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Abstract
Understanding how sensory systems process information depends crucially on identifying which features of the
stimulus drive the response of sensory neurons, and which ones leave their response invariant. This task is made
difficult by the many nonlinearities that shape sensory processing. Here, we present a novel perturbative approach to
understand information processing by sensory neurons, where we linearize their collective response locally in stimulus
space. We added small perturbations to reference stimuli and tested if they triggered visible changes in the responses,
adapting their amplitude according to the previous responses with closed-loop experiments. We developed a local
linear model that accurately predicts the sensitivity of the neural responses to these perturbations. Applying this
approach to the rat retina, we estimated the optimal performance of a neural decoder and showed that the nonlinear
sensitivity of the retina is consistent with an efficient encoding of stimulus information. Our approach can be used to
characterize experimentally the sensitivity of neural systems to external stimuli locally, quantify experimentally the
capacity of neural networks to encode sensory information, and relate their activity to behavior.
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Introduction
An important issue in neuroscience is to understand

how sensory systems use their neural resources to rep-
resent information. A crucial step toward understanding
the sensory processing performed by a given brain area is

to characterize its sensitivity (Benichoux et al., 2017), by
determining which features of the sensory input are coded
in the activity of these sensory neurons, and which fea-
tures are discarded. If a sensory area extracts a given
feature from the sensory scene, any change along that
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Significance Statement

Understanding how sensory systems process information is an open challenge mostly because these
systems have many unknown nonlinearities. A general approach to studying nonlinear systems is to expand
their response perturbatively. Here, we apply such a method experimentally to understand how the retina
processes visual stimuli. Starting from a reference stimulus, we tested whether small perturbations to that
reference (chosen iteratively using closed-loop experiments) triggered visible changes in the retinal re-
sponses. We then inferred a local linear model to predict the sensitivity of the retina to these perturbations,
and showed that this sensitivity supported an efficient encoding of the stimulus. Our approach is general
and could be used in many sensory systems to characterize and understand their local sensitivity to stimuli.
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dimension will trigger a noticeable change in the activity of
the sensory system. Conversely, if the information about a
given feature is discarded by this area, the activity of the
area should be left invariant by a change along that fea-
ture dimension. To understand which information is ex-
tracted by a sensory network, we must determine which
changes in the stimulus evoke a significant change in the
neural response, and which ones leave the response in-
variant.

This task is made difficult by the fact that sensory
structures process stimuli in a highly nonlinear fashion. At
the cortical level, many studies have shown that the re-
sponse of sensory neurons is shaped by multiple nonlin-
earities (Machens et al., 2004; Carandini et al., 2005).
Models based on the linear receptive field are not able to
predict the responses of neurons to complex, natural
scenes. This is even true in the retina. While spatially
uniform or coarse grained stimuli produce responses that
can be predicted by quasi-linear models (Berry and Meis-
ter, 1998; Keat et al., 2001; Pillow et al., 2008), stimuli
closer to natural scenes (Heitman et al., 2016) or with rich
temporal dynamics (Berry et al., 1999; Olveczky et al.,
2003) are harder to characterize, as they trigger nonlinear
responses in the retinal output. These unknown nonlin-
earities challenge our ability to model stimulus processing
and limit our understanding of how neural networks pro-
cess information.

Here, we present a novel approach to measure exper-
imentally the local sensitivity of a nonlinear network. Be-
cause any nonlinear function can be linearized around a
given point, we hypothesized that, even in a sensory
network with nonlinear responses, one can still define
experimentally a local linear model that can well predict
the network response to small perturbations around a
given reference stimulus. This local model should only be
valid around the reference stimulus, but it is sufficient to
predict if small perturbations can be discriminated based
on the network response.

This local model allows us to estimate the sensitivity of
the recorded network to changes around one stimulus.
This local measure characterizes the ability of the network
to code different dimensions of the stimulus space, cir-
cumventing the impractical task of building a complete
accurate nonlinear model of the stimulus-response rela-
tionship. Although this characterization is necessarily lo-
cal and does not generalize to the entire stimulus space,
one can hope to use it to reveal general principles that are
robust to the chosen reference stimulus.

We applied this strategy to the retina. We recorded the
activity of a large population of retinal ganglion cells stim-
ulated by a randomly moving bar. We characterized the
sensitivity of the retinal population to small stimulus
changes, by testing perturbations around a reference
stimulus. Because the stimulus space is of high dimen-
sion, we designed closed-loop experiments to probe ef-
ficiently a perturbation space with many different shapes
and amplitudes. This allowed us to build a complete
model of the population response in that region of the
stimulus space, and to precisely quantify the sensitivity of
the neural representation.

We then used this experimental estimation of the net-
work sensitivity to tackle two long-standing issues in
sensory neuroscience. First, when trying to decode neural
activity to predict the stimulus presented, it is always
difficult to know if the decoder is optimal or if it misses
some of the available information. We show that our
estimation of the network sensitivity gives an upper bound
of the decoder performance that should be reachable by
an optimal decoder. Second, the efficient coding hypoth-
esis (Attneave, 1954; Barlow, 1961) postulates that neural
encoding of stimuli has adapted to represent natural oc-
curring sensory scenes optimally in the presence of
limited resources. Testing this hypothesis for sensory
structures that perform nonlinear computations on high
dimensional stimuli is still an open challenge. Here, we
found that the network sensitivity with respect to stimulus
perturbations exhibits a peak as a function of the temporal
frequency of the perturbation, in agreement with predic-
tion from efficient coding theory. Our method paves the
way toward testing efficient coding theory in nonlinear
networks.

Materials and Methods
Extracellular recording

Experiments were performed on the adult Long Evans
rat of either sex, in accordance with institutional animal
care standards. The retina was extracted from the eutha-
nized animal and maintained in an oxygenated Ames’
medium (Sigma-Aldrich). The retina was recorded extra-
cellularly on the ganglion cell side with an array of 252
electrodes spaced by 60 �m (Multichannel Systems), as
previously described (Marre et al., 2012). Single cells were
isolated offline using SpyKING CIRCUS a custom spike
sorting algorithm (Yger et al., 2016). We then selected 60
cells that were well separated (no violations of refractory
period, i.e., no spikes separated by �2 ms), had enough
spikes (firing rate larger than 0.5 Hz), had a stable firing
rate during the whole experiment, and responded consis-
tently to repetitions of a reference stimulus (see Materials
and Methods/Stimulus).

Stimulus
The stimulus was a movie of a white bar on a dark

background projected at a refresh rate of 50 Hz with a
digital micromirror device. The bar had intensity 7.6 �
1011 photons/cm– 2/s– 1, and 115-�m width. The bar was
horizontal and moved vertically. The bar trajectory con-
sisted in 17034 snippets of 0.9 s consisting in two refer-
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ence trajectories repeated 391 times each, perturbations
of these reference trajectories and 6431 random trajecto-
ries. Continuity between snippets was ensured by con-
straining all snippets to start and end in the middle of the
screen with velocity 0. Random trajectories followed the
statistics of an overdamped stochastic oscillator (Deny
et al., 2017). We used a Metropolis-Hastings algorithm to
generate random trajectories satisfying the boundary con-
ditions. The two reference trajectories were drawn from
that ensemble.

Perturbations
Stimulus perturbations were small changes in the

middle portion of the reference trajectory, between 280
and 600 ms. A perturbation is denoted by its discretized
time series with time step �t � 20 ms, S � �S1, �, SL�,
with L � 16, over the 320 ms of the perturbation (bold
symbols represent vectors and matrices throughout).
Perturbations can be decomposed as S � A � Q ,

where A2 � �1/L� �
t�1

L

St
2 is the amplitude, and Q � S/A

the shape. Perturbations shapes were chosen to have zero
value and zero derivative at their boundaries (Fig. 1).

Closed-loop experiments
We aimed to characterize the population discrimination

capacity of small perturbations to the reference stimulus.
For each perturbation shape (Fig. 1), we searched for the
smallest amplitude that will still evoke a detectable
change in the retinal response, as we explain below. To
do this automatically on the many tested perturbation

shapes, we implemented closed-loop experiments (Fig.
3A). At each iteration, the retina was stimulated with a
perturbed stimulus and the population response was re-
corded and used to select the next stimulation in real
time.

Online spike detection
During the experiment we detected spikes in real time

on each electrode independently. Each electrode signal
was high-pass filtered using a Butterworth filter with a
200-Hz frequency cutoff. A spike was detected if the
electrode potential U was lower than a threshold of five
times the median absolute deviation of the voltage (Yger
et al., 2016).

Online adaptation of perturbation amplitude
To identify the range of perturbations that were neither

too easy nor too hard to discriminate, we adapted pertur-
bation amplitudes so that the linear discrimination prob-
ability (see below) converged to target value D� � 85%.
For each shape, perturbation amplitudes were adapted
using the Accelerated Stochastic Approximation (Kesten,
1958). If an amplitude An triggered a response with dis-
crimination probability Dn, then at the next step the per-
turbation was presented at amplitude An�1 with

ln An�1 � ln An �
C

rn � 1
(Dn � D �) , (1)

where C � 0.74 is a scaling coefficient that controls the
size of steps, and rn is the number of reversal steps in the

Figure 1. Perturbations shapes. We used the same 16 perturbation shapes for the two reference stimuli. The first 12 perturbation
shapes were combinations of two Fourier components, and the last four ones were random combinations of them: fk�t� � cos
�2�kt/T� and gk�t� � �1/k� � sin�2�t � k/T�, with T the duration of the perturbation and t � 0 the beginning of the perturbation. The first
perturbations j � 1. . .7 were S j � fj � 1. For j � 8,. . .,10, they were the opposite of the three first ones: S j � � S j�7. For j � 11, 12
we used S j � gj�10�1 � g1. Perturbations 13 and 14 were random combinations of perturbations 1, 2, 3, 11, and 12, constrained to
be orthogonal. Perturbations 15 and 16 were random combinations of fj for j � [1,8] and gk for k � [1,7], allowing higher frequencies
than perturbation directions 13 and 14. Perturbation direction 15 and 16 were also constrained to be orthogonal. The largest
amplitude for each perturbation we presented was 115 �m. An exception was made for perturbations 15 and 16 applied to the second
reference trajectory, as for this amplitude they had a discrimination probability below 70%. They were thus increased by a factor 1.5.
The largest amplitude for each perturbation was repeated at least 93 times, with the exception of perturbation 15 (32 times) and 16
(40 times) on the second reference trajectory.
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experiment, i.e., the number of times when a discrimina-
tion Dn larger than D� was followed by Dn�1 smaller than
D�, and vice versa. to explore the responses to different
ranges of amplitudes even in the case where the algorithm
converged too fast, we also presented amplitudes regu-
larly spaced on a log-scale. We presented the largest
amplitude Amax (Fig. 1, value), and scaled it down by
multiples of 1.4, Amax/1.4k with k � 1,. . .,7.

Online and offline linear discrimination
We applied linear discrimination theory to estimate if

perturbed and reference stimuli can be discriminated from
the population response they trigger. We applied it twice:
online, on the electrode signals to adapt the perturbation
amplitude, and offline, on the sorted spikes to estimate
the response discrimination capacity. The response R �
�Rib� over time of either the N � 256 electrodes, or the N �
60 cells (the same notation N and R are used for electrode
number and response and cell number and response for
mathematical convenience), was binarized into B time
bins of size � � 20 ms: Rib � 1 if cell i spiked at least once
during the bth time bin, and 0 otherwise. R is thus a vector
of size N � B, labeled by a joint index ib. The response is
considered from the start of the perturbation until 280 ms
after its end, so that B � 30.

To apply linear discrimination on RS, the response to
the perturbation S, we record multiple responses Rref to
the reference, and multiple responses RSmax

to a large
perturbation Smax, with the same stimulus shape as S but
at the maximum amplitude that was played during the
course of the experiment (typically 110 �m; Fig. 1). Our
goal is to estimate how close RS is to the “typical” Rref

compared to the typical RSmax
. To this aim, we compute

the mean response to the reference and to the large
perturbation, �Rref� and �RSmax

�, and use their difference as
a linear classifier. Specifically, we project RS onto the
difference between these two mean responses. For a
generic response R (either Rref, RS or RSmax

), the projec-
tion x (respectively, xref, xS or xSmax

) reads:

x � uT · R (2)

where x is a scalar and u � �RSmax
� � �Rref� is the linear

discrimination axis. The computation of x is a projection in
our joint index notation, but it can be decomposed in a
summation over cells i and consecutive time-bins b of
the response: x � �

i
�
b

uibRib. On average, we expect

�xref� 	 �xS� 	 �xSmax
�. To quantify the discrimination ca-

pacity, we compute the probability that xS 
 xref, following
the classical approach for linear classifiers.

To avoid overfitting, when projecting a response to the
reference trajectory, Rref, onto ��RSmax

� � �Rref��, we first
re-compute �Rref� by leaving out the response of interest.
If we did not do this, the discriminability of responses
would be overestimated.

In Discussion, Mathematical derivations, we discuss
the case of a system with response changes that are
linear in the perturbation, or equivalently when the pertur-
bation is small enough so that a linear first order approx-
imation is valid.

Offline discrimination and sensitivity
To measure the discrimination probability as a function

of the perturbation amplitude, we consider the difference
of the projections, �x � xS � xref. The response to the
stimulation RS is noisy, making x and xref the sum of many
random variables (corresponding to each neuron and time
bin combinations), and we can apply the central limit
theorem to approximate their distributions as Gaussian
(Fig. 3B, right side), for a given perturbation at a given
amplitude. For small perturbations, the mean of �x grows
linearly with the perturbation amplitude A, � � � � A, and
the variances of xS and xref are equal at first order, Var
�xS� � Var�xref� � 2, so that the variance of �x, Var
��x� � Var�xS� � Var�xref� � 22 is independent of A. Then
the probability of discrimination is given by the error
function:

D � P(xref 	 xS) �
1
2

�1 � erf(d�/2)� (3)

where d� � �/ � c � A is the standard sensitivity index
(Macmillan and Creelman, 2004), and c � �⁄ is defined as
the sensitivity coefficient, which depends on the pertur-
bation shape Q. This coefficient determines the amplitude
A � c– 1 at which discrimination probability is equal to
�1/2��1 � erf�1/2�	 � 76%.

Optimal sensitivity and Fisher information
We then aimed to find the discrimination probability for

any perturbation. Given the distributions of responses to
the reference stimulus, P�R�ref�, and to a perturbation,
P�R�S�, optimal discrimination can be achieved by study-
ing the sign of the response-specific log-ratio L�R� � ln
�P�R�S�/P�R�ref�	. Note that in the log-ratio, R represents
a stochastic response and not the independent variable of
a probability density. Because it depends on the response
R, this log ratio is both stimulus dependent and stochas-
tic. Let us define Lref to be the random variable taking
value L�R� on presentation of the reference stimulus, i.e.,
when R is a (stochastic) response to the stimulus, and LS

the random variable taking value L�R� when R is a
response to the presentation of S. According to the def-
inition given earlier, the probability of successful discrim-
ination is the probability that the log-ratio calculated from
a random response to the perturbed stimulus is larger
than the log-ratio calculated from a random response to
the reference, LS 
 Lref. Using the central limit theorem,
we assume again that LS and Lref are Gaussian. We can
calculate their mean and variance at small S (see Discus-
sion, Mathematical derivations): �L � �LS� � �Lref� �
ST·I·S and 2L

2 � Var�LS� � Var�Lref� � 2ST·I·S, where

I � (Itt�), Itt� � � �
R

P(R �ref)
�2lnP(R �S)

�St�St�
S�0 (4)

is the Fisher information matrix calculated at the reference
stimulus. Following standard discrimination theory (Mac-
millan and Creelman, 2004; for a derivation in a similar
context, see Seung and Sompolinsky, 1993), the discrim-
ination probability is (see Discussion, Mathematical deri-
vations): D � P�LS 
 Lref� � �1/2��1 � erf�d�/2�	, with
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d� �
�L

L

� 
ST·I·S . (5)

This result generalizes to an arbitrary stimulus dimen-
sion the result of Seung and Sompolinsky (1993).

Local model
Because sampling the full response probability distri-

bution P�R�S� would require estimating 2N�B numbers
(one for each possible response R) for each perturbation
S, estimating the Fisher Information Matrix directly is
impractical, and requires building a model that can predict
how the retina responds to small perturbations of the
reference stimulus. We used the data from these closed
loop experiments for this purpose. The model, schema-
tized in Figure 4A, assumes that a linear correction can
account for the response change driven by small pertur-
bations. We introduce the local model as a linear expan-
sion of the logarithm of response distribution as a function
of both stimulus and response:

ln P(R |S) � ln P(R | ref) � �
i

�
{ti}

� dtFi(ti, t)S(t)

� const � ln P(R | ref) � �
ib,t

RibFib,tSt � const

� ln P(R | ref) � RT·F·S � const , (6)

where in the integral form, {ti} denotes the set of spiking
times of neuron i, and Fi is a stimulus filter depending on
both the stimulus time and spiking time (no time-
translation invariance). The second line is the discretized
version adapted to our binary convention for describing
spiking activity binned into bins indexed by b. The matrix
F � �Fib, t� is the discretized version of Fi�ti, t� and contains
the linear filters with which the change in the response is
calculated from the linear projection of the past stimulus.
For ease of notation, hereafter we use matrix multiplica-
tions rather than explicit sums over ib and t.

The distribution of responses to the reference trajectory
is assumed to be conditionally independent:

lnP(R �ref) � �
ib

lnP(Rib�ref) . (7)

Since the variables Rib are binary, their mean values
�Rib� on presentation of the reference completely specify
P�Rib�ref�: �Rib� � P�Rib � 1�ref�. They are directly evalu-
ated from the responses to repetitions of the reference
stimulus, with a small pseudo-count to avoid zero values.

Evaluating the Fisher information matrix (Eq. 4), within
the local model (Eq. 6), gives:

I � FT·CR·F (8)

where CR is the covariance matrix of R, which within the
model is diagonal because of the assumption of condi-
tional independence.

Inference of the local model
To infer the filters Fib,t, we only include perturbations

that are small enough to remain within the linear approx-
imation. We first separated the dataset into a training
(285 � 16 perturbations) and testing (20 � 16 perturba-
tions) sets. We then defined, for each perturbation shape,
a maximum perturbation amplitude above which the linear
approximation was no longer considered valid. We se-
lected this threshold by optimizing the model’s ability to
predict the changes in firing rates in the testing set. Model
learning was performed for each cell independently by
maximum likelihood with an L2 smoothness regularization
on the shape of the filters, using a pseudo-Newton algo-
rithm. The amplitude threshold obtained from the optimi-
zation varied widely across perturbation shapes. The
number of perturbations for each shape used in the infer-
ence ranged from 20 (7% of the total) to 260 (91% of the
total). Overall only 32% of the perturbations were kept (as
we excluded repetitions of perturbations with largest am-
plitude used for calibration). Overfitting was limited: when
tested on perturbations of similar amplitudes, the predic-
tion performance on the testing set was never lower than
15% of the performance on the training set.

Linear decoder
We built a linear decoder of the bar trajectory from the

population response. The model takes as input the pop-
ulation response R to the trajectory X(t) and provides a
prediction X̂�t� of the bar position in time:

X̂(t) � �
i,�

Ki,�Ri,t�� � constant (9)

where the filters K have a time integration windows of
15 � 20 ms � 300 ms, as in the local model.

We inferred the linear decoder filters by minimizing the
mean square error (Warland et al., 1997), �

t
�X�t� � X̂

�t�	2, in the reconstruction of 4000 random trajectories
governed by the dynamics of an overdamped oscillator
with noise (see Materials and Methods/Stimulus). The
linear decoder is then applied to the perturbed trajecto-
ries, X(t) � X0(t) � S(t), where X0(t) denotes the reference
trajectory. The linear decoder does not use prior informa-
tion about the local structure of the experiment, namely
about the fact that the stimulus to decode consists of
perturbations around a reference simulation. However, it
implicitly uses prior information about the statistics of the
overdamped oscillator, as it was trained on bar trajecto-
ries with those statistics. Tested on a sequence of 	400
repetitions of one of the two reference trajectories, where
the first 300 ms of each have been cut out, we obtain a
correlation coefficient of 0.87 between the stimulus and
its reconstruction.

Local model Bayesian decoder
To construct a decoder based on the local model, we

use Bayes’ rule to infer the presented stimulus given the
response:
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P(S �R) �
P(R �S)P(S)

P(R)
(10)

where P�R�S� is given by the local model (Eq. 6), P�S� is
the prior distribution over the stimulus, and P�R� is the
prior distribution over the stimulus, and P�R� is a normal-
ization factor that does not depend on the stimulus. P
�S� is taken to be the distribution of trajectories from an
overdamped stochastic oscillator with the same parame-
ters as in the experiment (Deny et al., 2017), to allow for a
fair comparison with the linear decoder, which was
trained with those statistics. The stimulus is inferred by
maximizing the posterior P�S�R� numerically, using a
pseudo-Newton iterative algorithm.

Local signal to noise ratio in decoding
To quantify local decoder performance as a function of

the stimulus frequency, we estimated a local signal-to-
noise ratio (LSNR) of the decoding signal, LSNR(S), which
is a function of the reference stimulus. Here, we cannot
compute SNR as a ratio between total signal power and
noise power, because this would require to integrate over
the entire stimulus space, while our approach only pro-
vides a model around the neighborhood of the reference
stimulus.

To obtain a meaningful comparison between the linear
and local decoders, we expand them at first order in the
stimulus perturbation and compute the SNR of these
“linearized” decoders. For any decoder and for stimuli
nearby a reference stimulation, the inferred value of the
stimulus, X̂, can be written as X̂ � ��X�, where X is the
real bar trajectory, and � has a random component (due
to the random nature of the response on which the recon-
struction relies). Linearizing � for X � X0 � S,

X̂ � �(X0 � S) � ��(X0)� � T·S � � , (11)

where T is a transfer matrix which differs from the identity
matrix when decoding is imperfect, and � a Gaussian
noise of covariance C�. Thus, the reconstructed perturba-
tion Ŝ � X̂ � X0 can be written as:

Ŝ � T·S � b � � , (12)

where b � ���X0�� � X0 is a systematic bias. We inferred
the values of b and C� from the 	400 reconstructions of
the reference stimulation using either of the two decoders,
and the values of T from the reconstructions of the per-
turbed trajectories. The inference is done by an iterative
algorithm similar to that used for the inference of the filters
F of the local model. We define the LSNR in decoding the
perturbation S as:

LSNR(S) � (�Ŝ� � b)T·C�
�1·(�Ŝ� � b) � ST·TT·C�

�1·T·S .
(13)

where here ��� means average with respect to the noise �.
In this formula, the signal is defined as the average pre-
dicted perturbation �Ŝ�, from which the systematic bias b
is subtracted, yielding T·S. The noise is simply �. Note
that here the LSNR is defined for a given perturbation S.

It is the ratio of the squared signal to the noise variance
(summed over the eigendirections of the noise correlator,
since we are dealing with a multidimensional signal). This
LSNR gives a measure of decoding performance, through
the amplitude of the decoded signal relative to the noise.
To study how this performance depends on the frequency
� of the input signal, in Figure 6C, we apply Equation 13
with Sb � Aexp�2�i�b�t�, where A is the amplitude of the
perturbation (Fig. 5A), and b is a time-bin counter. Note
that this frequency-dependent LSNR should not be in-
tepreted as a ratio of signal and noise power spectra, but
rather as the dependence of decoding performance on
the frequency of the perturbation. It is used rather than the
traditional SNR because we are dealing with signals with
no time-translation invariance (i.e., Ttt� is not just a function
of t � t�, and neither is C�, tt�). However, our LNSR reduces
to the traditional frequency-dependent SNR in the special
case of time-translation invariance, i.e., when the decoder
is convolutional, and its noise stationary (see Discussion,
Mathematical derivations)

Fisher information estimation of sensitivity
coefficients

In Figures 5A,B, 7C,D, we show the Fisher estimations
of sensitivity coefficients c�Q� for perturbations of differ-
ent shapes Q, either those used during the experiment
(Fig. 1), or oscillating ones, Sb � Aexp�2�i�b�t�. to com-
pute these sensitivity coefficients, we use Equation 14 to
compute the sensitivity index d� and then we divide it by
the perturbation amplitude, yielding c�Q� � d�/A �


QT·I·Q.

Results
Measuring sensitivity using closed-loop experiments

We recorded from a population of 60 ganglion cells in
the rat retina using a 252-electrode array while presenting
a randomly moving bar (Fig. 2A; Materials and Methods).
Tracking the position of moving objects is major task that
the visual system needs to solve. The performance in this
task is constrained by the ability to discriminate different
trajectories from the retinal activity. Our aim was to mea-
sure how this recorded retinal population responded to
different small perturbations around a pre-defined stimu-
lus. We measured the response to many repetitions of a
short (0.9 s) reference stimulus, as well as many small
perturbations around it. The reference stimulus was the
random trajectory of a white bar on a dark background
undergoing Brownian motion with a restoring force (see
Materials and Methods). Perturbations were small changes
affecting that reference trajectory in its middle portion, be-
tween 280 and 600 ms. The population response was de-
fined as sequences of spikes and silences in 20-ms time
bins for each neuron, independently of the number of spikes
(see Materials and Methods).

To assess the sensitivity of the retinal network, we
asked how well different perturbations could be discrim-
inated from the reference stimulus based on the popula-
tion response. We expect the ability to discriminate
perturbations to depend on two factors. First, the direc-
tion of the perturbation in the stimulus space, called
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perturbation shape. If we change the reference stimulus
by moving along a dimension that is not taken into ac-
count by the recorded neurons, we should not see any
change in the response. Conversely, if we choose to
change the stimulus along a dimension that neurons “care
about,” we should quickly see a change in the response.
The second factor is the amplitude of the perturbation:
responses to small perturbations should be hardly distin-
guishable, while large perturbations should elicit easily
detectable changes (Fig. 2B). To assess the sensitivity to
perturbations of the reference stimulus we need to ex-
plore many possible directions that these perturbations
can take, and for each direction, we need to find a range
of amplitudes that is as small as possible but will still
evoke a detectable change in the retinal response. In
other words, we need to find the range of amplitudes for
which discrimination is hard but not impossible. This re-
quires looking for the adequate range of perturbation
amplitudes “online,” during the time course of the exper-
iment.

To automatically adapt the amplitude of perturbations
to the sensitivity of responses for each of the 16 pertur-
bation shapes and for each reference stimulus, we imple-
mented closed-loop experiments (Fig. 3A). At each step,
the retina was stimulated with a perturbed stimulus and
the population response was recorded. Spikes were de-
tected in real time for each electrode independently by
threshold crossing (see Materials and Methods). This
coarse characterization of the response is no substitute
for spike sorting, but it is fast enough to be implemented
in real time between two stimulus presentations, and
sufficient to detect changes in the response. This method
was used to adaptively select the range of perturbations
in real time during the experiment, and to do it for each
direction of the stimulus space independently. Proper
spike sorting was performed after the experiment using
the procedure described in Marre et al., 2012 and Yger
et al., (2016) and used for all subsequent analyses.

To test whether a perturbation was detectable from the
retinal response, we considered the population response,
summarized by a binary vector containing the spiking

status of each recorded neuron in each time bin, and
projected it onto an axis to obtain a single scalar number.
The projection axis was chosen to be the difference be-
tween the mean response to a large-amplitude perturba-
tion and the mean response to the reference (Fig. 3B). On
average, the projected response to a perturbation is larger
than the projected response to the reference. However,
this may not hold for individual responses, which are
noisy and broadly distributed around their mean (for
example distributions, see Fig. 3B, right). We define the
discrimination probability as the probability that the
projected response to the perturbation is in fact larger
than to the reference. Its value is 100% if the responses
to the reference and perturbation are perfectly separa-
ble, and 50% if their distributions are identical, in which
case the classifier does no better than chance. This discrim-
ination probability is equal to the “area under the curve of the
receiver-operating characteristics,” which is widely used for
measuring the performance of binary discrimination tasks.

During our closed-loop experiment, our purpose was
to find the perturbation amplitude with a discrimination
probability of 85%. To this end, we computed the
discrimination probability online as described above,
and then chose the next perturbation amplitude to be
displayed using the “accelerated stochastic approxi-
mation” method (Kesten, 1958; Faes et al., 2007): when
discrimination was above 85%, the amplitude was de-
creased, otherwise, it was increased (see Materials and
Methods).

Figure 3C shows the discrimination probability as a
function of the perturbation amplitude for an example
perturbation shape. Discrimination grows linearly with
small perturbations, and then saturates to 100% for large
ones. This behavior is well approximated by an error
function (gray line) parametrized by a single coefficient,
which we call sensitivity coefficient and denote by c. This
coefficient measures how fast the discrimination proba-
bility increases with perturbation amplitude: the higher the
sensitivity coefficient, the easier it is to discriminate re-
sponses to small perturbations. It can be interpreted as
the inverse of the amplitude at which discrimination

Figure 2. Sensitivity of a neural population to visual stimuli. A, The retina is stimulated with repetitions of a reference stimulus (here
the trajectory of a bar, in blue), and with perturbations of this reference stimulus of different shapes and amplitudes. Purple and red
trajectories are perturbations with the same shape, of small and large amplitude. B, Mean response of three example cells to the
reference stimulus (left column and light blue in middle and right columns) and to perturbations of small and large amplitudes (middle
and right columns).
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reaches 76%, and is related to the classical sensitivity
index d� (Macmillan and Creelman, 2004), through d� �
c � A, where A denotes the perturbation amplitude (see
Materials and Methods).

All 16 different perturbation shapes were displayed,
corresponding to 16 different directions in the stimulus

space, and the optimal amplitude was searched for each
of them independently. We found a mean sensitivity coeffi-
cient of c � 0.0516 �m– 1. However, there were large differ-
ences across the different perturbation shapes, with a
minimum of c � 0.028 �m– 1 and a maximum of c � 0.065
�m– 1.

Figure 3. Closed-loop experiments to probe the range of stimulus sensitivity. A, Experimental setup: we stimulated a rat retina with
a moving bar. Retinal ganglion cell (RGC) population responses were recorded extracellularly with a multielectrode array. Electrode
signals were high-pass filtered and spikes were detected by threshold crossing. We computed the discrimination probability of the
population response and adapted the amplitude of the next perturbation. B, left, The neural responses of 60 sorted RGCs are
projected along the axis going through the mean response to reference stimulus and the mean response to a large perturbation. Small
dots are individual responses, large dots are means. Middle, Mean and standard deviation (in gray) of response projections for
different amplitudes of an example perturbation shape. Right, Distributions of the projected responses to the reference (blue), and to
small (purple) and large (red) perturbations. Discrimination is high when the distribution of the perturbation is well separated from the
distribution of the reference. C, Discrimination probability as a function of amplitude A. The discrimination increases as an error
function, �1/2��1 � erf�d�/2�	, with d� � c � A (gray line: fit). Ticks on the x-axis show the amplitudes that have been tested during the
closed-loop experiment.
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Sensitivity and Fisher information
So far, our results have allowed us to estimate the

sensitivity of the retina in specific directions of the pertur-
bation space. Can we generalize from these measure-
ments and predict the sensitivity in any direction? The
stimulus is the trajectory of a bar and is high dimensional.
Under the assumptions of the central limit theorem, we
show that the sensitivity can be expressed in matrix form
as (see Materials and Methods):

d� � 
ST·I·S , (14)

where I is the Fisher information matrix, of the same
dimension as the stimulus, and S the perturbation repre-
sented as a column vector. This result generalizes that of
Seung and Sompolinsky (1993), initially derived for one-
dimensional stimuli, to arbitrary dimensions. Thus, the
Fisher information is sufficient to predict the code’s sen-
sitivity to any perturbation.

Despite the generality of Equation 14, it should be
noted that estimating the Fisher information matrix for a

highly dimensional stimulus ensemble requires a model of
the population response. As already discussed in the
introduction, the nonlinearities of the retinal code make
the construction of a generic model of responses to arbi-
trary stimuli a very arduous task, and is still an open
problem. However, the Fisher information matrix need
only be evaluated locally, around the response to the
reference stimulus, and to do so building a local response
model is sufficient.

Local model for predicting sensitivity
We introduce a local model to describe the stochastic

population response to small perturbations of the refer-
ence stimulus. This model will then be used to estimate
the Fisher information matrix, and from it the retina’s
sensitivity to any perturbation, using Equation 14.

The model, schematized in Figure 4A, assumes that
perturbations are small enough that the response can be
linearized around the reference stimulus. First, the re-
sponse to the reference is described by conditionally
independent neurons firing with time-dependent rates es-

Figure 4. Local model for responses to perturbations. A, The firing rates in response to a perturbation of a reference stimulus are
modulated by filters applied to the perturbation. There is a different filter for each cell and each time bin. Because the model is
conditionally independent across neurons we show the schema for one example neuron only. B, Raster plot of the responses of an
example cell to the reference (blue) and perturbed (red) stimuli for several repetitions. C, PSTH of the same cell in response to the
same reference (blue) and perturbation (red). Prediction of the local model for the perturbation is shown in green. D, Performance of
the local model at predicting the change in PSTH induced by a perturbation, as measured by Pearson correlation coefficient between
data and model, averaged over cells (green). The data PSTH were calculated by grouping perturbations of the same shape and of
increasing amplitudes by groups of 20 and computing the mean firing rate at each time over the 20 perturbations of each group. The
model PSTH was calculated by mimicking the same procedure. To control for noise from limited sampling, the same performance was
calculated from synthetic data of the same size, where the model is known to be exact (black).
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timated from the peristimulus time histograms (PSTHs).
Second, the response to perturbations is modeled as fol-
lows: for each neuron and for each 20-ms time bin of the
considered response, we use a linear projection of the per-
turbation trajectory onto a temporal filter to modify the spike
rates relative to the reference. These temporal filters were
inferred from the responses to all the presented perturba-
tions, varying both in shape and amplitude (but small
enough to remain within the linear approximation). Details of
the model and its inference are given in Materials and Meth-
ods.

We checked the validity of the local model by testing its
ability to predict the PSTH of cells in response to pertur-
bations (Fig. 4B). To assess model performance, we com-
puted the difference of PSTH between perturbation and
reference, and compared it to the model prediction. Fig-
ure 4D shows the correlation coefficient of this PSTH
difference between model and data, averaged over all
recorded cells for one perturbation shape. To obtain an
upper bound on the attainable performance given the
limited amount of data, we computed the same quantity
for responses generated by the model (black line). Model
performance saturates that bound for amplitudes up to 60
�m, indicating that the local model can accurately predict
the statistics of responses to perturbations within that
range. For larger amplitudes, the linear approximation
breaks down, and the local model fails to accurately
predict the response. This failure for large amplitudes is
expected if the retinal population responds nonlinearly to
the stimulus. We observed the same behavior for all the
perturbation shapes that we tested. We have therefore
obtained a local model that can predict the response to
small enough perturbations in many directions.

To further validate the local model, we combine it with
Equation 14 to predict the sensitivity c of the network to
various perturbations of the bar trajectory, as measured
directly by linear discrimination (Fig. 3). The Fisher matrix
takes a simple form in the local model: I � F·CR·FT, where
F is the matrix containing the model’s temporal filters
(stacked as row vectors), and CR is the covariance matrix
of the entire response to the reference stimulus across

neurons and time. We can then use the Fisher matrix to
predict the sensitivity coefficient using Equation 14, and
compare it to the same sensitivity coefficient previously
estimated using linear discrimination. Figure 5A shows
that these two quantities are strongly correlated (Pearson
correlation: 0.82, p � 10–8), although the Fisher prediction
is always larger. This difference could be due to two
reasons: limited sampling of the responses, or nonopti-
mality of the projection axis used for linear discrimination.
To evaluate the effect of finite sampling, we repeated the
analysis on a synthetic dataset generated using the local
model, with the same stimulation protocol as in the actual
experiment. The difference in the synthetic data (Fig. 5B) and
experiment (Fig. 5A) were consistent, suggesting that finite
sampling is indeed the main source of discrepancy. We
confirmed this result by checking that using the optimal
discrimination axis (see Discussion, Mathematical deriva-
tions) did not improve performance (data not shown).

Summarizing, our estimation of the local model and of
the Fisher information matrix can predict the sensitivity
of the retinal response to perturbations in many directions
of the stimulus space. We now use this estimation of the
sensitivity of the retinal response to tackle two important
issues in neural coding: the performance of linear decod-
ing and efficient information transmission.

Linear decoding is not optimal
When trying to decode the position of random bar

trajectories over time using the retinal activity, we found
that a linear decoder (see Materials and Methods) could
reach a satisfying performance, confirming previous re-
sults (Warland et al., 1997 and Marre et al., 2015). Several
works have shown that it was challenging to outperform
linear decoding on this task in the retina (Warland et al.,
1997 and Marre et al., 2015). From this result, we can
wonder whether the linear decoder is optimal, i.e., makes
use of all the information present in the retinal activity, or
whether this decoder is suboptimal and could be outper-
formed by a nonlinear decoder. To answer this question,
we need to determine an upper bound on the decoding
performance reachable by any decoding method. For an

Figure 5. The Fisher information predicts the experimentally measured sensitivity. A, Sensitivity coefficients c for the two reference stimuli
and 16 perturbation shapes, measured empirically and predicted by the Fisher information (Eq. 14) and the local model. The purple point
corresponds to the perturbation shown in Figure 2. Dashed line stands for best linear fit. B, Same as A, but for responses simulated with
the local model, with the same amount of data as in experiments. The discriminability of perturbations was measured in the same way than
for recorded responses. Dots and error bars stand for mean and SEM over 10 simulations. Dashed line stands for identity.
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encoding model, the lack of reliability of the response sets
an upper bound on the encoding model performance, but
finding a similar upper bound for decoding is an open
challenge. Here, we show that our local model can define
such an upper bound.

The local model is an encoding model: it predicts the
probability of responses given a stimulus. Yet it can be
used to create a “Bayesian decoder” using Bayesian
inversion (see Materials and Methods): given a response,
what is the most likely stimulus that generated this re-
sponse under the model? Since the local model predicts
the retinal response accurately, doing Bayesian inversion
of this model should be the best decoding strategy,
meaning that other decoders should perform equally or
worse. When decoding the bar trajectory, we found that
the Bayesian decoder was more precise than the linear
decoder, as measured by the variance of the recon-
structed stimulus (Fig. 6A). The Bayesian decoder had a
smaller error than the linear decoder when decoding per-
turbations of small amplitudes (Fig. 6B). For larger ampli-
tudes, where the local model is expected to break down,
the performance of the Bayesian decoder decreased.

To quantify decoding performance as a function of the
stimulus temporal frequency, we estimated a “LSNR” of
the decoding signal for small perturbations of various
frequencies (see Materials and Methods). The definition of
the LSNR differs from the usual frequency-dependent
SNR, as it is defined to deal with signals that are local in
stimulus space and in time, i.e., with no invariance to time
translations. We verified however that the two are equiv-
alent when time-translation invariance is satisfied (see
Discussion, Mathematical derivations). The Bayesian de-
coder had a much higher LSNR than the linear decoder at
all frequencies (Fig. 6C), even if both did fairly poorly at
high frequencies. This shows that, despite its good per-
formance, linear decoding misses some information
about the stimulus present in the retinal activity. This
result suggests that inverting the local model, although it

does not provide an alternative decoder generalizable to
all possible trajectories, sets a gold standard for decod-
ing, and can be used to test whether other decoders miss
a significant part of the information present in the neural
activity. It also confirms that the local model is an accu-
rate description of the retinal response to small enough
perturbations around the reference stimulus.

Signature of efficient coding in the sensitivity
The structure of the Fisher information matrix shows

that the retinal population is more sensitive to some di-
rections of the stimulus space than others. Are these
differences in the sensitivity optimal for efficient informa-
tion transmission? We hypothesized that the retinal sen-
sitivity has adapted to the statistics of the bar motion
presented throughout the experiment to best transmit
information about its position. Figure 7A represents the
power spectrum of the bar motion, which is maximum at
low frequencies, and quickly decays at large frequencies.
We used our measure of the Fisher matrix to estimate the
retinal sensitivity power as the sensitivity coefficient c to
oscillatory perturbations as a function of temporal fre-
quency (see Materials and Methods). Unlike the power
spectrum, which depends monotonously on frequency,
we found that the sensitivity is bell shaped, with a peak in
frequency around 4Hz (Fig. 7C).

To interpret this peak in sensitivity, we studied a mini-
mal theory of retinal function, similar to Van Hateren
(1992), to test how maximizing information transmission
would reflect on the sensitivity of the retinal response. In
this theory, the stimulus is first passed through a low-pass
filter, then corrupted by an input white noise. This first
stage describes filtering due to the photoreceptors (Rud-
erman and Bialek, 1992). The photoreceptor output is
then transformed by a transfer function and corrupted by
a second external white noise, which mimics the subse-
quent stages of retinal processing leading to ganglion cell
activity. Here the output is reduced to a single continuous

Figure 6. Bayesian decoding of the local model outperforms the linear decoder. A, Responses to a perturbation of the reference
stimulus (reference in blue, perturbation in red) are decoded using the local model (green) or a linear decoder (orange). For each
decoder, the area shows one standard deviation from the mean. B, Decoding error as a function of amplitude, for an example
perturbation shape. C, LSNR for perturbations with different frequencies (differing from the standard SNR definition to deal with
locality in stimulus space and in time; Materials And Methods/Local signal to noise ratio in decoding). The performance of both
decoders decreases for high frequency stimuli.
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signal (Fig. 7B; for details, see Discussion, Mathematical
derivations). Note that this theory is linear: we are not
describing the response of the retina to any stimulus,
which would be highly nonlinear, but rather its linearized
response to perturbations around a given stimulus, as in
our experimental approach. To apply the efficient coding
hypothesis, we assumed that the photoreceptor filter is
fixed, and we maximized the transmitted information,
measured by Shannon’s mutual information, over the
transfer function (see Discussion, Mathematical deriva-
tions; Eq. 31). We constrained the variance of the output
to be constant, corresponding to a metabolic constraint
on the firing rate of ganglion cells. In this simple and
classical setting, this optimal transfer function, and the
corresponding sensitivity, can be calculated analytically.
Although the power spectrum of the stimulus and photo-
receptor output are monotonically decreasing, and the
noise spectrum is flat, we found that the optimal sensitiv-
ity of the theory is bell shaped (Fig. 7E), in agreement with
our experimental findings (Fig. 7C). Recall that in our
reasoning, we assumed that the network optimizes infor-
mation transmission for the statistics of the stimulus used
in the experiment. Alternatively, it is possible that the
retinal network optimizes information transmission of nat-

ural stimuli, which may have slightly different statistics.
We also tested our model with natural temporal statistics
(power spectrum 	1⁄�2 as a function of frequency �; Dong
and Atick, 1995) and found the same results (data not
shown).

One can intuitively understand our result that a bell-
shaped sensitivity is desirable from a coding perspective.
On one hand, in the small frequency regime, sensitivity
increases with frequency, i.e., decreases with stimulus
power. This result is classic: when the input noise is small
compared to stimulus, the best coding strategy for max-
imizing information is to whiten the input signal to obtain
a flat output spectrum, which is obtained by having the
squared sensitivity be inversely proportional to the stim-
ulus power (Rieke et al., 1996; Wei and Stocker, 2016). On
the other hand, at high frequencies, the input noise is too
high (relative to the stimulus power) for the stimulus to be
recovered. Allocating sensitivity and output power to
those frequencies is therefore a waste of resources, as it
is devoted to amplifying noise, and sensitivity should
remain low to maximize information. A peak of sensitivity
is thus found between the high SNR region, where stim-
ulus dominates noise and whitening is the best strategy,
and the low LSNR region, where information is lost into

Figure 7. Signature of efficient coding in the sensitivity. A, Spectral density of the stimulus used in experiments, which is
monotonically decreasing. B, Simple theory of retinal function: the stimulus is filtered by noisy photoreceptors, whose signal is then
filtered by the noisy retinal network. The retinal network filter was optimized to maximize information transfer at constant output
power. C, Sensitivity of the recorded retina to perturbations of different frequencies. Note the nonmonotonic behavior. D, Same as
C, but for the theory of optimal processing. E, Information transmitted by the retina on the perturbations at different amplitudes. F,
Same as E, but for the theory.
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the noise and coding resources should be scarce. A result
of this optimization is that the information transferred
should monotonically decrease with frequency, just as the
input power spectrum does (Fig. 7F). We tested if this
prediction was verified in the data. We estimated similarly
the information rate against frequency in our data, and
found that it was also decreasing monotonically (Fig. 7D).
The retinal response has therefore organized its sensitivity
across frequencies in a manner that is consistent with an
optimization of information transmission across the retinal
network.

Discussion
We have developed an approach to characterize exper-

imentally the sensitivity of a sensory network to changes
in the stimulus. Our general purpose was to determine
which dimensions of the stimulus space most affect the
response of a population of neurons, and which ones
leave it invariant, a key issue to characterize the selectivity
of a neural network to sensory stimuli. We developed a
local model to predict how recorded neurons responded
to perturbations around a defined stimulus. With this local
model we could estimate the sensitivity of the recorded
network to changes of the stimulus along several dimen-
sions. We then used this estimation of network sensitivity
to show that it can help define an upper bound on the
performance of decoders of neural activity. We also
showed that the estimated sensitivity was in agreement
with the prediction from efficient coding theory.

Our approach can be used to test how optimal different
decoding methods are. In our case, we found that linear de-
coding, despite its very good performance, was far from the
performance of the Bayesian inversion of our local model, and
therefore far from optimal. This result implies that there should
exist nonlinear decoding methods that outperform linear de-
coding (Botella-Soler et al., 2016). Testing the optimality of the
decoding method is crucial for brain machine interfaces (Gilja
et al., 2012): in this case, an optimal decoder is necessary to
avoid missing a significant amount of information. Building our
local model is a good strategy for benchmarking different de-
coding methods.

In the retina, efficient coding theory had led to key predic-
tions about the shape of the receptive fields, explaining their
spatial extent (Atick, 1992; Borghuis et al., 2008), or the
details of the overlap between cells of the same type (Liu
et al., 2009; Karklin and Simoncelli, 2011; Doi et al., 2012).
However, when stimulated with complex stimuli like a fine-
grained image, or irregular temporal dynamics, the retina
exhibits a nonlinear behavior (Gollisch and Meister, 2010).
For this reason, up to now, there was no prediction of the
efficient theory for these complex stimuli. Our approach
circumvents this barrier, and shows that the sensitivity of the
retinal response is compatible with efficient coding. Future
works could use a similar approach with more complex
perturbations added on top of natural scenes to characterize
the sensitivity to natural stimuli.

More generally, different versions of the efficient coding
theory have been proposed to explain the organization of
several areas of the visual system (Dan et al., 1996;
Olshausen and Field, 1996; Bell and Sejnowski, 1997;

Bialek et al., 2006; Karklin and Simoncelli, 2011) and
elsewhere (Machens et al., 2001; Chechik et al., 2006;
Smith and Lewicki, 2006; Kostal et al., 2008). Estimating
Fisher information using a local model could be used in
other sensory structures to test the validity of these hy-
potheses.

Finally, the estimation of the sensitivity along several
dimensions of the stimulus perturbations allows us to
define which changes of the stimulus evoke the strongest
change in the sensory network, and which ones should
not make a big difference. Similar measures could in
principle be performed at the perceptual level, where
some pairs of stimuli are perceptually indistinguishable,
while others are well discriminated. Comparing the sen-
sitivity of a sensory network to the sensitivity measured at
the perceptual level could be a promising way to relate
neural activity and perception.

Mathematical derivations
A Derivation of discrimination coefficient in arbitrary
dimension

Here, we derive Equation 5 in detail. Recall that Lref is a
random variable taking value L�R� � ln�P�R�S�/P
�R�ref�	 on presentation of the reference stimulus and LS

the random variable taking value L�R� when R is a
response to the presentation of S. Then their averages are
given by:

�LS� � �
R

P(R �S)[lnP(R �S) � lnP(R �ref)] (15)

�Lref� � �
R

P(R �ref)[lnP(R �S) � lnP(R �ref)] . (16)

Expanding at small S, P�R�S� � P�R�ref��1 � �lnP
�R�S�/�ST�S�0·S�, one obtains:

�LS� � �Lref� � �
R

P(R �ref)�� lnP(R �S)

�ST


S�0
·S�

�� lnP(R �S)

�ST


S�0
·S� � ST·I·S � O(S3) , (17)

with

I � (Itt�), Itt� � �
R

P(R �ref)
� lnP(R �S)

�St


S�0

� lnP(R �S)
�St�


S�0

��
R

� lnP(R �S)
�St


S�0

� lnP(R �S)
�St�


S�0

�
�

�St �
R

P(R �S)
� lnP(R �S)

�St�


S�0
� �

R

P(R �ref)
�2lnP(R �S)

�St�St�


S�0

�
�

�St�St� �
R

P(R �S)
S�0

� �
R

P(R �ref)
�2lnP(R �S)

�St�St� 
S�0

��
R

P(R �ref)
�2lnP(R �S)

�St�St�


S�0
,

(18)

where we have used �
R

P�R�S� � 1. Similarly, the vari-

ances of these quantities are at leading order:
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�Lref
2 � � �Lref�2 � �LS

2� � �LS�2 � �LS
2� � �

R

P(R �ref)

�� lnP(R �S)

�ST


S�0
·S�2

� ST·I·S � O(S3) , (19)

where we have used the fact that

�LS� � �
R

P(R �S)�� lnP(R �S)

�ST


S�0
·S� � O(S2) �

�

�ST �
R

P(R �S)S�0·S � O(S2) � O(S2) . (20)

Next, we assume that lnP�R�S� is the sum of weakly
correlated variables, meaning that its distribution can be
approximated as Gaussian. Thus, the random variable
LS � Lref is also distributed as a Gaussian, with mean
�L � ST·I·S and variance L

2 � 2ST·I·S. The discrimination
probability is the probability that LS 
 Lref, i.e.,

P(LS � Lref 
 0) � �
0

� dx


2�L

e�(x � �L)2/2L
2

�
1
2�1 � erf� �L

2L
�� �

1
2�1 � erf�d�

2 �� , (21)

with d� � �L/L � 
ST·I·S.

B Fisher and linear discrimination
There exists a mathematical relation between the Fisher

information of Equation 8 and linear discrimination. The
linear discrimination task described earlier can be gener-
alized by projecting the response difference, RS � Rref,
along an arbitrary direction u:

�x � xS � xref � uT·(RS � Rref) . (22)

�x is again assumed to be Gaussian by virtue of the
central limit theorem. We further assume that perturba-
tions S are small, so that �RS� � �Rref� � ���RS�/�S�·S, and
that CR does not depend on S. Calculating the mean and
variance of �x under these assumption gives an explicit
expression of d� in Equation 3:

d� �
uT·

� �RS�
�S

·S


uT·CR·u
. (23)

Maximizing this expression of d� over the direction of
projection u yields u � const � CR

�1·���RS�/�S�·S and

d� � 
ST·IL·S , (24)

where IL � ���RS�/�S�T·CR
�1·���RS�/�S� is the linear Fisher

information (Fisher, 1936; Beck et al., 2011). This expres-
sion of the sensitivity corresponds to the best possible
discrimination based on a linear projection of the re-
sponse.

Within the local linear model defined above, one has
��RS�/�S � F·CR, and IL � F·CR·FT, which is also equal to

the true Fisher information (Eq. 8): I � IL. Thus, if the local
model (Eq. 6) is correct, discrimination by linear projection
of the response is optimal and saturates the bound given
by the Fisher information.

Note that the optimal direction of projection only differs from
the direction we used in the experiments, u � �RS� � �Rref�, by
an equalization factor CR

�1. We have checked that applying that
factor only improves discrimination by a few percents (data not
shown).

C Local SNR for a convolutional linear decoder
In this section, we show how the local SNR defined in

Equation 13 reduces to standard expression in the sim-
pler case of a convolution decoder � in the linear regime:

X̂ � �(X) � h�X � � (25)

where � is the convolution symbol, h is a stimulus inde-
pendent linear filter and � a Gaussian noise of covariance
C� and zero mean. Linearizing � for X � X0 � S as in
Equation 12, we obtain

Ŝ � T·S � b � � , (26)

but now the transfer matrix Tbb� � h�b � b�� depends only
on the difference between the time-bin indices b and b�
When T is applied to an oscillating perturbation of unitary
amplitude Ŝb��� � exp�2�i�b�t�, we have:

T·S(�) � h̃(�)S(�) (27)

where h̃��� � �
�

h���exp�2�i���t� is the Fourier coefficient

of filter h. As a consequence of this last property, the
LSNR takes the following expression (Eq. 13):

LSNR(S(�)) � S(�)T·TT·C�
�1·T·S(�) (28)

�� h̃(�)�2S(�)T·C�
�1·S(�) , (29)

where �h̃����2 can be interpreted as the signal power at
frequency � for unitary stimulus perturbation. If further-
more C�, bb� � ��b�b�� � C��b � b��, then LSNR�S���� re-
duces to the standard expression of SNR (Woyczynski,
2010):

LSNR(S(�)) �
� h̃(�)�2

C̃(�)
(30)

where C̃���� � �
�

C����exp�2�i���t� is the noise power at

frequency �.

D frequency dependence of sensitivity and
information

To analyze the behavior in frequency of the sensitivity,
we compute the sensitivity index for an oscillating pertur-
bation of unitary amplitude. We apply Equation 14 with
Ŝb��� � exp�2�i�b�t�. to estimate the spectrum of the
information rate we compute its behavior within the linear
theory (Van Hateren, 1992):
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MI(�) �
1
2

ln�1 � CS(�)I(�)/�t2	 (31)

where CS��� is the power spectrum of the actual stimulus
statistics (noisy damped oscillator), and I��� � ��t/L�ŜT

���·I·Ŝ���. Note that this decomposition in frequency of
the transmitted information is valid because the system is
linear and the stimulus is Gaussian distributed (Bernardi
and Lindner, 2015).

E efficient coding theory
To build a theory of retinal sensitivity, we follow closely

the approach of Van Hateren (1992). The stimulus is first
linearly convolved with a filter f, of power F, then cor-
rupted by an input white noise with uniform power H, then
convolved with the linear filter r of the retina network of
power F, and finally corrupted again by an external white
noise 
. The output power spectrum O(�) can be ex-
pressed as a function of frequency �:

O(�) � (�tL)G(�)[(�tL)F(�)CS(�) � H] � � (32)

where CS(�) is the power spectrum of the input. The
information capacity of such a noisy input-output channel
is limited by the allowed total output power V � �

�
O���,

which can be interpreted as a constraint on the metabolic
cost. The efficient coding hypothesis consists in finding
the input-output relationship g�, of power G����, that max-
imizes the information transmission under a constraint on
the total power of the output. The optimal Fisher informa-
tion matrix can be computed in the frequency domain as:

I(�) �
�t4L2G�(�)F(�)

� � L�tG�(�)H
. (33)

The photoreceptor filter (Warland et al., 1997) was
taken to be exponentially decaying in time, f � ��1exp
� � t/�� (for t � 0), with � � 100 ms. The curve I(�) only
depends on H, 
, and V through two independent param-
eters. For the plots in Figure 7, we chose: H � 3.38 �m2/s,
� � 0.02 spikes2s and V � 307 spikes2s, �t � 20 ms, and
L � 2, 500. In Figure 7D, we plot the sensitivity to oscil-
lating perturbation with fixed frequency �, which results in

I���L/�t. In Figure 7E, we plot the spectral density of the
transferred information rate:

MI(�) �
1
2

ln�1 �
(�tL)2G(�)F(�)CS(�)

� � (�tL)G(�)H
� . (34)
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