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Generative models of T-cell receptor sequences
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T-cell receptors (TCR) are key proteins of the adaptive immune system, generated randomly in each individual,
whose diversity underlies our ability to recognize infections and malignancies. Modeling the distribution of TCR
sequences is of key importance for immunology and medical applications. Here, we compare two inference
methods trained on high-throughput sequencing data: a knowledge-guided approach, which accounts for the
details of sequence generation, supplemented by a physics-inspired model of selection; and a knowledge-free
variational autoencoder based on deep artificial neural networks. We show that the knowledge-guided model
outperforms the deep network approach at predicting TCR probabilities, while being more interpretable, at a
lower computational cost.
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I. INTRODUCTION

Deep learning methods are proving a very useful approach
in many areas of physics and the natural sciences [1,2].
These algorithms are successful in identifying hidden patterns
in large amounts of data, often helping make progress in
situations where traditional analyses reach their limits [3–5].
Despite the black box aspect of how the algorithm works and
the lack of interpretability of the model features, machine
learning is undoubtedly useful, especially in cases where the
natural system of interest escapes our intuition or knowledge.
However, as we show here on the example of immune reper-
toires, introducing physical or biological intuition into data-
driven models can outperform basic uninformed machined
learning approaches.

The adaptive immune system is made up of a large ensem-
ble of diverse lymphocyte receptors that recognize different
pathogens. The receptors expressed on the surface of T cells
(T cell receptors, TCR) are generated by randomly assembling
genomic templates for three genes (variable, V; diversity, D;
and junction, J) that make up of the so-called β chain and two
genes (V and J) that make up the α chain. Additionally to this
combinatoric diversity, nontemplated nucleotides are added
at the junctions between these templates and nucleotides are
deleted. Such recombined DNA forms the newly generated
TCR that later undergoes thymic selection that tests for its
ability to form a receptor protein and bind, albeit not too
strongly, proteins that are natural to the host organism [6].
TCR that pass thymic selection are released into the pe-
riphery and form the naive repertoire (i.e., nonstimulated by
foreign antigens). Due to the random addition and deletion
of nucleotides, receptor sequences have different lengths and
some are even out of frame or have stop codons, in which

case they are called nonproductive. Conversely, sequences
with no frameshift nor stop codon are conventionally called
productive. High-throughput immune repertoire sequencing
experiments sample blood from individual hosts, sort out
TCRs, and sequence this subset [7–9]. Analysis of this kind
of data makes it possible to characterize the statistics of both
generated and naive repertoires.

TCR sequences differ from classical protein families,
which are grouped by function and across species [10]. Those
families are believed to have evolved over long timescales
under a shared selective pressure that shapes their statistics.
For such families, physics-inspired statistical inference meth-
ods have helped to predict contacts between amino acids in
the protein [11], define sectors of coevolving residues [12],
or find interaction partners [13]. Deep [14] and nondeep
[15] machine learning approaches have also been success-
fully applied. By contrast, TCR generation is fairly well
understood mechanistically. Previously we developed a sta-
tistical inference technique that uses biological knowledge of
the underlying assembly processes to learn the statistics of
generation and calculate the generation probability of each
TCR sequence [16,17]. Since thymic selection involves many
specific interactions with antigen-presenting cells, modeling
it from first principles is more difficult. Nevertheless, simple
models of selection based on the assumption of an additive
fitness [18] have been shown to well recapitulate some key
statistics of these ensembles [19,20]. However, a direct test of
the performance of this method for the abundance of specific
sequences in large cohorts is still lacking.

Recently, Davidsen et al. [21] described an elegant ap-
proach for learning the distribution of T-cell receptor β

sequences (TCRβ or simply TCR in the following), based
on a variational autoencoder (VAE). The method makes it
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possible to generate new sequences with the same statistics
as real repertoires, and to evaluate the frequency of individual
sequences, which agree with the data with good accuracy. Its
main strength is that it does not take any information about
the origin of these sequences through VDJ recombination and
thymic and peripheral selection. Yet it manages to extract
statistical regularities imprinted by these processes.

Here we compare the VAE method [21] with the previously
proposed model of generation and selection, called SONIA

[19,20]. We compare their performances for predicting the
distribution of TCR sequences in controlled conditions, train-
ing and validating on the same datasets. Contrary to the claims
of the original VAE paper [21], we show that knowledge-
guided models perform as well as the variational autoencoder
or even better, at a lower computational cost.

II. MODEL DEFINITIONS

A. Knowledge-guided model

To predict the probability distribution of TCR sequences,
we build a generative model that proceeds in two steps: initial
generation, and selection.

First, a recombination model for the probability of gen-
eration of a sequence σ , denoted by Pgen(σ ), is learned
from failed, nonproductive rearrangements, which are free
of selection biases [16,17]. This model describes in detail
the probabilities of V, D, and J usages and of deletion and
insertion profiles. Calling E the collective variable describing
the recombination scenario, the model predicts its probability
Pscenario(E ). Its parameters are learned through an expectation-
maximization algorithm using the IGOR software [17].

Although the model is trained on nonproductive sequences,
it can be used to predict the probability of any sequence.
Denoting σ̂ (E ) the amino-acid sequence produced by sce-
nario E , we define the generation probability of a productive
amino-acid sequence σ as

Pgen(σ ) = 1

F

∑
E

Pscenario(E )I[σ̂ (E ) = σ ], (1)

where I(·) is the indicator function, and F =∑
E Pscenario(E )I[σ̂ (E ) is productive] is the probability that

a random recombination scenario results in a productive
sequence. More precisely, σ is defined by the choice of V and
J genes (σV and σJ ), as well as the amino-acid sequence of
the complementarity determining region 3 (CDR3) that lies
between V and J, σ1, . . . , σL. The sum in Eq. (1) involves
a large number of terms due to the degeneracy of both the
genetic code and the recombination process, but it can be
done using a recursive technique akin to transfer matrices,
which is implemented in the OLGA software [22].

Second, a model of selection, called SONIA [20], is learned
on top of the generation probability Pgen to describe the
distribution of productive sequences,

PSONIA(σ ) = Q(σ )Pgen(σ ), (2)

where

Q(σ ) = 1

Z
exp

[
hV JL(σV , σJ , L) +

L∑
i=1

hi,L (σi )

]
(3)

is a selection factor calculated through additive “fields” h act-
ing on the sequence elements, similarly to additive position-
weight matrix models first introduced for DNA binding
sites [18].

Within this framework, we can define three models accord-
ing to the parametrization of h. In the first two models, the
VJL field is decomposed as hV JL(σV , σJ , L) = hV J (σV , σJ ) +
hL(L). A first model in which hi,L is left unconstrained is
called the “length-position” (LP) model. This choice cor-
responds to the original model of Ref. [19], in which the
selective pressure on each amino acid may depend on the
sequence length L. However, observations [19] suggest that
these factors are to some extent independent of L. This invari-
ance can be incorporated by assuming that the field can be
decomposed into two contributions depending on the position
of the amino acid from the right and left ends of the CDR3:
hi,L = hi,right + hL−i+1,left . The resulting “left + right” (LR)
model has much fewer parameters and is less likely to overfit
the data. For these two models, parameters are learned by
maximizing the log-likelihood with an L2 regularization using
gradient ascent, as specified in Ref. [20].

In addition, because no software implementation of the
selection model was provided with the original article [19],
Davidsen et al. [21] compared their VAE approach to a
reduced version of this selection model (not examined in
Ref. [19]), which they call OLGA.Q. In that model, only VJ us-
age and CDR3 length were included: hi,L = 0. Its parameters
hV JL were fitted by maximizing the likelihood analytically.

B. Variational autoencoder

A VAE is an autoencoder whose structure can be used
as a generative probabilistic model. A good introduction can
be found in Ref. [23]. In short, a VAE consists of a proba-
bilistic encoder, q(z|σ ), and a probabilistic decoder, p(σ |z),
converting the sequence into a continuous multidimensional
latent variable z and back. The goal of the encoder is to
make the probabilistic mapping from σ to itself through q
and p as faithful as possible, while at the same time making
the distribution of the latent variable z as close as possible
to a simple distribution, i.e., multivariate Gaussian with unit
covariance.

Both p and q are parametrized by deep neural networks,
whose parameters are optimized for these two objectives,
using stochastic gradient descent. Once the model is learned,
new sequences can be generated by drawing z from p0(z) and
σ from p(σ |z), so that σ is distributed according to PVAE(σ ) =∫

dz p(σ |z)p0(z). In practice, the predicted probability of
a given sequence PVAE(σ ) is evaluated using Monte-Carlo
importance sampling. In Ref. [21], a variant of the traditional
autoencoder detailed in Ref. [24] was used. Here we focus on
the version of the VAE called BASIC in that paper.

III. MODEL COMPARISON

A. Datasets and model training

The data consists of TCRβ sequence repertoires of 666
individuals [25]. We use the exact same procedure, dataset,
and subsamples as in Ref. [21] for reproducibility.
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TABLE I. Pearson’s correlation coefficients ρ2 and Kullback-
Leibler divergence DKL (in bits) for the various models. Either 106

or 2×105 sequences were used in the training dataset.

106 ρ2 106 DKL 2×105 ρ2 2×105 DKL

VAE 0.48 1.7 0.47 2.0
Pgen 0.48 4.5 0.51 4.5
olga.q 0.48 2.6 0.47 2.6
sonia LP 0.52 1.8 0.52 1.7
sonia LR 0.53 1.4 0.53 1.4

For each individual, read counts are first discarded as they
stem from clonal expansions. To train an initial Pgen model
on which SONIA is built and trained, we used 2×105 non-
productive sequences drawn randomly from all donors. For
all models, unique amino-acid sequences were first separated
into a training dataset and a testing dataset of equal sizes. All
models were then trained on 2×105 or 106 TCRβ sequences
randomly sampled from the training dataset with replacement,
according to their frequency in the cohort, counting each
unique nucleotide sequence in each patient. Their perfor-
mance was assessed by their ability to predict the frequency
of sequences from the testing set, Pdata (σ ).

B. Predicting sequence frequencies

We used two measures of performance: Pearson’s
ρ2 between the logarithms of the frequencies as in
Ref. [21], and the Kullback-Leibler divergence: DKL =
〈log2[Pdata (σ )/Pmodel(σ )]〉 (model = VAE or SONIA), where
the average 〈·〉 is taken over 104 sequences from the test-
ing set, sampled according to their relative frequencies
within that set. We excluded ∼0.3% of sequences for which
Pgen = 0, probably due to sequencing errors. Note that, if
not for the L2 regularization, maximizing the log-likelihood
would be equivalent to minimizing DKL. The scale of DKL

may be compared to the total entropy of the ensemble,
−∑

σ PSONIA(σ ) log2 PSONIA(σ ) ≈ 31 bits [20].
Figure 1 shows the predicted frequencies of the left + right

SONIA model and the VAE model, both trained on the same
2×105 or 106 sequences, and compares them to data. The
performances of all models and both datasets are reported in
Table I. SONIA models perform generally better than the VAE,
especially the left + right model, which is the best model
according to both measures of performance. Note that the
length-position model of Ref. [19] also performs as well as
the VAE. Davidsen et al. [21] did not compare their model to
it owing to the absence of a readily available implementation.

Strikingly, even the basic model of generation with no
selection (h = 0), Pgen, performs comparably to the VAE,
and sometimes better according to the ρ2 measure, despite
the model being trained on nonproductive sequences. Ac-
cordingly, the OLGA.Q model, which adds a minimal layer
of selection on top of Pgen, also performs very well. These
results differ substantially from the ρ2 = 0.26–0.27 reported
in Ref. [21] for OLGA.Q. In Ref. [21], the default model for
Pgen was not actually trained on the dataset of interest, but
rather used with its default parameters learned from a different
dataset, which explains the poor reported performance.

FIG. 1. Predicted TCR sequence probabilities (y axis) versus
empirical frequencies (x axis), for (a) the SONIA left + right model
(ρ2 = 0.53 and DKL = 1.4) trained on 2×105 sequences, (b) the
VAE model (ρ2 = 0.47 and DKL = 2.0) trained on 2×105 sequences,
(c) the SONIA left + right model (ρ2 = 0.53 and DKL = 1.4) trained
on 106 sequences, and (d) the VAE model (ρ2 = 0.48 and DKL =
1.7) trained on 106 sequences. Models were trained on sequences
sampled from the training set assembled from the TCR β repertoires
of 666 donors [25]. Frequencies refer to empirical frequencies in the
same datasets. The SONIA model was built on top of a Pgen model
trained on 2×105 nonproductive sequences from the same donors.

We can also compare the two models by asking whether the
distribution of frequencies is well reproduced by one another,
using another TCR dataset from Ref. [26] to allow for a
direct comparison to the results of Ref. [21] (Fig. 2). Both
the VAE and SONIA agree with the data in their distribution
of Pmodel. VAE-generated sequences have the same distribu-
tion of PSONIA as SONIA-generated sequences, with a slight
underestimation of the distribution peak, and an excess of low-
frequency sequences [Fig. 2(a)]. The converse is true when

FIG. 2. (a) Distribution of PSONIA of TCRs from 11 individu-
als from Ref. [26], as well as sequences generated by the SONIA

left + right model and the VAE. The SONIA model was trained on
a set of 105 sequences, on top of the Pgen model trained for Fig. 1.
(b) Distribution of PVAE for the same sequences as in panel (a).
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looking at the distribution of PVAE for SONIA- versus VAE-
generated sequences [Fig. 2(b)]. This suggests that the VAE
and SONIA capture some features of the sequence statistics that
are distinct from one another.

C. Computational times

SONIA is an order of magnitude faster than the VAE, which
uses Monte-Carlo sampling to calculate predicted frequen-
cies. The average computing time for PSONIA(σ ) is 14 ms
per sequence on a laptop computer and 3 ms on a 16-core
computer, versus 0.18 s for PVAE(σ ) on a single core on a
laptop (no parallelism implemented).

SONIA was also faster to train. It took 33 min to train a
SONIA model on 106 sequences using a 30-core computer, to
which one should add 31 min to train an IGOR model on 2×105

nonproductive sequences. For the same amount of data and on
the same machine, the VAE took 7 h to train.

IV. CONCLUSION

In summary, both approaches, VAE and SONIA, perform
equally well, with perhaps a slight advantage for the latter.
SONIA is also much faster. These results suggest that, while
knowledge-free approaches such as the VAE perform well,

there is still value in preserving the structure implied by the
VDJ recombination process as a baseline for learning complex
distributions of immune repertoires. Extending the SONIA

model considered here beyond a simple linear combination
of features, and taking ideas from the modeling strategy of the
VAE, offers interesting directions for future improvement in
repertoire modeling.

In a more general context, while machine learning ap-
proaches are undoubtably very useful tools, they can be made
even more powerful when combined with models that de-
scribe the underlying physics or biology. This is the case when
training data are limited, as has been reported in complex
image processing of nonanimate matter [27]. As we show,
even if data are abundant, using models to guide learning can
help.

Code availability. All code for reproducing the figures of
this article can be found in Ref. [28]. The SONIA package
upon which that code builds is available in Ref. [29]. See also
Ref. [20].
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