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Abstract
Neurons within a population are strongly correlated, but how to simply capture these correlations is still a matter
of debate. Recent studies have shown that the activity of each cell is influenced by the population rate, defined
as the summed activity of all neurons in the population. However, an explicit, tractable model for these
interactions is still lacking. Here we build a probabilistic model of population activity that reproduces the firing rate
of each cell, the distribution of the population rate, and the linear coupling between them. This model is tractable,
meaning that its parameters can be learned in a few seconds on a standard computer even for large population
recordings. We inferred our model for a population of 160 neurons in the salamander retina. In this population,
single-cell firing rates depended in unexpected ways on the population rate. In particular, some cells had a
preferred population rate at which they were most likely to fire. These complex dependencies could not be
explained by a linear coupling between the cell and the population rate. We designed a more general, still
tractable model that could fully account for these nonlinear dependencies. We thus provide a simple and
computationally tractable way to learn models that reproduce the dependence of each neuron on the population
rate.
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Introduction
An important feature of neural population codes is the

correlated firing of neurons. Manifestations of collective

activity are observed in the correlated firing of individual
pairs of neurons (Arnett, 1978), and through the coupling
of single neurons to the activity in its surrounding popu-
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Significance Statement

The description of the correlated activity of large populations of neurons is essential to understand how the
brain performs computations and encodes sensory information. These correlations can manifest them-
selves in the coupling of single cells to the total firing rate of the surrounding population, as was recently
demonstrated in the visual cortex, but how to build this dependence into an explicit model of the population
activity is an open question. Here we introduce a general and tractable model based on the principle of
maximum entropy to describe this population coupling. By applying our approach to multielectrode
recordings of retinal ganglion cells, we find complex forms of coupling, with the unexpected tuning of many
neurons to a preferred population rate.
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lation (Arieli et al., 1996; Tsodyks et al., 1999). These
correlations, whether they are evoked by common inputs
or result from interactions between neurons, imply that
the neural code must be studied through the collective
patterns of activity rather than by individual neuron.

As the number of possible firing patterns in a population
grows exponentially with its size, they cannot be sampled
exhaustively for large populations. Several modeling ap-
proaches have been suggested to describe the collective
activity patterns of a neural population (Martignon et al.,
1995; Schneidman et al., 2003, 2006; Pillow et al., 2008;
Cocco et al., 2009; Tka�ik et al., 2014). In these ap-
proaches, a small number of statistics (e.g., mean firing
rate, pairwise correlations) is measured to constrain the
parameters of the model. Models are then evaluated on
their ability to predict statistics of the population activity
that were not fitted to the data. These models are com-
putationally hard to infer, and one must usually have
recourse to approximate methods to fit them.

Recently, Okun et al. (2015) investigated how the activ-
ity of the whole population influenced the behavior of
single neurons in the primary visual cortex of awake mice
and monkeys. In particular, they studied the role of the
correlation between neurons and the summed activity of
the population, called the population rate. To assess
whether these couplings between neurons and population
activity were sufficient to describe the correlative struc-
ture of the code, synthetic spike trains preserving these
couplings were generated and compared to data. How-
ever, the numerical method used to generate synthetic
spike trains is computationally heavy, and is unable to
predict the probability of particular patterns of spikes, as
most of them are unlikely to ever occur.

Here we introduce a new method, based on the princi-
ple of maximum entropy, to exactly account for the cou-
pling between individual neurons and the population rate.
This model is tractable, meaning that predictions for the
statistics of the activity can be derived analytically. The
gradient and Hessian of the likelihood of the model can
thus also be computed efficiently, allowing for fast infer-
ence using Newton’s method. Compared with previous
methods (Okun et al., 2015), our method can fit hours of
large-scale recordings of large populations in a few sec-
onds on a standard laptop computer. We tested it on
recordings of the salamander retina (160 neurons). We
uncovered new ways for individual neurons to be coupled
to the population, where a single neuron is tuned to a

particular value of the population rate, rather than being
monotonically coupled to the population.

Materials and Methods
Recordings from retinal ganglion cells

We analyzed previously published ex vivo recordings
from retinal ganglion cells of the tiger salamander (Amby-
stoma tigrinum; Tka�ik et al., 2014). In brief, animals were
killed according to institutional animal care standards.
The retina was extracted from the animal, maintained in
an oxygenated Ringer’s solution, and recorded on the
ganglion cell side with a 252-electrode array. Spike sort-
ing was performed with custom software (Marre et al.,
2012), and N � 160 neurons were selected for the stability
of their spike waveforms and firing rates, and the lack of
refractory period violation.

Maximum entropy models
We are interested in modeling the probability distribu-

tion of population responses in the retina. The responses
are first binned into 20 ms time intervals. The response of
neuron i in a given interval is represented by a binary
variable, �i, which takes value 1 if the neuron spikes in this
interval, and 0 if it is silent. The population response in this
interval is represented by the vector � � ��1, �, �N� of all
neuron responses (Fig. 1A). We define the population rate K as

the number of neurons spiking in the interval K��� � �
i�1

N

�i.
We build three models for the probability of responses

P���. These models reproduce some chosen statistics,
meaning that these statistics have same value in the
model and in empirical data. The first model reproduces
the firing rate of each neuron and the distribution of the
population rate. The second model also reproduces the
correlation between each neuron and the population rate.
The third model reproduces the whole joint probability of
single neurons with the population rate. It is a hierarchy of
models, because the statistics of each model are also
captured by the next one.

Minimal model
We build a first model that reproduces the firing rate of
each neuron, P��i � 1� � ��i�, and the distribution of the
population rate, P(K). We also want the model to have no
additional constraints, and thus be as random as possi-
ble. In statistical physics and information theory, the ran-
domness of a distribution P is measured by its entropy
S(P):

S(P) � � �
�

P(�) ln P(�) , (1)

where the sum runs over all possible states. The maxi-
mum entropy model is the distribution that maximizes this
entropy while reproducing the constrained statistics. Us-
ing the technique of Lagrange multipliers (see Mathemat-
ical derivations), one shows that the model must take the
following form:

P(�) �
1
Z

exp��
i�1

N

(�i � �K(�))�i� , (2)
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where the parameters �i, i � 1,. . .,N and �K, K � 0,. . .,N
must be fitted so that the distribution of Equation 2
matches the statistics ��i� and P(K) of the data. Z is a
normalization factor. Note that �K��� depends on the state
� through K���. We refer to this distribution as the mini-
mal model, as no explicit dependency between the activ-
ity of individual neurons and the population rate is
constrained.

Linear-coupling model
The second model reproduces ��i� and P(K) as before, as
well as the linear correlation �K·�i� between each neuron

response �i and the population rate K, for i � 1,. . .,N. It
takes the following form (see Mathematical derivations):

P(�) �
1
Z

exp��
i�1

N

(�i � �K(�) � �iK)�i� . (3)

Analogously to the minimal model, the parameters �i,
�K, and �i are inferred so that the model agrees with the
mean statistics ��i�, P(K), and �K·�i� of the data. Impor-
tantly, despite their common notation, the values of the
fitted parameters �i and �K are different from the ones

A

B C D

Figure 1. A maximum entropy model for population coupling. A, Spikes trains are recorded with a multielectrode array and binned
in 20 ms time windows. We study the dependence between the binned response of each neuron �i and the population rate K, defined
as the summed activity of all neurons. B–D, The linear-coupling model fits the following three observables with high accuracy: the
population rate distribution (B); the cells firing rates (C); and population couplings (D). For each observable, the model fit is plotted
against empirical values.
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fitted in the minimal model (see Mathematical deriva-
tions).

Complete-coupling model
The third model reproduces the joint probability distribu-
tions of the response of each neuron and the population
rate P��i, K�. It takes the following form (see Mathematical
derivations):

P(�) �
1
Z

exp��
i�1

N

hiK(�)�i� . (4)

The parameters �hiK�i�1, �, N;K�0, �, N are inferred so that the
model agrees with the data on P��i, K� for each (i, K) pair.
Note that hiK��� depends on the state �. We refer to this
model as the complete-coupling model since it repro-
duces exactly the joint probability between each neuron
and the population rate.

Model solution
The minimal and linear-coupling models can be written in
the same form as the complete-coupling model (Eq. 4),
but with constraints on the form of hiK. In the minimal
model, the matrix hiK is constrained to have the form
�i � �K. In the linear-coupling model, it is constrained to
have the form �i � �K � �i K. In the complete-coupling
model, the matrix hiK has no imposed structure, and all its
elements must be learned from the data.

Since all the considered models can be viewed as
subcases of the complete-coupling model (Eq. 4), we only
describe the mathematical solution to this general case.
First, we describe how to solve the direct problem, i.e.,
how to compute statistics of interest, such as P(�i,K), from
the parameters hiK. In the next section, we explain how to
solve the inverse problem—the reverse task of inferring
the model parameters from the statistics—which relies on
the solution to the direct problem.

A model is considered tractable if there exists an ana-
lytical expression for the normalization factor,

Z � �
�

exp��
i�1

N

hiK(�)�i� , (5)

allowing for its rapid computation (e.g. in polynomial time
in N). All statistics of the model, such as P(�i,K) or cova-
riances ��i�j� � ��i���j� between pairs of neurons, can then
be calculated efficiently through derivatives of Z (see
Mathematical derivations). In general, maximum entropy
models are not tractable, because sums of the kind in
Equation 5 involve a sum over an exponential number of
terms (2N). Fortunately, in our case, the technique of
probability-generating functions provides an expression
for Z that is amenable to fast computation using polyno-
mial algebra (see Mathematical derivations), as follows:

Z � �
K�0

N

Coeff	

i�1

N

(1 � XehiK), XK� , (6)

where Coeff�Q, Xn
 denotes the coefficient of polynomial
Q of order Xn.

Model inference
We now describe how to fit the models to experimental data.
The inference of the model parameters is equivalent to a
problem of likelihood maximization (Ackley et al., 1988). The
model reproduces the empirical statistics exactly when the
parameters maximize the likelihood of experimental data

measured by the model, L � 

��1

n

P������, where ���1�, �, ��n��
are the n activity patterns recorded in the experiment,
assumed to be independently drawn.

In practice, we maximized the normalized log-likelihood
� � �1/n�log L instead of L, which is equivalent theoreti-
cally but is more convenient for computation. We used
Newton’s method to perform the maximization. This
method requires computation of the first and second
derivatives of the normalized log-likelihood. These deriv-
atives can be expressed as functions of mean statistics of
the model and can be calculated using the solution to the
direct problem sketched in the previous section, and
detailed in the Mathematical derivations section. Because
the model is tractable, these mean statistics can be com-
puted quickly, and the model can be inferred rapidly.

For the minimal model, the optimization was performed
over the parameters ��i�i�1, �, N and ��K�K�0, �, N. For the
linear-coupling model, the optimization was performed
over these two sets of parameters, as well as ��i�i�1, �, N.
For the complete-coupling model, the optimization was
performed over all elements of the matrix �hiK�i�1, �, N;K�0, �, N.
We stopped the algorithm when the fitting error was
smaller than 10�6 (see Mathematical derivations).

Regularization
Prior to learning the model, we regularized the empirical
population rate distribution P(K) and conditional firing
rates P��i	K� to mitigate the effects of low sampling noise.
This regularization allowed us to remove zeros from the
mean statistics, avoiding issues with the fitting procedure.
We performed this regularization using pseudocounts
(see Mathematical derivations).

Tuning curves in the population rate
We define the tuning curve of neuron i in the population
rate as the conditional probability of neuron i to spike given the
summed activity of all neurons but i, K\i � �

j
i
�j. It is equal to the

following:

p(�i � 1|K\i) �
P��i � 1, K\i�

P��i � 0, K\i� � P��i � 1, K\i�
, (7)

where we can use P��i � 1, K\i� � P��i � 1, K � K\i � 1� and
P��i � 0, K\i� � P��i � 1, K � K\i�. Each of these quantities
can be computed using the solution to the direct problem
(see Mathematical derivations).

We then tested for each neuron whether its tuning curve
had significant local maxima. We first identified the set of
K\i for which P��i � 1	K\i� was significantly larger than
points below and above K\i. To assess significance, we
measured the SD of the difference across 100 training
sets consisting of random halves of the dataset. The
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difference was said to be significant when it was 5 SDs
above 0.

For the cells for which the presence of a maximum was
determined, we then evaluated the location of the maxi-
mum, K\i

�, by taking the median of the maxima determined
for each training set. We inferred the presence and posi-
tion of minima in a similar way.

To estimate the quality of the model prediction for the
tuning curve, we quantified how the model differed from
the data. We trained the model on 100 random training
sets and computed DKL�test�model�, the difference be-
tween P��i, K� in the testing data and predicted by the
model, measured by the Kullback–Leibler (KL) diver-
gence. The KL divergence between two distributions P
and Q of a random variable x is: DKL�P�Q� � �

x
P�x�log

�P�x�/Q�x�
. We regularized P��i, K� in the testing set be-
fore computing the KL divergence. To measure sampling
noise, we computed the difference between the testing
and the training sets, DKL(test � train), where P��i, K� was
regularized in both sets. The normalized KL divergence, z,
is defined as the difference between DKL (test � model) and
DKL (test � train), divided by the SD, as follows:

z �
mean�DKL(test�model) � DKL(test�train)�
std�DKL(test�model) � DKL(test�train)�

. (8)

In other words, it measures by how many SDs the data
differ from the model.

Quality of the model
Pairwise correlations
In order to measure the quality of the predictions of
correlations between pairs of neurons �i and �j, we used
cross-validation. We randomly divided the dataset into
100 training and testing sets half the size of the data, and
learned the model on the training sets. The correlations of
each testing set ctest,ij were then predicted with the model
cmodel,ij. The quality of the model prediction was measured
by a goodness-of-fit index quantifying the amount of
correlations predicted by the model. We define it as fol-
lows:

C �

�
i�j

ctest,ij
2 � �

i�j

�ctest,ij � cmodel,ij�2

�
i�j

ctest,ij
2 � �

i�j

�ctest,ij � ctrain,ij�2
, (9)

where ctrain, ij is the correlation in the corresponding train-
ing set. The numerator of Equation 9 is the part of the
correlations in the testing set that is predicted by the
model, and the lower one is a normalization correcting for
sampling noise. We have C � 1 when the model perfectly
accounts for the correlations of the training set. When the
model completely ignores correlations, as in a model of
independent neurons, cij � 0, then C � 0.

Likelihood
Using the models learned on the same 100 training
sets, we computed the likelihood of responses in the
testing sets for the minimal, linear-coupling, and complete-

coupling models. In this article, the log-likelihood is ex-
pressed in bits, using binary logarithms. We then computed
the improvement in mean log-likelihood compared to the
minimal model, for complete versus linear models as the
ratio ��log Pcomplete��� � log Pminimal�����/�log Plinear��� �
log Pminimal������test, where �·�test is the mean over training sets
and �·�� is the mean over responses in each testing set.

Multi-information
The multi-information (Cover and Thomas 1991; Sch-
neidman et al., 2003) quantifies the amount of correlative
structure captured by a model. It is defined as the differ-
ence between the entropy of a model of independent
neurons reproducing firing rates and the empirical data:
I � Sindep � Sdata. Here Sdata � � �

�
Pdata���logPdata��� is

the entropy of the spike patterns measured by their fre-
quencies, Pdata���, in the data, and Sindep is the entropy if
all neurons were independent.

The entropy of a maximum entropy model is by con-
struction higher than that of the real data, Smodel � Sdata,
because the model has maximum entropy given the sta-
tistics it reproduces. Its entropy is also smaller than Sindep,
provided that constraints include the spike rates, because
the model has more structure and reproduces more statistics
than if neurons were independent. Thus, the fraction of corre-
lations that is accounted by the maximum entropy model,
0 � Imodel/I � 1, where Imodel � Sindep � Smodel, can be viewed as
a measure of how well the model captures the correlative
structure of responses. The true multi-information I can only be
calculated for small groups of neurons (N 
 20), because Pdata

requires evaluation of 2N pattern frequencies, which is prohib-
itive for large networks.

Results
Tractable maximum entropy model for coupling
neuron firing to population activity
The principle of maximum entropy (Jaynes, 1957a,b) pro-
vides a powerful tool to explicitly construct probability
distributions that reproduce key statistics of the data, but
are otherwise as random as possible. We introduce a
novel family of maximum entropy models of spike pat-
terns that preserve the firing rate of each neuron, the
distribution of the population rate, and the correlation
between each neuron and the population rate, with no
additional assumptions (Fig. 1A). Under these constraints,
the maximum entropy distribution over spike patterns in a
fixed 20 ms time window is given by the following (see
Materials and Methods):

P(�1, �, �N) �
1
Z

exp��
i�1

N

(�i � �K � �iK) �i�, (10)

where �i equals 1 when neuron i spikes within the time
window, and 0 otherwise, K � �

i
�i is the population

rate, and Z is a normalization constant. The parameters
��i�i�1, �, N, ��i�i�1, �, N and ��K�K�0, �, N must be fitted to em-
pirical data. We refer to this model as the linear-coupling
model, because of the linear term �iK�i in the exponential.

Unlike maximum entropy models in general, this model
is tractable, meaning that its prediction for the statistics of
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spike patterns has an analytical expression that can be
computed efficiently using polynomial algebra. This al-
lows us to infer the model parameters rapidly for large
populations on a standard computer, using Newton’s
method (see Materials and Methods). We learned this
model in the case of a population of N � 160 salamander
retinal ganglion cells, stimulated by a natural movie. It
took our algorithm 14 s to fit the 3N–2 model parameters
(see Mathematical derivations) so that the maximum dis-
crepancy between the model and the data was �10�6

(Fig. 1B–D).
The linear-coupling model provides a rigorous mathe-

matical formulation for the hypotheses underlying the
modeling approach of Okun et al. (2015) applied to corti-
cal populations. In that work, synthetic spike trains were
generated by shuffling spikes from the original data so as
to match the three constraints listed above on the single-
neuron spike rates, the distribution of population rates,
and their linear correlation. Shuffling data (i.e., increasing
randomness and hence entropy while constraining mean
statistics) have previously been shown to be equivalent to
the principle of maximum entropy in the context of pair-
wise correlations (Bialek and Ranganathan, 2007). Our
formulation provides a fast way to learn the model and to
make predictions from it, as we shall see below. In addi-
tion, it allows us to calculate the probability of individual
spike patterns (Eq. 10), which a generative procedure
such as the one in Okun et al. (2015) cannot.

Tuning curves of single neurons to the population
activity
We wondered whether the linear-coupling model could
explain how the response of single neurons depended on
the population rate. We examined the firing probability of
neuron i as a function of the summed activity of the other
neurons K\i � �

j
i
�j, denoted by P��i � 1	K\i�. This quantity

can be viewed as the tuning curve of neuron i in response
to the rest of the population. It can be calculated analyt-
ically from the parameters of the model (see Materials and
Methods) and compared with empirical values. The tuning
curves of four representative cells are shown in Figure
2A–D.

The linear-coupling model predicts a variety of tuning
curves (in red), from sublinear to superlinear. Although its
prediction was qualitatively close to the empirical value
for some cells (Fig. 2A), the model generally did not
account well for the coupling between �i and K\i. A ma-
jority of cells (85 of 160) displayed a local maximum in
their empirical tuning curves, at some preferred value K\i

�

of the population activity to which the neuron is tuned.
The model did not predict the existence of this maximum
in 47 of these 85 cells (Fig. 2C). Even when it did, the
location of the maximum, K\i

�, was poorly predicted, as can
be seen by the distribution of the difference between the
model and the data (Fig. 2E). In six cases, the tuning curve
had two local maxima, while the model only predicted
one. Another 27 cells had a minimum in their empirical
tuning curve, which was never reproduced by the model
(Fig. 2D). Interestingly, no cells were tuned to fire when the
rest of the population is silent; even cells whose spiking

activity was anticorrelated with the rest of the population
had a nonzero preferred population rate, K\i

� � 0.
The model performance can be quantified by comput-

ing the KL divergence between the data and the model for
the joint probability P��i, K� of the neuron and population
activity (Fig. 2F). The KL divergence is a measure of the
dissimilarity between two distributions, P and Q (Cover
and Thomas, 1991), which quantifies the amount of infor-
mation that is lost if we use Q to approximate P. We
calculated a normalized KL divergence (see Materials and
Methods) measuring by how many SDs the KL divergence
between the linear-coupling model and the data deviated
from what would be expected from sampling noise (Fig.
2F). A majority of cells (143 of 160) deviated by �2 SDs,
meaning that their tuning curve was not well accounted
for by the linear-coupling model. This observation is con-
sistent with the failure of the model to account for the
qualitative properties of their tuning curves.

Together, these results indicate that the full depen-
dency between single cells and the population rate cannot
be explained by their linear correlation only.

A refined maximum entropy model
To overcome the limitations of the linear-coupling model,
and to fully account for the variety of tuning curves found
in data, we built a maximum entropy model constrained to
match all joint probabilities of the population rate with
each single neuron response, P��i, K�. This model takes
the following form (see Materials and Methods):

P(�1, �, �N) �
1
Z

exp��
i�1

N

hiK�i� , (11)

where the parameters hiK for i � 1,. . .,N and K � 0,. . .,N
are fitted to empirical data, and Z is a normalization
constant. Note that the linear-coupling model can be
viewed as a particular case of this model, with parameters
hiK constrained to take the form hiK � �i � �K � �iK. By
construction, this model exactly reproduces the tuning
curves of Figure 2A–D.

Although this model has many more parameters than
the simpler linear-coupling model, it is still tractable, and
we could infer its N(N – 1) � 1 parameters (see Mathe-
matical derivations) in 7 s for the whole population of 160
neurons. Hereafter, we refer to this model as the
complete-coupling model.

Pairwise correlations
The models introduced thus far are only constrained to
reproduce the firing rate of each neuron, the distribution
of population rates, and the coupling of each neuron with
the population rate. We asked whether these simple mod-
els could account for correlations between individual pairs
of cells, which were not fitted to the data. The correlation
between two neurons, ��i�j� � ��i���j�, can be calculated
analytically from the model parameters (see Materials and
Methods) and directly compared with the data (Fig. 3A,B).

In order to understand the importance of the population
rate coupling for the prediction of pairwise correlations,
we built a null model constrained only by the firing rates of
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A B

C D

E

F

Figure 2. Tuning curves of single neurons as a function of the population rate. A–D, Spiking probability of neuron i conditioned on
the summed activity of all other neurons P��i � 1	K\i�, as observed in the data (black curves; SE is shaded in gray) and predicted by
linear-coupling model (red curves). Each subfigure corresponds to a different representative cell. E, Histogram of the difference
between the preferred population rate—at which the tuning curve is maximal—observed in the data, Kdata

� , and predicted by the
linear-coupling model, Kmodel

� . Data are shown for the 38 cells that had at least one local maximum both in the linear model and in the
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each neuron and the distribution of the population rate.
This simpler maximum entropy model reads as follows:

P(�1, �, �N) �
1
Z

exp��
i�1

N

(�i � �K) �i� . (12)

We call it the minimal model. Interactions between neu-
rons derive only from the fluctuations of the population
activity, rather than from an explicit coupling. This model has
2N � 1 parameters (see Mathematical derivations), which
are inferred using the same techniques as before.

To quantify the performance of the different models, we
calculated a goodness-of-fit index ranging from 0, when
the correlations were not predicted at all, to 1, when they
were predicted perfectly (see Materials and Methods).

This index was 0.380 � 0.001 for the minimal model,
0.526 � 0.002 for the linear-coupling model, and 0.544 �
0.002 for the complete-coupling model. Thus, a substan-
tial amount of pairwise correlations could be explained
from the coupling of neurons to the population. By this
measure, the complete model performed slightly (but sig-
nificantly) better than the linear-coupling model.

Figure 3C shows the distribution of the pairwise correla-
tions in the data and as predicted by the three models. The
minimal model fails to reproduce the long tail of large cor-
relations, and predicts no negative correlations, while 28%
of empirical correlations are negative. By contrast, the linear-
coupling and complete-coupling models predict 7.6% and
7.7% of negative interactions, respectively, and a longer tail
of large correlation coefficients. Thus, the coupling to the

A B

C

Figure 3. Maximum entropy models of population coupling partly account for pairwise correlations. A, B, The observed correlation
coefficient between all pairs of neurons is compared with its prediction according to the linear-coupling (A) and complete-coupling
(B) models. C, Distribution of pairwise correlation coefficients, as observed in the data and predicted by minimal, linear-coupling, and
complete-coupling models.

continued
data. When the empirical tuning curve had two local maxima, the closest one to the model prediction was chosen. F, Histogram of
the normalized KL divergence between the observed joint distributions P��i, K� and its prediction by linear-coupling model. The
arrows indicate the value for the four example cells A–D. The vertical line shows a normalized divergence of 2, meaning that cells
sitting on its right deviate from the linear-coupling model by �2 SDs.
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population rate is important to reproduce both large corre-
lations and the strong asymmetry of the distribution.

Prediction of probabilities of spike patterns
We quantified the capacity of models to describe population
responses by computing the probability of responses pre-
dicted by each model. The mean log-likelihood of responses
was �33.10 � 0.06 bits for the minimal model, �30.12 �
0.06 bits for the linear-coupling model, and �29.49 �
0.06 bits for the complete-coupling model. The improve-
ment in mean log-likelihood compared with the minimal
model was 51.3 � 0.5% higher for the complete-coupling
model than for the linear-coupling model, meaning that
nonlinear couplings to the population are important to
model the probability of responses.

The multi-information I (Cover and Thomas, 1991)
quantifies, in bits, the amount of correlations in the re-
sponse, whether they are pairwise or of higher order (see
Materials and Methods). To assess the performance of
the models in capturing the collective behavior of the
networks, we calculated the ratio of the multi-information
explained by the model to that estimated directly from the
data, Imodel /Idata. This ratio gives a measure of how well
the probability of particular spike patterns is predicted by
the model: it is 1 when the model is a perfect description
of the data, and 0 when the model assumes independent
neurons with no correlation between them. Because it
requires the estimation of the probability of all possible
spike patterns of the populations, the multi-information
can be only calculated for small populations of, at most,
20 cells.

With this measure, the linear coupling model could
account for 65% of the multi-information for groups of 10
neurons, and 53% for groups of 20 neurons. The com-
plete model slightly improved these ratios to 68% and
56%, respectively (Table 1). Thus, more than half of the
correlative structure in the spike patterns could be ex-
plained by the coupling to the population rate alone.

Discussion
In this study, we have introduced a general computational
model for coupling individual neurons to the population
rate. This model formalizes and simplifies the generative
procedure proposed by Okun et al. (2015) to study pop-
ulation coupling, and overcomes its computational diffi-
culties. In addition, it allows for nonlinear coupling to the
population rate.

We have used our model to investigate population cou-
pling in large recordings of N � 160 retinal ganglion cells.
We found that most cells had a nonlinear coupling to the
population rate. In particular, a large fraction of cells were

tuned to a preferred value of the population rate. Even
more strikingly, a few cells had a least preferred popula-
tion rate (i.e., they were more likely to spike at lower or
higher populations rates). We found no cell that was
maximally active when all other neurons were silent, even
among cells that were anticorrelated with the population
rate. These results emphasize the need for the nonlinear
coupling afforded by our model, as they uncover new
dependencies that do not fit within the proposed division
between soloists and choristers (Okun et al., 2015), such
as the tuning to a specific population rate. It would be
interesting to test whether these nonlinear couplings can
also be found at the cortical level.

Overall, our model reaches a similar predictive perfor-
mance than what was found in the cortex. The coupling to
the population rate accounted for more than half of the
correlations between pairs of neurons. In Okun et al.
(2015), a custom measure of the fraction of explained
pairwise correlations (different from the one used in the
present work) gave 0.34. Applying the same measure to
our case yields a similar value (0.33). However, this simi-
larity in performance can be due to different underlying
mechanisms. In the retina, most correlations are due to
common input from previous layers (Trong and Rieke,
2008), while ganglion cells do not make synaptic connec-
tions to each other. In contrast, at the cortical level, a
larger part of the variability in the activity should be due to
internal dynamics generated by recurrent connections
(Arieli et al., 1996; van Vreeswijk and Sompolinsky, 1996;
Tsodyks et al., 1999). It would be interesting to test our
model on cortical data to see whether these differences
result in different types of nonlinear population coupling.

Our maximum entropy model of population coupling is
complementary to maximum entropy models reproducing
correlations between all pairs of neurons. Pairwise models
have been shown to accurately describe the collective
activity of retinal ganglion cells (Schneidman et al., 2006;
Shlens et al., 2006, 2009; Ganmor et al., 2011a,b; Tka�ik
et al., 2014), and in cortical networks in vitro (Tang et al.,
2008) and in vivo (Yu et al., 2008), but they are not
tractable, requiring summation over all 2N possible spiking
states in order to implement Boltzmann machine learning
(Ackley et al., 1988). Alternative methods based on mean
field approximations (Cocco et al., 2009; Cocco and Mo-
nasson, 2011) or Monte-Carlo simulations (Broderick
et al., 2007) have been proposed. However, Monte-Carlo
methods require hours of computations, although recent
efforts have tried to lower these computation times for
moderately large populations (Ferrari, 2015).

Table 1: Multi-information I estimated either directly from the data or from maximum entropy models, for random subpopu-
lations of 10 and 20 neurons (100 subpopulations each), as well as the ratio of the multi-information between model and data

Data Minimal Linear Complete
N � 10 I 0.0713 � 0.0398 0.0343 � 0.0268 0.0478 � 0.0315 0.0498 � 0.0326

I/Idata 1 0.444 � 0.135 0.649 � 0.108 0.677 � 0.108
N � 20 I 0.3188 � 0.0967 0.1291 � 0.0558 0.1702 � 0.0592 0.1789 � 0.0606

I/Idata 1 0.393 � 0.071 0.531 � 0.055 0.557 � 0.055

Results are reported as the Mean (� SD) in bits.
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By contrast, the models of population couplings intro-
duced here are much easier to solve. They are tractable,
so their predictions can be computed analytically in time
N3, and their parameters can be inferred in a few seconds
on a personal computer from large-scale, hour-long re-
cordings of spike trains for a population of N � 160
neurons. These models can then be used to generate
synthetic spike trains to calculate analytically response
statistics, such as pairwise correlations, or to estimate the
probability of particular spike trains. Compared with the
shuffling method described by Okun et al. (2015), which is
equivalent to the linear-coupling model, our method is
simpler and computationally less intensive.

The procedure is general and can be applied to any
multineuron recording of individual spikes. The speed of
model inference could prove to be an important advan-
tage when studying very large populations, which can
now reach 1000 cells (Schwarz et al., 2014). In the case of
the linear-coupling model, the number of parameters is
also smaller, scaling with the population size N rather than
N2 for the pairwise correlations model.

Note that the population coupling models introduced
here belong to a different class than the pairwise models.
Each class captures the features of neural responses that
the other cannot: models of population coupling should
be sufficient for studying the global properties of collec-
tive activity, while pairwise models are still needed to
account for the detailed structure of the response statis-
tics. Pairwise models have been reported to capture 90%
of the correlations, as measured by the multi-information
for populations of size N � 10 (Schneidman et al., 2006),
while our model captures, at most, 70% (Table 1). Yet,
pairwise models can also miss important aspects of the
collective activity, such as the probability of large popu-
lation rates (Tka�ik et al., 2014), which is captured by our
population model.

Both classes of models consider same-time spike pat-
terns, with no regard for the dynamics of spike trains and
their temporal correlations. Generalizations of pairwise
maximum entropy models to temporal statistics are even
harder to solve computationally (Vasquez et al., 2012;
Nasser et al., 2013). By contrast, our models of population
coupling are fully compatible with any model describing
the dynamics of the population rate, such as that by Mora
et al. (2015).

Mathematical derivations
Derivation of the model form
Maximum entropy models
A maximum entropy model is defined by a distribution
that maximizes its entropy, as follows:

S(P) � � �
�

P(�) logP(�) , (13)

while reproducing a set of chosen statistics. In the case
where these statistics are the means of some observables
�1���, �, �M���, the form of the model is given by the
following:

P(�) �
1
Z

exp��
a�1

M

�a �a(�)� , (14)

where Z is a normalization factor. Equation 14 is obtained by
maximizing the entropy while constraining the chosen statistics
using the method of Lagrange multipliers. The Lagrange mul-
tipliers �a are model parameters that must be adjusted so that
the mean observables predicted by the model, ��a�� agree with

those of the data, ��a�data � �1/n� �
��1

n

�������, where ���1�, �, ��n��

are the n activity patterns recorded in the experiment. This
fitting procedure is equivalent to maximizing the likelihood of

the data under the model L � 

��1

n

P������, assuming that the

patterns are independently drawn. The likelihood maximization
problem is convex, and the distribution P��� maximizing the
likelihood is always unique. However, if the constrained observ-
ables are linearly related, the optimal set of �a is not unique
(even though the resulting distribution is), and must be set by
choosing a convention.

Minimal model
In the minimal model, the statistics we constrain are
P��i � 1� for each neuron i, and P�K � k� for each
k � 0,...,N. They correspond to the means of the following
observables:

P(�i � 1) � ��i� , (15)

P(K � k) � ��K,k� , (16)

where �x, y is Kronecker’s delta, which is equal to 1 if x � y,
and 0 otherwise. Note that while in the main text we use
K both as a short-hand for �

i
�i and its realization as a

random variable, here we distinguish the two by using K
and k, respectively. Applying Equation 14 to this choice of
observables ��i, �K, k� yields the following:

P(�) �
1
Z

exp��
k�0

N

�k�K,k � �
i�1

N

�i�i� (17)

�
1
Z

exp��K � �
i�1

N

�i �i� , (18)

where each �k is associated with the constraint on ��K, k�
and each �i is associated with the constraint on ��i�. In the
second line, we have used the fact that in the first sum,
the only term which is nonzero is the one for which k � K.

For convenience, we rescale the parameters �K, which
will give a common form to our three models. We first set
�0 � 0, which is possible because the model is invariant
when adding a constant to all �k parameters (this changes
only the normalization factor Z). We then introduce the
rescaled parameters �K, which are defined as �0 � 0 and
�K � �K/K for K � 0. We have �K � K�K � �

i
�i�K, so that

the model takes the following form:
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P(�) �
1
Z

exp��
i�1

N

(�i � �K) �i� . (19)

This model has 2N � 1 parameters: there are N coeffi-
cients ��i�i�1

N and N � 1 coefficients ��k�k�0
N , but �0 is not

used, and the model is invariant under a change in pa-
rameters, �i� � �i � c, �k� � �k � c, for any number c.

Linear-coupling model
The linear-coupling model reproduces P��i� and P(K), and
also the linear correlation between the neuron response �i

and the population rate K, ��iK�. The three sets of con-
strained observables are thus ��i�i�1, �, N, ��K, k�k�0, �, N, and
��iK�i�1, �, N. With this choice of observables, Equation 14
reads as follows:

P(�) �
1
Z

exp��
k�0

N

�k�K,k � �
i�1

N

�i�i � �
i�1

N

�iK�i� (20)

�
1
Z

exp��K � �
i�1

N

(�i � �iK) �i� , (21)

where, in addition to the �i and �k parameters, each �i

parameter is associated with the constraint on ��iK�. Note
that, in general, the inferred parameters �i and �k will be
different from the ones inferred in the minimal model. This
is due to the fact that the set of observables �i, �K, k and
�iK are not independent. Therefore, the parameters �i

cannot be learned independently from �i and �k.
As for the minimal model, we rescale the parameters �K

with �0 � 0 and �K � �K/K for K � 0, as follows:

P(�) �
1
Z

exp��
i�1

N

(�i � �K � �iK) �i� . (22)

This model has 3N � 2 parameters: there are 2N coef-
ficients, ��i�i�1

N and ��i�i�1
N , and N � 1 coefficients ��k�k�0

N ,
but �0 is not used, and the model is invariant under
changes in parameters �i� � �i � c, �k� � �k � c �
dK, �i� � �i � d for any numbers c and d.

Complete-coupling model
The third maximum entropy model reproduces the joint
probability distributions between the response of each
neuron and the population rate, P��i, K�. The problem
reduces to matching P��i � 1, K� for all i � 1,. . .,N and
K � 0,. . .,N, since P��i � 0, K� can be determined through
the following:

P(�i � 0, K) � P�K� � P��i � 1, K�, (23)

where the distribution P(K) is set by the following:

�
i�1

N

P(�i � 1, K) � KP(K) . (24)

This holds true because K is the number of neurons
spiking, so:

�
i�1

N

P(�i � 1|K) � �
i�1

N

��i 	K� � ��
i�1

N

�i 	K� � K, (25)

where we can then multiply both sides by P(K). Here
� . 	K� stands for the mean conditioned by K.

Therefore, we impose that the model reproduces only
the statistics P��i � 1, K�, which are the means of the
observables �i�K, k. Using Equation 14 with this set of
observables yields the following:

P(�) �
1
Z

exp��
i�1

N

�
k�0

N

hik �i�K,k� (26)

�
1
Z

exp��
i�1

N

hiK�i� , (27)

where each hik is associated with the constraint on ��i�K, k�.
This model has N�N � 1� � 1 parameters: there are N

�N � 1� coefficients �hiK�i�1, K�0
N, N , but the N coefficients

�hi0�i�1
N are not used, and only the sum �

i
hiN of the N

coefficients �hiN�i�1
N is used, when all neurons spike simul-

taneously.

Regularization
We regularized the empirical population rate distribution
P(K) and conditional firing rates P��i	K� using pseudo-
counts. If we denote by n � 2.8 105 the total number of
responses � recorded during the experiment and by nK

the number of responses with K spikes in the population,
the distribution of population rates K was computed as
follows:

P(K) �
nK � �Pindep(K)

n � �
, (28)

where Pindep�K� is the distribution of K in a model of
independent neurons reproducing the empirical firing
rates ��i�. Similarly, if we denote by niK the number of
responses in which neuron i spiked and in which the
population rate was K, the conditional firing rates were
estimated as follows:

P(�i � 1	K) �
niK � �Pindep(�i � 1	K)

nK � �
, (29)

where again Pindep��i � 1	K� is the estimate of the condi-
tional firing rate according to the independent model. The
terms scaling as � play the role of pseudocounts. These
pseudocounts are not taken to be uniform, but rather
follow the prediction of a model of independent neurons.
We used � � 1 so that the total weight of pseudocounts
is equivalent to a single observed pattern.

Calculating statistics from the model
We start by providing an analytical expression for the
normalization factor, which is defined as follows:
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Z � �
�

exp��
i�1

N

hiK�i� . (30)

All useful statistics predicted by the model can be
derived from the expression of Z, as we shall see below.
To calculate Z, we decompose it as a sum over groups of

patterns with the same population activity K: Z � �
k�0

N

Zk

with:

Zk � �
�

K�k

exp��
i�1

N

hiK�i� (31)

� �
i1�... �ik

exp��
b�1

k

hib,k�. (32)

We introduce the polynomial Q�X� � 

i�1

N

�1 � ehikX�.
Expanding Q, we can calculate its coefficient of order Xk,
denoted by Coeff[Q,Xk]. This coefficient is the sum of all
the terms having exactly k factors ehik, as follows:

Coeff[Q, Xk] � �
i1�... �ik



b�1

k

exp�hibk� (33)

� �
i1�... �ik

exp��
b�1

k

hibk� (34)

�Zk. (35)

It is obtained by recursively computing the coefficients

of 

i�1

n

�1 � ehikX�, of order up to Xk, for n � 1 to N, using

the following relation:

Coeff[(1 � bX)F, Xl] � Coeff[F, Xl] � b Coeff[F, Xl�1] ,
(36)

for any number b, polynomial F, and order Xl. Zk can
thus be computed in time linear in kN, and Z � �

k
Zk can

be computed rapidly.
Many statistics of the model can then be calculated by

deriving Z. For example, the mean observables according
to the model in Equation 14 are given by the following:

��a�� �
� logZ
��a

(37)

This formula gives the following expression for the joint
distribution of �i and K:

P(�i � 1, K) �
� log Z

�hiK
(38)

�
1
z

Coeff	XehiK 

j
i

(1 � Xehj,K), XK�. (39)

Similarly, pairwise correlations are computed using the
following formula:

��i�j� �
1
z �

K

Coeff	X2ehiK�hjK 

j
i

(1 � XehiK), XK�. (40)

Model inference
To learn the model parameters from the data, we maxi-
mized the normalized log-likelihood � � �1/n�logL using
Newton’s method. The update equation for the parameter
values in Newton’s method read as follows:

�(t�1) � �(t) � a H�1·�� , (41)

where a is an adjustable step size taken typically between
0.1 and 1. ��t� � ��a

�t��a�1, �, M is the vector of the parameters
at iteration t; and �� and � are the gradient and Hessian
of � with respect to the parameters �a. In the general
context of maximum entropy models (Eq. 14), one can
show that the gradient and Hessian read as follows:

(��)a �
��
��a

� ��a�data � ��a�� (42)

���a�data �
� logZ
��a

(43)

�ab �
�2�

��a��b
� ��a����b�� � ��a�b�� (44)

��
�2logZ
��a��b

. (45)

where we used Equation 37 for Equation 43 and a similar
formula for Equation 45. Both quantities can readily be
computed as derivatives of the normalization factor Z.

For time efficiency, we only updated the Hessian every
100 iterations of the algorithm. We stopped the algorithm
when the fitting error reached 10�6. The fitting error was
defined as the maximum error on P(K) and P��i� for the
minimal model; on P(K), P��i� , and �K�i� for the linear-
coupling model; and on P(K) and P��i	K� for the complete-
coupling model.

The code for the models inference is available at https://
github.com/ChrisGll/MaxEnt_Model_Population_Coupling.
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