or relative refractory periods are known to impose some regular-
ity on the sequence of emitted spikes (Berry & Meister, 1998; Kara et al.,
2000) and thus to decrease the neural variability. We aim at looking how
refractoriness affect the spike count distribution of the spike train. We con-
sider a model of refractory neurons where the instantaneous rate is inhib-
ited by an absolute refractory period of duration τ . Such a neuron has the
following interspike interval (ISI) distribution:

ρ�(t) = �(t − τ )re−r (t−τ ), (3.1)

where �(u) is the Heaviside unit step (�(u) = 1 for u > 0 and zero other-
wise) and r is the firing rate in absence of refractoriness. From the ISI distri-
bution 3.1, we can estimate the probability distribution of the spike count
n, that is, the probability distribution of the number of spikes emitted in a
time bin �t. For the particular case of τ = 0, λ ≡ 〈n〉 = r�t, and n follows a
Poisson distribution:

PPois
(
n
∣∣λ) = λn

n!
e−λ. (3.2)

For τ > 0, n follows a sub-Poisson distribution P�( n | r,�t, τ ), which admits
an analytic (albeit complex) expression (Müller, 1974; see equation 10.1) in
section 10, Methods, and the derivation in the supplementary information).

To test if this expression accounts well for the data, we need to adjust the
value of the refractory period τ for both cell types. Because the complex ex-
pression of P�( n | r,�t, τ ) makes it hard to apply likelihood maximization,
we perform the inference of τ by minimizing the mean square error (MSE)
of the mean-variance relation, summed over all the cells and time bins of
the training set (see section 10, Methods). We estimate τ for the two popula-
tions separately and found τ = 8.8 ms for OFF cells and τ = 3.1 ms for ON
cells. In Figure 2 we compare the model prediction, with the mean-variance
relation measured on the testing set. The good agreement of the predictions
suggests that this simple model of refractory neurons accounts well for the
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Figure 2: A simple neuron model with an absolute refractory period accounts
for the observed spike count statistics. (A) Relation between mean and variance
predicted by the model (pink) and measured for the OFF population (green;
same data as Figure 1). (B) Same as panel A, but for the ON population.

neural variability, even when the firing rate is large. A simple model that
takes into account the deviation from Poisson statistics due to the refrac-
tory period is thus able to predict the mean-variance relation observed in
the data.

4 Simple Models for the Spike Count Statistics

We have shown how a rather simple model of refractory neurons accurately
reproduces the mean-variance relation of the recorded cells. However, the
model has a complicated analytic form, which is not easily amenable to a
likelihood-maximization approach, and it cannot be considered an alterna-
tive to models based on Poisson generators such as the LNP model. To over-
come this limitation, we propose a further simplification of the refractory
neuron that is much more efficient and tractable.

For τ = 0, the refractory distribution P�( n | r,�t, τ ) reduces to the Pois-
son distribution (see equation 3.2). The small values of the refractory
periods relative to the bin size suggest that an expansion at small τ could
capture most of the model’s behavior. We expand P�( n | r,�t, τ ) around the
Poisson distribution to the second order in the small parameter f = τ/�T
(see section A.3 for details):

P(2nd)
� ( n | λ, f ) = exp

{
θλn − ( f − f 2)n2 − f 2

2
n3 − log n! − log Zλ

}

(4.1)

θλ chosen such that 〈n〉P(2nd)
� ( n | λ, f ) = λ, (4.2)
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Figure 3: Second-Order and Effective models account well for observed spike
count statistics. (A) The empirical behavior for the OFF population estimated
from the repeated two bars stimulus (Green; same data as Figure 1) is compared
with the prediction of Second-Order (purple) and effective (red) models. Lines
superimpose as the two models take a very similar form for the OFF population.
For comparison, Poisson prediction is shown in black (equality line) Inset: The
function θλ of the two models (see the text), is compared with θλ = log λ for the
Poisson model (black line) (B) Same as panel A, but for the ON population. In
all cases, models are learned on a separate training set.

where Zλ is a normalization constant. The “second-order” model, equation
4.1, has only one free parameter, f or, equivalently, τ . θλ is a function of λ and
has to be estimated numerically in order to reproduce the mean spike count
λ once the refractory period τ has been fixed. For instance, for τ = 0, θλ =
log λ and the second-order reduces to the Poisson distribution. Importantly,
the coefficients of the n2 and n3 terms do not depend on the firing rate, r,
insofar as the refractory period does not either. The exponential form of the
model makes it easy to calculate its derivatives and to use with maximum
likelihood methods.

We infer τ through a log-likelihood maximization (see Methods, section
10) using equation 4.1 for OFF and ON populations separately. From these
values we can estimate the refractory period for the second-order model:
τ = 10.8 ms for OFF cells and τ = 3.0 ms for ON cells. In Figure 3 we com-
pare the model predictions for spike count variance V with the empirical
values. Unlike in the previous section, model parameters were not opti-
mized to best fit this curve, since it was fitted using log-likelihood max-
imization. Yet the second-order model shows a high performance for the
OFF population, even at large firing rates. Despite the approximation, the
model is still able to describe accurately the mean-variance relation and
can now be fitted using maximum likelihood approaches. For ON cells, the
model outperforms the Poisson model, but the mean-variance relation is
not perfectly predicted. We will explore why this could be the case and
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improve our model to arrive at a more flexible one that can be suited for
a broader range of experimental cases.

5 A Simple, Effective Model to Describe Spike Train Statistics

The previous results hold for a very specific assumption about how refrac-
toriness constrains firing, with just a single fitting parameter: the refractory
period. We thus wondered whether more general rules of refractoriness
could give rise to a broader class of sub-Poisson spiking distributions, al-
lowing for better agreement with the data.

We considered a general model in which the instantaneous spike rate
is now inhibited by a time-dependent factor, α(r, u)r, where r is the spike
rate in the absence of refractoriness and u is the time following the previ-
ous spike, with α(r, 0) = 0 and α(r, u ≥ τ ) = 1. For instance, a pure refrac-
tory period is defined by α(r, u) = 0 for u < τ and α(r, u) = 1 for u > τ . A
soft refractory period, where the spike rate recovers linearly in time, would
be given by α(r, u) = u/τ for u < τ and α(u, t) = 1 for u > τ . Calculating
the spike count distribution under this assumption is intractable analyti-
cally, but a second-order expansion such as the one performed in the pre-
vious section can still be performed, and yields the following expression at
second-order (see section A.3):

P(2nd)
α ( n | λ, r, f,�t ) = exp

{
θλn − γαn2 − δαn3 − log n! − log Zλ

}
(5.1)

γα = f − f 2 + (2 + r�t)
(

f 2

2
− g

)

δα = f 2 − g = f 2

2
+
(

f 2

2
− g

)

θλ chosen such that 〈n〉P(2nd)
α ( n | λ,r, f,�t ) = λ, (5.2)

where f ≡ ∫∞
0 du (1 − α(r, u))/�t and g ≡ ∫∞

0 du u (1 − α(r, u))/�t2. The
special case of a pure refractory period, α(r, u) = 0 for 0 ≤ u ≤ τ , gives back
equation 4.3 and the previous definition of f . In this case, f 2/2 − g vanishes.
This quantity can thus be considered as an estimate of the deviation from
the absolute refractoriness. Again, θλ should be adjusted to match the aver-
age number of spikes in each cell and time bin, λi(t).

This analytic development shows that the coefficients of n2 and n3, γα

and δα , can have very different forms depending on the exact form of the
refractoriness. We thus decided to relax the assumption of a strict depen-
dence between γα and δα . We tested if a model with γα and δα that does not
depend on r shows good agreement with the data. In the following, we thus
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treat the coefficients of n2 and n3 in equation 5.1 as two parameters that are
independent of each other and also independent of the firing rate.

The resulting Effective model is defined for any mean spike count λ as

PEff( n | λ, γ , δ ) = exp
{
θλn − γ n2 − δn3 − log n! − log Zλ

}
(5.3)

θλ chosen such that 〈n〉PEff ( n | λ,γ ,δ ) = λ, (5.4)

where, as before, θλ is not a free parameter but a uniquely defined function
of λ with parameters γ and δ. While λ is set to its time-dependent value λt , γ
and δ are assumed to be constant parameters of the model. The probability
distribution, equation 5.3, belongs to the class of weighted Poisson distribu-
tions, and its mathematical properties have been already studied elsewhere
(del Castillo & Pérez-Casany, 2005).

We infer γ and δ through a log-likelihood maximization on the OFF and
ON cell separately. For the OFF population we obtain similar values as the
Second-Order model (see Figure 3A). By contrast, for the ON population,
the Effective model takes advantage of the additional free parameter and
uses it to improve its performance. We obtained the values γ ∗

ON = −0.52
and δ∗

ON = 0.15, while the equivalent parameter values in the Second-Order
model are f ∗

ON − f ∗2
ON = 0.15 and f ∗2

ON/2 = 0.02.
This Effective model is therefore a simple model able to describe accu-

rately, with only two parameters, the mean-variance relation for different
types of refractoriness.

6 Benchmark of Proposed Models

The Effective model outperforms a Poisson model at predicting the em-
pirical spike count variance. In this section, we compare its performance
with two other spike count models proposed in the literature. The Gener-
alized Count (Gen.Count) model (Gao et al., 2015) can be seen as a gen-
eralization of our Effective model (with arbitrary dependence on n in the
correction to Poisson, not limited to a linear combination of n2 and n3; see
equation 10.13 in Methods, section 10) and thus offers larger flexibility to
model the spike count statistics. This, however, comes at the price of in-
troducing more parameters to fit and could potentially lead to overfitting.
The Conwey-Maxwell-Poisson (COMP) model (Sellers et al., 2012 see equa-
tion 10.14) has been proposed to account for both an under- and overdis-
persed mean-variance relation (Stevenson, 2016). COMP is a one-parameter
extension of Poisson, which differs from our Effective model but is still
a particular case of Gen.Count (see section 10, Methods, for details). For
completeness, we also compare the Refractory model, P� of equation 10.1
and its second-order expansion, the Second-Order model, P2nd

� of equation
4.1.
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Figure 4: Second-Order (see equation 4.1) and Effective (see equation 5.3)
model performance compared with known spike count models: COMP (see
equation 10.14) and Generalized Count (see equation 10.13). Log-likelihood im-
provement over the Poisson for several models, all learned on a separate train-
ing set, for OFF cells (A) and ON cells (B).

We compare the performance of different models as an improvement
over the Poisson log likelihood (see Figure 4). For the OFF population
(see Figure 4A), all models outperform Poisson and have similar perfor-
mance. This is probably because OFF cells show rather small firing rates
and rarely emit more than two spikes in the same time bin. The addition of
one parameter (with respect to Poisson) is thus enough for accurately mod-
eling the spike count statistics. However, for the ON population (see Fig-
ure 4B), while all the considered models outperform Poisson, Effective and
Gen.Count show the largest improvement. Remarkably, the one-parameter
Refractory and Second-Order models show very high performance as well,
despite the first being learned by fitting the mean-variance relation of the
spike count rather than by maximizing the likelihood. Also, in this case, the
larger flexibility of the Gen.Count model does not bring an improvement.

To test if these models can generalize to other stimulus statistics, af-
ter learning the parameters of the model on the responses to the moving
bars stimuli, we test them on the responses of the same cells to a repeated
sequence of checkerboard stimulus. We find that neurons also had sub-
Poisson behavior in response to this stimulus, with spike count variances
smaller than the corresponding means, very similar to Figures 1C and 1D.
Figure 5 shows the log-likelihood improvement over the Poisson model. All
models performed better than Poisson, except for the COMP model, which
for the ON cells does not seem to generalize to other stimuli. In particular,
for OFF cells we found that the Refractory model has the best performance,
just a bit larger than the Second-Order and the Effective model (both have
very similar performances; see the previous section). For ON cells, Effec-
tive and Gen.Count models show the best performance. Also in this case,



A Simple Model for Low Variability in Neural Spike Trains 3019

Figure 5: Performance of different models on response to checkerboard stim-
ulation. Same as Figure 4, but the testing set was the response to a repeated
checkerboard stimulation

the larger flexibility of Gen.Count does not bring a performance improve-
ment. The Effective model is thus a simple model to describe deviation from
Poisson statistics with only two parameters. It works as well as the most
general model, Gen.Count, to describe the sub-Poisson variability but with
fewer parameters. It also performs better than other models with a low
number of parameters.

7 Impact of Noise Distribution on Information Transfer

The ability of neurons to transmit information is limited by their variabil-
ity (Movshon, 2000). If neurons are less reliable or, equivalently, have larger
variance, their capacity to transmit information should be significantly de-
creased. To properly estimate the amount of information transmitted by a
neuron, a model should reproduce such variability. To test for this, we quan-
tify the amount of stimulus information encoded by emitted spikes as the
mutual information MI between the spike count n and its mean λ,

MI(n, λ) = H[ P(n) ] − 〈
H[ P(n|λ) ]

〉
λ
, (7.1)

where H is the entropy function and P(n) is the distribution of the spike
count without conditioning on the mean over repetitions. 〈. . .〉λ is the av-
erage over the observed mean spike count, and P(n|λ) is the distribution
of n at fixed λ, estimated either empirically from the repeated data or with
the model. To avoid undersampling issues typical of time bins with low ac-
tivity and due to the finite number of stimulus repetitions, we restrict the
averages to all cells and time bins with λi(t) > 0.1.

In Figure 6, for both OFF and ON populations, Poisson largely under-
estimates mutual information, whereas the Effective model predicts well
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Figure 6: Second-Order and Effective model predicts empirical information
transmission. Empirical estimation of the mutual information is compared with
prediction for Poisson (black), Second-Order (pink), and Effective (red) models.
Using Poisson as noise distribution for the spike count leads to a strong under-
estimation, biasing the prediction of information transfer of stimulus processing
models. Error bars are standard deviation of the mean over λ (see equation 7.1).

the value of mutual information. Our model can thus be used to correctly
estimate the mutual information thanks to its accurate prediction of the
mean-variance relation.

Note that equation 7.1 is a mutual information for a single time bin and
cannot be used to calculate information rates over spike trains because of
its nonadditivity across time due to stimulus temporal correlations. (See
Figure 8 for further details and explanations.)

8 Improving Stimulus Processing Models

The Effective model, equation 5.3, describes efficiently the relation between
mean and variance and predicts well the amount of information transmit-
ted by a neuron. Here we show how it can easily be plugged to any stim-
ulus processing model like the Linear-Nonlinear (LN) model, instead of a
Poisson process. To estimate the parameters of LN models, a classical ap-
proach is to assume a Poisson process for spike generation and then to max-
imize the likelihood of the spiking data with respect to the parameters of
the model. The major advantage of this method is that the gradient of the
likelihood has a very simple form that allows for iterative log-likelihood
maximization. Here we show that using the Effective model also leads to a
tractable form of the log-likelihood gradient, which can similarly be used
for iterative optimization, but with the added advantage that the mean-
variance relationship is accurately reproduced.

In general, a stimulus encoding model is defined by a series of
computations—parameterized by parameters ψ—that takes the past
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stimulus St as input and provides a prediction λ̂ψ (St ) for the spike count
mean as a function of time t. Only at the last stage is a stochastic spike
counter P introduced to predict the number of spikes n(t) emitted in the
time bin t:

St → λ̂ψ (St ) → n(t) ∼ P
(

n(t)
∣∣ λ̂ψ (St )

)
, (8.1)

where, for example, P is a Poisson distribution. The classical example for
this is the Linear-Nonlinear-Poisson (LNP) model (Chichilnisky, 2001), but
many generalizations have been proposed, especially for the retina (McFar-
land, Cui, & Butts, 2013; McIntosh, Maheswaranathan, Nayebi, Ganguli, &
Baccus, 2016; Deny et al., 2017).

One of the major advantages of using a Poisson spike counter PPois is
that it allows for a straightforward optimization of the model parameters ψ

(Chichilnisky, 2001; McFarland et al., 2013). Thanks to the explicit expres-
sion of the log-likelihood �(ψ ) (see section 10, Methods), the log-likelihood
gradient ∇ψ�(ψ ) ≡ d�(ψ )/dψ takes a very simple form:

∇ψ�(ψ ) = 1
T

∑
t

d log PPois
(

n(t)
∣∣ λ )

dλ

∣∣∣∣∣
λ=λ̂ψ (St )

∇ψ λ̂ψ (St )

= 1
T

∑
t

(
n(t) − λ̂ψ (St )

λ̂ψ (St )

)
∇ψ λ̂ψ (St ). (8.2)

Once ∇ψ λ̂ψ (St ) is evaluated, equation 8.2 allows for iterative log-likelihood
maximization.

The particular structure of the Effective model, equation 5.3, allows for
an easy estimation of the log-likelihood gradient (see section 10, Methods,
for the calculation details):

∇ψ�(ψ ) = 1
T

∑
t

⎛
⎝n(t) − λ̂ψ (St )

VEff
λ̂ψ (St )

⎞
⎠∇ψ λ̂ψ (St ). (8.3)

With respect to the Poisson case, the inference of the parameters ψ requires
only the variance VEff

λ as a function of λ, which depends only on the noise
model and can be easily estimated from it before running the inference (see
section 10, Methods, for more details).

As in Deny et al. (2017) and for both OFF and ON populations, we infer
a Linear-Nonlinear-Linear-Nonlinear-Poisson (LN2-Pois) model to predict
the average cell response to the two-bar stimulation. This is a stimulus
processing model composed by a cascade of two layers of linear filtering
and nonlinear-transformation followed by a Poisson spike counter. Simi-
larly, we infer a two-layer cascade Effective model (LN2-Eff) to predict the
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Figure 7: Effective model improves performance of stimulus processing mod-
els. (A) PSTH for an example OFF cell (green) is compared with predictions by
the LN2 models equipped with a Poisson (black) or Effective (red) spike counter.
Note that the discrepancies in the spike rate predictions are those of the LN2

model, not of the Poisson or Effective model, which inherit them by construc-
tion. (B) Same as panel A but for the spike count variance. The Poisson model
largely overestimates the empirical variance during transients of high activity.
(C) The Fano factor as a function of time. The Effective model (red) accounts
for the empirical behavior (green). The Poisson prediction (black constant line)
does not. (D) Improvement with respect to Poisson in the mean square error
(MSE) between empirical and model variance, plotted as a function of the MSE
between empirical and model mean spike count. Each point represents a cell of
the OFF population. The circled point refers to the example cell in panels A to C.
(E) Same as panel D but for the Effective model applied on the ON population.

average cell response of OFF and ON cells, respectively. LN2-Eff differs
from LN2-Pois in the noise generator, either Effective (see equation 5.3)
or either Poisson. The two models show very similar prediction for the
mean spike activity (see Figure 7) while LN2-Pois largely overestimates
the spike count variance (see Figure 7B). LN2-Eff also predicts well the
Fano Factor estimated over time (see Figure 7C). For most of the OFF cells,
replacing the Poisson by the Effective model leads to significant perfor-
mance improvement when trying to predict the variance (see Figure 7D).
For OFF cells, the Second-Order model, equation 4.1, performs as well as the
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Effective model. The Effective model also predicts well the variance for ON
cells (see Figure 7E). Our Effective model can therefore be plugged in en-
coding models to describe accurately the variance of the spike count over
time.

9 Discussion

We have shown that a simple model that takes into account refractoriness
in the spiking process explains most of the deviation from Poisson that we
observe in the spike count statistics. The model has only two parameters
and can easily be plugged into any encoding model to be fitted to sensory
recordings. It allows for an accurate estimation of the relation between the
mean spike count and its variance, but also of the amount of information
carried by individual neurons. The form of this model is inspired by the
regularity imposed on spike trains by the refractory period. However, it
can potentially work for data with other sources of regularity. In the retina,
this model works for two different types of cells. Thanks to its simplicity
and generality, this model could potentially be used to account for mean-
variance relation in neurons recorded in other sensory areas (Gur et al.,
1997; Kara et al., 2000; Barberini et al., 2001; DeWeese & Zador, 2003; Mai-
mon & Assad, 2009), even if their neural variability is not solely determined
by the refractory period in the spike generation of the neuron. Previous
work (Movshon, 2000; Kara et al., 2000) suggested that the refractory pe-
riod present in the phenomenological model may reflect refractoriness at
any stage in the circuit and may not directly correspond to the refractori-
ness of the recorded cell.

We have compared our model with others already proposed in the litera-
ture: the Conwey-Maxwell-Poisson (COMP; Stevenson, 2016) and the Gen-
eralized Count (Gen.Count; Gao et al., 2015). We found the COMP model
was quite inefficient at fitting our data. The Gen.Count model can be con-
sidered as encompassing a much larger class of possible models and in-
cludes ours as a special case. However, this comes at the cost of having
many more parameters to fit, which can lead to overfitting in some cases,
as we have shown in the results. Moreover, in our data, these additional pa-
rameters did not allow improving the performance of the model. The model
we propose has only two parameters, which makes it easy to fit and usable
in many cases, even when the number of data are limited. It will be inter-
esting to compare our effective models to the Gen.Count model in other
sensory structures.

The relation between the mean and the variance of the spike count
strongly depends on the bin size chosen to bin the cell response (Kara et al.,
2000). We illustrate this fact on our data by plotting the Fano factor as a
function of window size in Figure 8A. One can distinguish three regimes as
a function of the window size relative to the other timescales of the system
(see Figure 8B): the inverse of the spike rate r−1, the timescale of spike rate
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Figure 8: Range of applicability of the model. (A) The Fano factor as a function
of the window size (time bin). For short windows, the Fano factor is smaller
than one because of refractoriness, while for long windows, spike rate fluctua-
tions yield Fano factors larger than one. (B) The autocorrelation function of the
spiking activity (green) carries the footprint of both the refractory period (τrefr)
and the timescale of spike rate fluctuations (τλ). The autocorrelation computed
from shuffled spike trains across repetitions of the stimulus (black) only reflects
the latter, as expected. (C) The Effective model we have introduced is expected
to be valid when the window size �t is larger than the refractory period (τrefr)
but smaller than the typical timescale of rate variations τλ. (D) Mean-variance
relation for a window of 33 ms. The green curve is data and the red line is the
Effective model prediction.

variations τλ, and the refractory period τrefr, the last two of which can be
directly read off from the autocorrelation spiking activity (see Figure 8B). If
the window size is of the same order compared to the inverse of the spike
rate, then the mean spike count λ is small and the spiking process can be
described by a Bernouilli binary variable, with variance V = λ(1 − λ) and
Fano factor 1 − λ ≈ 1. Further, if the window size is smaller or even of the
order of the refractory period, then spiking events in subsequent windows
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cannot be treated independently, and the modeling strategy of focusing on
single time windows must be revised. In this case a common solution is to
introduce a spike history filter (Pillow et al., 2008) that models the spike
probability with a dependence on past activity. At the other extreme, if the
window size is large compared to the typical timescale over which the spike
rate varies, then each window will contain a mixture of spike rates, leading
to a Fano factor larger than one (Kara et al., 2000). Several solutions have
been proposed to model this overdispersion (Scott & Pillow, 2012; Goris
et al., 2014; Charles et al., 2017).

We have chosen a bin size between these two extremes, such that the
spike count is not a binary variable (�t ∼ r−1), but the firing rate stays
roughly constant within a single time bin (�t 
 τλ), and the dependence
between spikes in consecutive time bins is relatively weak (�t � τrefr). The
advantage of this choice of bin size is the small number of parameters (only
two) needed to describe the spike regularity. We also note that the bin size
chosen corresponds to the timescale of the retinal code (Berry & Meister,
1998). To test the robustness of our modeling approach to the choice of win-
dow size, we have fitted an Effective model (see equation 5.3) to the dis-
tribution of spike counts taken in a window of 33 ms instead of 16 ms and
still found excellent agreement (see Figure 8D). The interplay between the
different timescales discussed here will vary across brain areas and condi-
tions, and the right window size should be picked as a function of these
considerations for our approach to be applicable.

Here we have focused on the spike count statistics of single cells. The
activity of other cells in the network is also expected to affect spike count
variability through noise correlations. Future work should encompass both
sources of non-Poissonian variability through self- and cross-correlations in
a single framework (Ferrari et al., 2018).

In this study, we have pooled cells of the same type (ON and OFF), be-
cause they are known to have equivalent response properties (Devries &
Baylor, 1997). However, we checked that fitting the Effective model on sin-
gle cells rather than on pooled data also gave excellent performance, with
even an improvement for about half of the cells (14/25 for OFF cells, 7/19
for ON cells), with a ≈11% and ≈16% increase in log-likelihood gain relative
to the Poisson model for OFF and ON cells, respectively. This demonstrates
the potential applicability of our method to brain areas where cells cannot
be pooled by types.

10 Methods

10.1 Equilibrium Poisson Process with Absolute Refractory Period.
A Poisson process with firing rate �(u − τ )r, where � is the Heaviside step
function of the time from the previous spike, has an interspike interval dis-
tribution given by equation 3.1. For such a process, it is possible to com-
pute the probability distribution of the number of spikes emitted in a time
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window �t, whose starting point is chosen as random (Müller, 1973, 1974),
P�

(
n
∣∣r, τ,�t

) = P�

(
n
∣∣ν, f

)
, where f = τ/�t and ν = r�t (see section A.1 in

the appendix for a derivation):

P�

(
n
∣∣ν, f

) = 1
1 + ν f

[
�(n) + �(nMax − 2 − n)

n∑
j=0

(n + 1 − j)

× ν j(1 − (n + 1) f ) je−ν(1−(n+1) f )

j!

− 2�(nMax − n − 1)
n−1∑
j=0

(n − j)
ν j(1 − n f ) je−ν(1−n f )

j!

+ �(nMax − n)
n−2∑
j=0

(n − 1 − j)

× ν j(1 − (n − 1) f ) je−ν(1−(n−1) f )

j!

⎤
⎦ (10.1)

�(n) ≡
⎧⎨
⎩

0 , n ≤ nMax − 2
nMax(1 + ν f ) − ν , n = nMax − 1
ν − (nMax − 1)(1 + ν f ) , n = nMax

, (10.2)

where nMax is the smallest integer larger than �t/τ and we used the con-
vention �(0) = 1. The distribution 10.1 has an expected value given by

E�(n|ν, f ) = ν

1 + ν f
(10.3)

and exact variance (Müller, 1974):

V�(n|ν, f ) =
2
∑nMax−1

n=0

[
ν(1 − n f ) − n + ∑n−1

j=0 (n − j) ν j (1 − n f ) j e−ν(1−n f )

j!

]
−ν− ν2

1+ν f

1 + ν f
.

(10.4)

10.2 Inference of the Absolute Refractory Period Model. To infer the
value of f for the absolute refractory model (see equation 10.1), we perform
a mean square error (MSE) minimization of the mean-variance relation:

MSE ≡
∑

i,t

[
Vi(t) − Var�(n|νi(t), f )

]2
, (10.5)
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νi(t) = λi(t)
1 − λi(t) f

, (10.6)

where λi(t) and Vi(t) are the empirical mean and variance of n for the
cell i in the time-bin t. We used the exact expression, equation 10.4, for
Var�(n|νi(t), f ), although an approximated results can be obtained by the
simpler asymptotic expression (Müller, 1974):

V�(n|ν, f ) ≈ ν

(1 + ν f )3 . (10.7)

All predictions of the model were done using cross-validation. The data set
was divided into two sets, each made from one-half of a 10 s film repeated
54 times: a training set, on which the fit was done, and a testing set, on which
the model predictions were tested.

10.3 Inference of the Second-Order Refractory Model. To infer the
value of f for the Second-Order refractory model (see equation 4.1), we
perform log-likelihood maximization with a steepest descent algorithm.
Thanks to the exponential form of P2nd

� (n|λ, f ), the derivative of the log like-
lihood (�) with respect to f takes a simple form:

� ≡
∑

i,t

log P2nd
� (n|λi(t), f ), (10.8)

d �

d f
=
∑

i,t

[
(2 f − 1)

(〈ni(t)2〉data − 〈ni(t)2〉modeli(t)
)

− f
(〈ni(t)3〉data − 〈ni(t)3〉modeli (t)

) ]
, (10.9)

where 〈·〉modeli (t) means average with the model distribution P2nd
� (n|λ =

λi(t), f ). At each iteration, we update the value of the parameter using the
log-likelihood gradient and adjust the function θλ accordingly.

10.4 Inference of the Effective Model. To infer the value of γ and δ

for the Effective model (see equation 5.3), we perform log-likelihood max-
imization with Newton’s method, where at each iteration, we update the
values of the parameters using the log-likelihood gradient:

∑
i,t

d
d γ

log PEff(n|λi(t), f ) = 〈ni(t)2〉data − 〈ni(t)2〉modeli (t), (10.10)

∑
i,t

d
d δ

log PEff(n|λi(t), f ) = 〈ni(t)3〉data − 〈ni(t)3〉modeli (t), (10.11)
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and the Hessian:

H =

−
( 〈ni(t)2〉modeli (t)−λi(t)2 〈ni(t)3〉modeli (t)−λi(t)〈ni(t)2〉modeli(t)

〈ni(t)3〉modeli(t)−λi(t)〈ni(t)2〉modeli(t) 〈ni(t)4〉modeli(t)−〈ni(t)2〉2
modeli (t)

)
,

(10.12)

where 〈·〉modeli(t) now means average with the model distribution PEff(n|λ =
λi(t), γ , δ). After updating the parameters, we adjust the function θλ and
iterate until convergence.

10.5 Generalized Count Model. Gao et al. (2015) define a Generalized
Count (Gen.Count) distribution that in our notation and framework reads

PGen.Count( n | λ ) = exp
{
θλ[G] n + G[n] − log n! − log Zλ[G]

}
, (10.13)

where G[n] is a generic real function defined on the nonnegative inte-
gers n ∈ [0,∞]. To better characterize its λ dependence, we have rewritten
Gen.Count introducing the proper θλ[G] function.

For G[n] = −γ n2 − δn3, the distribution, equation 10.13, reduces to the
Effective model (see equation 5.3). The Gen.Count model is thus a general-
ization of our model and is potentially more flexible in modeling the spike
count statistics. This, however, comes at the price of introducing more pa-
rameters to fit. In practice, one needs to define G[n] for n = 0, 1, . . . , nMax,
where nMax is the maximal value of n observed during the experiment. It can
be shown that the model has nMax − 1 free parameters (Gao et al., 2015). If
nMax = 1, 2, 3, then Gen.Count is equivalent to Poisson, Effective with δ = 0,
and Effective models, respectively. Otherwise it offers a potentially interest-
ing way to generalize our cubic model at the price of inferring the parame-
ters G[n] for large values of n. Thanks to its exponential form, we easily infer
the Gen.Count parameters with log-likelihood maximization and have set
nMax = 4 and 5 for, respectively, OFF and ON populations.

10.6 Conwey-Maxwell-Poisson Model. In Stevenson (2016), the
Conwey-Maxwell-Poisson (COMP) model (Sellers et al., 2012) has been
proposed to account for both under- and overdispersed mean-variance
relation. In our notation, the COMP model reads

PCOMP( n | λ ) = exp
{
θλ[η] n − η log n! − log Zλ[η]

}
, (10.14)

where Zλ[η] is a normalization constant. For η = 1, the COMP reduces to the
Poisson model, whereas for G[n] = −(η − 1) log n! the Generalized Count
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reproduces the COMP. Also for the COMP, the exponential form allows for
log-likelihood maximization.

10.7 Equipping Stimulus Processing Model with Second-Order or Ef-
fective Noise Term. In this section, we detail the calculation for computing
the log-likelihood gradient of equation 8.3. For a general stimulus process-
ing model (see equation 8.1) equipped with noise term P, the log-likelihood
reads:

�(ψ ) = 1
T

∑
t

log P
(

n(t)
∣∣ λ̂ψ (St )

)
, (10.15)

where the summation runs over the duration of the training set. Conse-
quently, the log-likelihood gradient ∇ψ�(ψ ) reads

∇ψ�(ψ ) = 1
T

∑
t

d log P
(

n(t)
∣∣ λ )

dλ

∣∣∣∣∣
λ=λ̂ψ (St )

∇ψ λ̂ψ (St ) . (10.16)

To estimate ∇ψ�(ψ ), we thus need to compute the derivative of the log prob-
ability with respect to the mean spike count. If P is the Poisson distribution
PPois, then

d
dλ

log PPois
(

n(t)
∣∣ λ ) = d

dλ

(
n(t) log λ − λ − log n(t)!

)
= n(t) − λ

λ
.

(10.17)

If P is instead the Effective model,

d
dλ

log PEff
(

n(t)
∣∣ λ ) = d

dθλ

(
log PEff

(
n(t)

∣∣ λ ) ) d
dλ

θλ (10.18)

= (n(t) − λ)
(

d
dθλ

λ

)−1

= n(t) − λ

VEff
λ

. (10.19)

The very same expression, with replaced VEff
λ by V2nd

λ , holds for the Second-
Order model. Note that equation 10.17 has the same form of equation 10.19
because for Poisson VPois

λ (t) = λ. Equation 8.3 is in fact a general result for
spike counter P belonging to the exponential family. Note that VEff

λ and V2nd
λ

are properties of the noise distribution (respectively, PEff and P2nd
� ). These

functions can be numerically estimated before running the inference of the
stimulus processing model—for example, by computing their values for
several values of λ and then interpolating with a cubic spline.
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Mathematical Appendix

A.1 Stimulus. Our stimulus was composed of one or two black bars
moving randomly on a gray background. Each bar was animated by a
Brownian motion, with additional feedback force to stay above the array,
and repulsive forces so that they do not overlap. The trajectories of the bars
x1 and x2 are described by the following equations (Mora, Deny, & Marre,
2015):

dv1

dt
= −v1

τ
+ sign(x1 − x2)

(
R

|x1 − x2|
)6

−ω2
0(x1 − μ1) + σ W1(t) (A.1)

dv2

dt
= −v2

τ
+ sign(x2 − x1)

(
R

|x2 − x1|
)6

−ω2
0(x2 − μ2) + σ W2(t) (A.2)

where W1(t) and W2(t) are two gaussian white noises of unit amplitude,
μ2 − μ1 = 600 μm is the shift between the means, ω0 = 1.04 Hz, τ =
16.7 ms, R = 655 μm, and σ = 21.2 μm · s−3/2. The width of one bar is
100 μm and the length 2 mm. For receptive field mapping, a random bi-
nary checkerboard was displayed for 1 hour at 50 Hz (check size: 60 μm).

A.2 Equilibrium Poisson Process with Absolute Refractory Period.
Here we provide a sketch of the derivation to obtain the complete ex-
pression 10.1. We are interested in computing the probability distribution
P�

(
n
∣∣r, τ,�t

)
of the number of spikes emitted in a time window �t, whose

starting point is chosen at random when the interspike interval distribution
is

ρ�(t) = �(t − τ )re−r (t−τ ). (A.3)

P� can be expressed as the difference between its cumulative distribution:

C(n|�t) ≡
∞∑

k=n

P�

(
k
∣∣�t, r, τ

)
, (A.4)

P�

(
n
∣∣�t, r, τ

) = C(n|�t) − C(n + 1|�t). (A.5)

Because C(n|�t) is the probability of having at least n spikes in the time bin
�t, it can be computed as

C(n|�t) =
∫ �t

0
dt [ρE

� � ρ
�(n−1)
� ](t), (A.6)
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where � is the convolution symbol and (·)�n means n-times self-convolution.
ρE

� is the distribution of the first spike when the beginning of the time bin
is chosen at random (equilibrium process) and its distribution can be com-
puted as (Müller, 1973):

ρE
�(t) =

∫∞
t dt′ ρ�(t′)∫∞

0 dt′ t′ ρ�(t′)
= r

e−r max(t−τ,0)

1 + rτ

= r
�(t)�(τ − t) + �(t − τ )e−r(t−τ )

1 + rτ
= 1

1 + rτ

(
rI[0,τ ](t) + ρ�(t)

)
,

(A.7)

where I[a,b](t) = 1 if t ∈ [a, b] and zero otherwise. Thanks to the explicit de-
composition of ρE

�, we have

ρE
� � ρ

�(n−1)
� = 1

1 + rτ

(
rI[0,τ ] � ρ

�(n−1)
� + ρ�n

�

)
. (A.8)

In order to estimate the ρ�n
� , we introduce the Laplace transform, which for

a generic function h(t) reads

L[h(t)](s) =
∫ ∞

0
dt e−sth(t) , (A.9)

and use it to get rid of the multiple convolutions:

ρ�n
� = L−1 [L[ ρ�n

� ]
] = L−1 [L[ ρ� ]n ] = L−1

[(
r

r + s
e−sτ

)n ]

= rn(t − nτ )(n−1)e−r(t−nτ )

(n − 1)!
�(t − nτ ) ≡ γ [n, r](t − nτ ), (A.10)

where we have introduced the gamma distribution γ [n, r](t) ≡
�(t)rnt(n−1)e−r/(n − 1)!. From equation A.6, it follows that

C(n,�t) = 1
1 + rτ

(∫ �t

0
dt
∫

dt′ I[0,τ ](t − t′)γ [n − 1, r](t′ − (n − 1)τ )

+
∫ �t

0
dt γ [n, r](t − nτ )

)
. (A.11)

C(n|�t) can be computed by integrating several times the gamma distribu-
tion using the following relation:
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1
(n − 1)!

∫ a

0
dt t(n−1)e−t�(t) =

(
1 − e−a

n−1∑
k=0

ak

k!

)
�(a) . (A.12)

After some algebra (Müller, 1973, 1974) this calculation provides equation
10.1.

A.3 Small f Expansion of the Refractory Neuron Model. Here we de-
rive the result, equation 5.1, for which equation 4.1 is a particular case. We
consider a general model in which the instantaneous spike rate is modu-
lated by a time-dependent factor, α(u)r, where r is the spike rate in the ab-
sence of refractoriness, with α(u ≥ τ ) = 1, and u is the time following the
previous spike. In this case, the interspike interval distribution is

ρα (t) = να(t) exp
{
−ν

∫ t

0
α(t)

}
�(t) , (A.13)

and our goal is to expand, for small τ , Pα (n|�t, r, α), the probability of hav-
ing n spikes within the time bin �t. First, we introduce two useful quanti-
ties:

f ≡ 1
�t

∫ ∞

0
dt
(
1 − α(t)

)
, (A.14)

g ≡ 1
�t

∫ ∞

0
dt t

(
1 − α(t)

)
, (A.15)

such that if α(t) = 1 for all t > 0, then f = g = 0, and we expect to re-
cover the Poisson case, and if α(t) = 0 for all t < τ , then f = τ/�t and
g = τ 2/�t2/2, and we expect to recover the absolute refractory case, equa-
tion 4.1.

Much like the absolute refractory case, we consider the cumulative dis-
tribution of Pα (n|r, α,�t, ),

Cα (n|�t) =
∫ �t

0
[ρE

α � ρ�(n−1)
α ](t), (A.16)

where, as before, ρE
α is the distribution of the first spike for an equilibrium

process and ρ
�(n−1)
α is ρα self-convoluted n − 1 times. To perform the expan-

sion in small τ , we decompose ρE
α and ρα around an exponential distribu-

tion:

ρE
α (t) = (

1 + ν2g
)
ρ(t) + δρE

α (t), (A.17)

ρα (t) = er(1−A)τ ρ(t) + δρα (t). (A.18)
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In the following, we first perform the computation with ρ(t) instead of ρE
α ,

leaving for the end the corrections due to the factor 1 + ν2g and term δρE
α .

This is equivalent to consider a shifted process (Müller, 1973) where the time
bin starts after the end of the last refractory period, instead of the equilib-
rium process we are considering here. As for ρ�n

� (t) (see equation A.10), we
can use the Laplace transform to compute ρ�n(t) = γ [n, r](t). This allows us
to perform the following expansion:

[ρ � ρ�(n−1)
α ](t) = ρ �

n−1∑
i=0

(
n − 1

i

)
e(n−i−1)ν f [ ρ�(n−1−i) � δρ�i

α

]
(t) (A.19)

≈ e(n−1)ν f γ [n, r](t)

+ (n − 1)e(n−2)ν f [ γ [n − 1, r] � δρα

]
(t)

+
(

n − 1
2

)
e(n−3)ν f [ γ [n − 2, r] � δρ�2

α

]
(t). (A.20)

To perform the integration of equation A.20, we use the following approxi-
mation:∫ ∞

0
dt δρα (t) ≈ −ν f − 1

2
ν2 f 2 + O(τ 3), (A.21)

∫ ∞

0
dt δρ�2

α (t) ≈ ν2 f 2 + O(τ 3), (A.22)

∫ ∞

0
dt t δρα (t) ≈ −νg�t + O(τ 3), (A.23)

which, after some algebra, we obtain for PS
α (n|ν), the distribution for the

shifted process:

PS
α (n|ν) =

∫ �t

0
dt
[
ρ �

(
ρ�(n−1)

α − ρ�n
α

) ]
(t) ∝

× exp
{
n log ν − log n! + c1n + c2n2 + c3n3} (A.24)

with

c1 = (1 + ν)
(

f − f 2

2

)
−
(

f 2

2
− g

)
, (A.25)

c2 = − f + f 2 − (2 + ν)
(

f 2

2
− g

)
, (A.26)

c3 = − f 2 + g. (A.27)

We need now to account for the full ρE
α (t). Because
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∫ ∞

0
dt δρE

�(t) ≈ −ν2g (A.28)

is of the order τ 2, we can estimate Pα (n|�t, r) = Pα (n|ν) as

Pα (n|ν) = (
1 + ν2g

)
PS

α (n|ν) + PPois(n − 1|ν)
∫ ∞

0
dt δρE

0 (t)

∝ exp
{
n log ν − log n! + (c1 − νg) n + c2n2 + c3n3} . (A.29)

which is equivalent to equation 5.1.
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