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Random versus maximum entropy models of neural population activity
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The principle of maximum entropy provides a useful method for inferring statistical mechanics models from
observations in correlated systems, and is widely used in a variety of fields where accurate data are available.
While the assumptions underlying maximum entropy are intuitive and appealing, its adequacy for describing
complex empirical data has been little studied in comparison to alternative approaches. Here, data from the
collective spiking activity of retinal neurons is reanalyzed. The accuracy of the maximum entropy distribution
constrained by mean firing rates and pairwise correlations is compared to a random ensemble of distributions
constrained by the same observables. For most of the tested networks, maximum entropy approximates the
true distribution better than the typical or mean distribution from that ensemble. This advantage improves with
population size, with groups as small as eight being almost always better described by maximum entropy. Failure
of maximum entropy to outperform random models is found to be associated with strong correlations in the
population.
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I. INTRODUCTION

The principle of maximum entropy was introduced in 1957
by Jaynes [1,2] to formulate the foundations of statistical
mechanics as an inference problem. Its interest has been
recently rekindled by its application to a variety of data-rich
fields, starting with the correlated activity of populations of
retinal neurons [3,4]. The method has since been used to study
correlations in other neural data, such as cortical networks
[5–7] and functional magnetic resonance imaging [8], as well
as in other biological and nonbiological contexts, including
multiple sequence alignments of proteins [9–11] and nucleic
acids [12,13], the collective motion of bird flocks [14], the
spelling rules of words [15], and the statistics of decisions by
the United States Supreme Court [16]. In many cases, the close
link between maximum entropy and statistical mechanics has
led to new insights into the thermodynamics of the system
in terms of phase transitions [17–19], or multivalley energy
landscape [20,21]. In other cases, the method has allowed
for predictions of crucial practical relevance, such as residue
contacts in proteins [22], or deleterious mutations in HIV [23].

Although the motivations of maximum entropy seem
intuitive and can be formalized rigorously [24], the perceived
arbitrariness of its assumptions has led to question its validity
[25,26]. The starting point is to consider models that match
empirical observations on a few key statistics of the data.
Maximum entropy’s crucial—and debatable—assumption is
to pick, out of the many models that satisfy that constraint,
the one with the largest Gibbs entropy. This choice seems
natural, since it ensures that the model is as random as possible.
However, it is not clear why it should describe the data better
than other models satisfying the same constraints. To address
this question directly on empirical data, we reanalyze the
original neural data from Ref. [3], which contributed to the
recent surge of interest in maximum entropy. We compare
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the accuracy of maximum entropy distributions to ensembles
of distributions that satisfy the same constraints, using the
approach developed in Refs. [27,28].

II. MODEL ENSEMBLE

The collective state of a population of N variables is
described by σ = (σ1, . . . ,σN ). In general, σi may denote
any degree of freedom, such as the identity of an amino
acid in a protein, the orientation of a bird in a flock, etc.
To fix this idea, in this paper σi will be a binary variable
describing the spiking activity of neuron i: σi = 1 if neuron
i spikes within a given time window, and 0 otherwise.
The joint distribution of the collective activity σ , denoted
by P (σ ), lives in a 2N − 1 dimensional space, represented
schematically in Fig. 1. Because that space is huge for even
moderately large populations, it is often impossible to sample
the true distribution, P̂ , reliably from the data. Simplifying
assumptions are needed.

To restrict the search of models, one can focus on distribu-
tions that agree with the data on the average value of a few
observables. Calling these observables Oa(σ ), a = 1, . . . ,M ,
the condition reads P · Oa ≡ ∑

σ P (σ )Oa(σ ) = Oa , where
Oa is the empirical mean. The observables must be chosen
carefully depending on the problem at hand, and may include
local or global order parameters, marginal probabilities,
correlation functions, etc. Let us denote by C the subspace
of models P that satisfy those constraints, as well as the
conditions P (σ ) � 0 and

∑
σ P (σ ) = 1. C is convex because

of the linear nature of the constraints.
A probability law on C may be defined, which weighs

models P ∈ C according to their Gibbs entropy, S(P ) =
−∑

σ P (σ ) log P (σ ), through the following measure [27]:

μ�(P ) = e�S(P )

Z , Z =
∫

P�0
DP e�S(P ), (1)
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FIG. 1. Random models. The space C of models P is a simplex
of 2N − M − 1 dimensions, defined by the intersection of the
hyperplanes satisfying the constraints that the mean observables
under the model,

∑
σ P (σ )Oa(σ ), a = 1, . . . ,M , equal the empirical

means, Oa , and by a normalization and positivity constraint. The
true distribution to be approximated, P̂ (red dot), is not accessible in
general. An entropy-dependent measure μ� [Eq. (1)] is defined on
C (red map). At � = 0 (random ensemble), the measure is uniform
over that space. As � is increased, the measure concentrates onto the
maximum entropy distribution PME (blue dot), and so does its mean
P� = 〈P 〉� (black dot).

with

DP = δ

(∑
σ

P (σ ) − 1

)
M∏

a=1

δ(P · Oa − Oa)
∏
σ

dP (σ ),

(2)
where δ(·) is Dirac’s δ function. The parameter � is conju-
gate to the entropy, and sets its average value: 〈S(P )〉� =
∂ lnZ/∂�, where we use the brackets 〈·〉� for averages over
the measure μ� . � plays the same role with respect to the
entropy as the inverse temperature with respect to the energy in
standard statistical mechanics. When � = 0, all distributions
satisfying the constraints have the same probability. We
call this the unbiased ensemble. As � → ∞, the measure
becomes increasingly peaked onto a single distribution, PME,
of maximum entropy (or, in the previous analogy, the ground
state is reached at zero temperature). This distribution defines
the classical maximum entropy model, and takes the form [29]:

PME(σ ) = 1

Z
exp

[
M∑

a=1

λaOa(σ )

]
, (3)

where λa are Lagrange multipliers enforcing the constraints on
the mean observables, and Z is a normalization constant. We
define the average distribution as P�(σ ) ≡ 〈P (σ )〉� , which
belongs to C by convexity. P� only coincides with PME in
the limit � → ∞. At the other extreme, P0 is the unbiased,
center-of-mass distribution that satisfies all the constraints.

III. APPLICATION TO CORRELATED NEURAL
ACTIVITY IN THE RETINA

We follow the approach of the random ensemble defined
by (1) to describe the joint spiking activity of retinal ganglion
cells reported in Ref. [3]. There, the spiking activities of 40
ganglion cells from the salamander retina were recorded by
multielectrode arrays for about an hour, and segmented into
≈1.5 × 105 binary spike words σ of 20 ms. The collective
behavior of small networks (up to 10 neurons) was shown
to be well described by maximum entropy distributions
constrained by spike rates and pairwise correlations (and later

to much larger populations [21]). This choice of constraints
corresponds to the observables Oa = σi for all neuron i, and
Oa = σiσj for all pairs i,j , for which the maximum entropy
distribution (3) takes the form of a disordered Ising model,
PME(σ ) = (1/Z) exp(

∑
i hiσi + ∑

ij Jij σiσj ).

A. Small networks

It is instructive first to consider the unbiased measure
μ0 over very small networks, for which everything can be
calculated analytically. The simplest case of two neurons con-
strained by just their firing rate is illustrated by Fig. 2(a). The
maximum entropy distribution factorizes over the two neurons,
which are thus independent [30]: P (σ ) = p1(σ1)p2(σ2). By
contrast, random models drawn from μ0 are biased towards a
positive correlation 〈σ1σ2〉 − 〈σ1〉〈σ2〉 > 0 when both firing
rates 〈σ1〉,〈σ2〉 are on the same side of 0.5 (in the retinal
data 〈σi〉 ∼ 0.02). A similar bias in the triplet correlation is
also found when considering three neurons constrained by
uniform firing rates and pairwise correlations [Fig. 2(b)]. When
pairwise correlations are weak, as is the case in the retina
[3], random models predict on average a higher three-point
connected correlation than maximum entropy, although the
bias is reversed for large correlations.

B. Model comparisons

Thanks to its exponential form (3), the maximum entropy
distribution can be inferred with relative ease for systems
of size N � 20, yet requiring us to calculate sums of 2N

terms [3]. Sampling from μ� or calculating P� , on the other
hand, is a much harder task, involving the exploration of C
of dimension 2N − N (N + 1)/2 − 1. To apply the random
ensemble to populations of neurons, we sampled from μ�

with Monte Carlo using the Metropolis-Hastings algorithm,
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FIG. 2. Small networks. Illustration of the random ensemble
on two and three neurons. (a) Pairwise correlation 〈σ1σ2〉c =
〈σ1σ2〉 − 〈σ1〉〈σ2〉 predicted by maximum entropy and random
models constrained by the mean spiking rates of two neurons,
〈σ1〉 = 〈σ2〉, as a function of that rate. The mean unbiased model
P0 is the center of mass between the lower and upper allowed
limits of the correlation, which delimit the shaded area. (b)
Triplet connected correlation, 〈σ1σ2σ3〉c = 〈σ1σ2σ3〉 − 〈σ1σ2〉〈σ3〉 −
〈σ1σ3〉〈σ2〉 − 〈σ2σ3〉〈σ1〉 + 2〈σ1〉〈σ2〉〈σ3〉, as a function of the pair-
wise correlation between three neurons firing with probability 〈σ1〉 =
〈σ2〉 = 〈σ3〉 = 0.02 (mean empirical value). Pairwise correlation in
the retinal data range from −10−3 to 0.03 with a median of 2 × 10−4.
Key is as in (a).
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FIG. 3. Random versus maximum entropy models. (a) The nor-
malized Kullback-Leibler divergence relative to maximum entropy,
DKL(P̂ ‖P )/DKL(P̂ ‖PME), is represented as a function of the entropy-
conjugated variable � for (a) a random group of N = 7 neurons
(out of 40). Values above unity (dashed line) mean that maximum
entropy outperforms the random model. The violin plots show the
distributions over random models drawn from μ� , while the red lines
show the value for the average model, DKL(P̂ ‖P�). (b) Normalized
KL divergence at � = 0 for 20 random subsets of seven neurons
(blue), as well as the group of most correlated neurons (as measured
by Pearson’s correlation coefficient, green), and the set of neurons
with the highest spike rate (yellow).

for various subgroups of neurons of different sizes. At
each step, starting from a distribution P in C, one picks a
random direction V in the Fourier basis of the hyperplane
orthogonal to all observables Oa [28]. The new distribution
is taken to be P ′ = P + αV , where α is drawn uniformly
in the interval (αmin,αmax) defined by the lower and upper
limits so that P ′(σ ) � 0 for all σ . P ′ is accepted with
probability min(1,e�[S(P ′)−S(P )]). The process is repeated until
equilibration is reached. High space dimension limits us to
relatively small group sizes, N � 8. Fortunately for these sizes
the true distribution P̂ may be accurately estimated from the
data, and directly compared to models.

The accuracy of a given model is assessed by the Kullback-
Leibler (KL) divergence between the model distribution P

and the true one P̂ , DKL(P̂ ‖P ) = ∑
σ P̂ (σ ) ln[P̂ (σ )/P (σ )].

Figure 3 shows, in the form of violin plots, the distribution
of KL divergence (normalized relative to maximum entropy)
when sampling P from μ� , for groups of N = 7 cells. This
distribution is plotted in Fig. 3(a) for a random group of seven
cells. Maximum entropy is found to have a clear advantage: its
accuracy is matched by only a negligible fraction of models
drawn from μ� , and it also does better than their mean P� (red
line). The advantage of maximum entropy over the unbiased
ensemble generalizes to 20 random groups of seven cells
[Fig. 3(b)], as well as the groups comprising the most corre-
lated (green) and most active (yellow) cells. Interestingly, in all
cases the mean distribution P� is more accurate than the typical
distribution P sampled from μ� , a consequence of Jensen’s
inequality, which implies DKL(P̂ ‖〈P 〉�) � 〈DKL(P̂ ‖P )〉� .
In general, 0 < � < ∞ interpolates between the unbiased
ensemble and the maximum entropy distribution. For these
reasons, in the following the maximum entropy model PME

will only be compared to the mean distribution of the unbiased
ensemble, P0. Note that estimating the mean distribution still
requires us to sample C using Monte Carlo, and does not offer
benefits in terms of computational speed.
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FIG. 4. Dependence on populations size. (a) The normalized
divergence of the average model, DKL(P̂ ‖P�), is averaged over 20
random subsets, and plotted as a function of (1/N ) ln �. Error bars
show standard error on the mean. (b) Fraction of random groups (out
of hundreds) of N neurons that are better described by the mean
unbiased distribution P0 than by the maximum entropy model PME.

C. Network size

We now investigate the dependence on the population size.
Figure 4 shows the average normalized KL divergence of the
mean model P� for random cell groups of varying sizes, as
a function of (1/N ) ln � (the scaling of � is assumed to be
exponential in N , as suggested by calculations with random
observables [27]). The general trend noted before for N = 7
generalizes to all sizes: the larger the entropy bias �, the better
the model [Fig. 4(a)]. However, this average behavior masks
large heterogeneities across different choices of cell groups,
especially for small groups, of which a sizable fraction is better
described by the mean distribution P0 than by PME. Evaluating
this fraction from hundreds of random groups for each N , we
find that maximum entropy is more likely to outperform the
random ensemble in larger groups [Fig. 4(b)], and even does
so in all of the 200 tested groups of size N = 8.

D. Maximum entropy and correlations

What sets apart groups of cells that are better described
by P0 than by PME? Since both share the same one- and
two-point correlations by construction, we examine their
predictions for three-point correlations in triplets of cells
(N = 3). Figure 5(a) shows that random models typically fail
because they overestimate small three-point correlations. By
contrast, maximum entropy is more likely to be outperformed
by random models when the triplet correlation is large, in
which case maximum entropy overestimates it. Both these
findings are in agreement with the results of Fig. 2(b). This
observation can be generalized to larger groups of neurons
(N > 3) by considering the total amount of correlations in the
network, quantified by the loss of entropy due to correlations,
or multi-information [30], I = S(Pind) − S(P̂ ), where Pind =∏

i pi(σi) is the model distribution of independent neurons.
Groups that are better described by P0 than by PME are found
to have a higher multi-information on average [Fig. 5(c)].

IV. CONCLUSION

Since maximum entropy was proposed as a method for
building statistical models from high-dimensional data, its
accuracy, relevance, and epistemological validity have been
questioned. In this study we have shown that the maximum
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FIG. 5. Correlations and maximum likelihood performance. Three-point connected correlation 〈σ1σ2σ3〉c for (a) 100 random triplets whose
joint activity is best described by maximum entropy and (b) 100 random triplets whose joint activity is best described by the mean unbiased
model, when constraining the values of the pairwise correlations. The error bar shows, for each triplet, the allowed range of values for the
three-point correlation. (c) The multi-information, which measures the overall amount of correlation in the collective activity, is plotted as a
function of system size, for groups of neurons that are best described by the maximum entropy model PME (blue) or by the mean unbiased
model P0 (red). Error bars show standard deviation across groups of cells (the red point at N = 7 has no error bar because only one group of
that size was better described by P0).

entropy model describes the spiking activity of populations
in the retina better than the mean model satisfying the
same constraints, which itself performs better than the vast
majority of random models under these constraints. This
better performance of maximum entropy gets more marked
as the population size N grows, and is essentially always
true for N � 8. The analysis of three-point and higher-order
correlations suggests that the rare instances where the mean
model outperforms maximum entropy involve relatively large
correlations. When correlations are high, maximum entropy
predicts high triplet correlations within the allowed range
compared to the mean unbiased model [Fig. 2(b)], and may
thus overestimate their true value, consistent with previous
observations in large populations [21]. In that case, models
that take a middle-of-the-road value of the correlations may be
preferred to maximum entropy. We emphasize that although
groups in which the mean model outperforms maximum
entropy tend to have large correlations, the converse is not
true: for instance all networks with N � 8 are better described
by maximum entropy, regardless of their correlations.

It would be interesting to apply our approach to other data
sets where maximum entropy has been shown to perform well,
in particular on the correlated activity of cortical networks
[5–7] where the nature of correlations may be different. Only
such a comparative analysis could assess the general adequacy
of maximum entropy beyond the particular case of the retina.
However, by providing a first test on empirical data, our results
complement previous work aimed at explaining or refuting
the efficiency of maximum entropy solely based on theoretical
arguments and simulated data sets.

In particular, the random ensemble of Eq. (1) was applied
to synthetic models in which the observables were themselves
picked at random as quenched disorder [27,28]. In Ref. [27],
the form of the imposed constraints was drawn from a uniform

distribution. Under that choice of observables, maximum en-
tropy was found to be no more accurate than random. However,
it is not clear how applicable these results are to real empirical
distributions, and to pairwise constraints. For instance, if the
constraints are not randomly selected, but chosen to reproduce
lower-order statistics or to be smooth functions of the variables,
the results could drastically change [28].

Other simulation studies have more specifically addressed
the role of pairwise interactions. It was suggested that pairwise
maximum entropy models should fail for large populations
[31], but these conclusions were based on synthetic data simu-
lated with higher-than-pairwise interactions, making pairwise
maximum entropy models unfit almost by construction. On
the other hand, strongly interacting systems with interactions
of arbitrary order have been numerically shown to be well
described by pairwise interactions, with an analogy to Hopfield
networks [32]. The principle of maximum entropy has also
been advocated by contrast to nonadditive (or Rényi) entropies,
but on purely theoretical grounds [33] (although even more
general classes of nonexponential distributions perform better,
see Ref. [34]). Our results do not preclude that other objective
functions than entropy may help better describe empirical data.
They suggest, however, that for large networks it is better to
pick the most random model than to pick a model at random.
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