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Neural correlations play a critical role in sensory information coding. They are of two kinds: signal corre-
lations, when neurons have overlapping sensitivities, and noise correlations from network effects and shared
noise. In experiments from early sensory systems and cortexes, many pairs of neurons typically show both types
of correlations to be positive and large, especially between nearby neurons with similar stimulus sensitivity.
However, theoretical arguments have suggested that the stimulus and noise correlations should have opposite
signs to improve coding, at odds with experimental observations. We analyze retinal recording in response
to a large variety of stimuli and show that, contrary to common belief, large noise correlations are beneficial
for coding, even if aligned with signal correlations. To understand this result, we develop a theory of visual
information coding by correlated neurons, which resolves that paradox. We show that noise correlations are
always beneficial if they are strong enough, unless neurons are perfectly correlated by the stimulus. Finally,
using neuronal recordings and modeling, we show that for high-dimensional stimuli noise correlation benefits
the encoding of fine-grained details of visual stimuli, at the expense of large-scale features, which are already

well encoded.
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I. INTRODUCTION

Neurons from sensory systems encode information about
incoming stimuli in their collective spiking activity. This ac-
tivity is noisy: Repetitions of the very same stimulus can drive
different responses [1-6]. It has been shown that the noise is
shared among neurons and synchronizes them, an effect called
noise correlations, as opposed to signal correlations induced
by the stimulus [6—10]. Noise correlations have been observed
since the first synchronous recordings of multiple neurons
[11,12] and at all levels of sensory processing, from the retina
[2,13-21] to the visual cortex [1,4,5,22-25] and other brain
areas [6,7,9,26-29].

Strong noise correlations have been measured mostly
between nearby neurons with similar stimulus sensitivity
[1,5,12,23,27,28,30-32]. This behavior is particularly evident
in the retina between nearby ganglion cells of the same type
[2,14,16,17,21]. This observation is however surprising, since
previously it was thought that these correlations are detrimen-
tal to information coding: A theoretical argument [1,33-36]
suggests that noise correlations are detrimental to information
transmission if they have the same sign as signal correlations
[7,9,10]. This rule is sometimes called the sign rule [37] and is
related to the notion of information-limiting correlations [38].
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Since nearby neurons with similar tuning are positively corre-
lated by the signal, the theory would predict that their positive
noise correlations should be detrimental, making the code less
efficient. However, a large body of literature has reported the
beneficial effects of noise correlations on coding accuracy,
with various approaches and reasonings: by computing the
Fisher information [39,40] or mutual information [41,42] in
models of large populations of correlated neurons, by study-
ing specific cases where the sign rule applies [18,43], by
showing explicitly that decorrelating noise reduces decoding
accuracy [44], or by showing that ignoring noise correlations
in the decoder is detrimental [15,20,45]. Because of these
contradictions, the effect of shared variability on information
transmission is still unclear and remains a largely debated
topic in neuroscience [7-9].

Here we aim to resolve these tensions by developing a
general framework that is grounded in the analysis of mul-
tielectrode array recordings of rat and mouse retinas and
builds on previous theoretical work [46]. While previous stud-
ies have considered the impact of noise correlations either
for particular stimuli [1,15,18,29] or for particular models
[36,40,41], our approach is general and covers both low-
and high-dimensional stimuli. We show that the sign rule
can be broken in a specific regime that we observed in reti-
nal responses: When noise correlations are strong enough
compared to signal correlations, they have a beneficial ef-
fect on information transmission. Our results unravel the
complex interplay between signal and noise correlations and
predict when and how noise correlations are beneficial or
detrimental. In the case of high-dimensional stimuli, such as
images or videos, our theory predicts different effects of noise
correlations depending on stimulus features. In particular,
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FIG. 1. The effect of noise correlations on information coding depends on the stimulus. (a) Three stimuli with different spatiotemporal
statistics were presented to a rat retina. (b) Retinal ganglion cells were recorded using a multielectrode array. (c) We isolated a nearly complete
population of OFF-« cells, with receptive fields (RFs) that tile the visual field following approximately a triangular lattice. (d) Example raster
plots and firing rates for two cells with neighboring RFs. (e) Signal and noise correlations for each pair of neurons in the population versus their
distance. Each plot corresponds to one of the three stimuli of (c). (f) Noise synergy induced by noise correlations for all pairs of nearby neurons
(greater than or equal to 300 um) for each stimulus of (e). (g) Example pair of von Mises tuning curves with moderate signal correlation level
(ps = 0.25). (h) Mutual information between stimulus and response for the example pair of (a) vs the strength of noise correlations. Gray
areas correspond to forbidden correlations zones. (i) The nonmonotonicity of (b) may be explained by examining how well the stimulus is
represented by the sum and difference of the two neurons’ activities, as measured by their signal-to-noise ratios. Noise correlations enhance
noise in the sum but reduce it in the difference. (j) Heatmap representing the noise synergy, defined as the relative gain of mutual information
induced by noise correlations compared to the uncorrelated case. The dotted vertical line corresponds to the example pair of (a) and (b).

it explains how large noise correlations between neurons II. RESULTS
with similar stimulus sensitivity help encode fine details of

. A. Benefit of noise correlations in pairs of retinal ganglion cells
the stimulus.

We first analyze the impact of correlated activity of rat We first asked under what conditions noise correlations
retinal ganglion cells for a variety of stimuli and conditions. could be beneficial or detrimental in a population of sensory
We observe violations of the sign rule, with large noise corre- neurons, taking the retina as a test case. We recorded ex vivo
lations being beneficial even for positive signal correlations.  the joint spiking activity of rat retinal ganglion cells (RGCs)
We then build on Ref. [46] to develop a theory of information ~ (see Sec. IV) [47,48]. We subjected the same retinal prepa-
coding by correlated neurons which extends previous theoret- ration to three stimuli with distinct spatiotemporal patterns:
ical efforts and accounts for the observed regimes beyond the a random flickering checkerboard, drifting gratings, and ran-
sign rule. We extend our analysis to large populations of sen- ~ domly moving disks [Fig. 1(a)]. The activity of RGCs was

sory neurons and propose a spectral analysis suggesting that ~ recorded using a multielectrode array [Fig. 1(b)] and data
local noise correlations enhance information by favoring the ~ Wwere processed to assign spikes to each neuron [49]. The
accurate encoding of fine-grained details. Finally, we validate ~ time-dependent response was then defined as the number of
that prediction by combining data from the mouse retina with ~ spikes in each 20-ms time windows [chosen to capture the
accurate convolutional neural network models. peak of noise correlations in pairwise cross correlograms (see
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FIG. 2. Choice of bin size. Shown on the left is an example cross correlogram between two neighboring retinal ganglion cells. The two
symmetric peaks, which are attributed to the effect of gap junctions, cover a short timescale of 10 ms. Shown on the right is an analysis of
noise synergy Al [same as Fig. 1(f), bottom] for a time bin of 10, 20, and 30 ms, from left to right.

Fig. 2)]. We identified cells belonging to a nearly complete
OFF-« population forming a regular mosaic pattern of their
receptive fields [Fig. 1(c)].

Each of the three stimulus movies was repeated multiple
times [Fig. 1(d)], which allowed us to compute the noise and
signal correlation functions p, and ps [Fig. 1(e)] (see Sec. IV).
All three stimuli produced similar structures of noise correla-
tions across the network, with positive correlations between
cells with nearby receptive fields. This is consistent with the
fact that noise correlations are a property of the network,
independent of the stimulus [21,50], and likely come here
from gap junctions coupling neighboring RGCs [16,51]. In
contrast, signal correlations strongly depend on the statistical
structure of the presented stimulus and may be positive or
negative, with varying strengths.

We define noise synergy as the gain in information afforded
by noise correlations Al = I(p,) — I(p, = 0). To estimate it,
we compute exactly the mutual information between stimulus
and response for all pairs of cells whose receptive fields were
closer than 300 um and then subtract the same quantity com-
puted on the data after shuffling across repetitions [Fig. 1(f)].
The case of the drifting gratings with fixed orientation offers
an illustration of the sign rule. That stimulus induces strong
positive or negative signal correlations between many cells,
depending on their positions relative to the gratings direction.
Since noise correlations are positive, they may be either of the
same sign as signal correlations, and therefore detrimental, or
of opposite sign, hence beneficial. In the case of the checker-
board stimulus, noise correlations were found to be generally
detrimental. This again agrees with the sign rule since they
have the same sign as signal correlations. Finally, the case of
the moving disks provides an example of a third regime, which
violates the sign rule: Noise correlations are of the same sign
as the signal correlations, but also of comparable magnitude;
yet they are beneficial for information. We checked that those
results were robust to the choice of bin (Fig. 2).

Overall, the three stimuli illustrate three possible regimes
when noise correlations are positive: a beneficial effect when
signal correlations are negative, a detrimental effect if signal
correlations are positive and large, and a beneficial effect
when noise and signal correlations are both positive and of
the same magnitude.

B. Strong pairwise noise correlations enhance
information transmission

To make sense of our experimental findings, we consider a
simple model of a pair of spiking neurons encoding an angle
6, for instance, the direction of motion of a visual stimulus,
in their responses r; and r,. These responses are correlated
through two sources: signal correlations pg due to an overlap
of the tuning curves [Fig. 1(g)] and constant noise correlations
pn due to shared noise (see Sec. IV for mathematical defini-
tions). We asked how this shared noise affects the encoded
information, for a fixed level of noise in neurons.

To quantify the joint coding capacity of the two neurons,
we computed exactly the mutual information 1(0;r, r;) be-
tween their activities and the stimulus 6. For fixed tuning
curves, we find that the mutual information depends non-
monotonically on the noise correlation p, [Fig. 1(h)]. For
small absolute values of p,, the sign rule is satisfied, meaning
that negative noise correlations are beneficial and weak posi-
tive ones are detrimental [7,35,37,39]. However, the mutual
information increases again and noise correlations become
beneficial if they are larger than a certain threshold o}, vio-
lating the sign rule. This nonmonotonic dependence may be
intuitively explained as the interplay between two opposite
effects [Fig. 1(i)]. Negative noise correlations are beneficial
because they reduce noise in the total activity of the neurons.
By contrast, positive noise correlations reduce noise in their
differential activity, but this effect only dominates when they
are strong enough.

Mirroring the experimental results of Fig. 1(f), Fig. 1(j)
shows theoretically how noise synergy depends on both the
noise and signal correlation, where the latter is varied in the
model by changing the overlap between the tuning curves.
Very generally and beyond the cases predicted by the sign
rule, noise correlations are beneficial also when they are
stronger than the signal correlations, as we had observed in
the retinal data [bottom plot of Fig. 1(f)]. We can gain insight
into this behavior by computing an approximation of the mu-
tual information that is valid for small correlations, following
Ref. [46] (see Sec. IV). The noise synergy can be expressed
as

~ % _
Al ~ 2,0n(,0n /On)v (1)
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FIG. 3. Population analysis. (a) Neurons are assumed to be spatially arranged along sensory space. They combine features of the stimulus
through a response function p,;. Noise is added to the neural responses. (b) Signal and noise covariances versus distance between neurons.
Signal and noise covariances decay exponentially with distance with spatial scales L; and L,. Mutual information is plotted as a function of the
noise correlation between neighbors for (c) varying levels of signal correlations, with fixed V; = 2, V, = 1, and L, = 2, and (d) varying levels

of signal-to-noise ratio (SNR = V,/V,), with Ly = L, = 2 (ps =~ 0.6).

where @ < 1 is a prefactor that grows with the signal-to-noise
ratio (SNR) of the neurons. Equation (1) captures the behav-
ior of Figs. 1(f) and 1(j), in particular the observation that
noise correlations are beneficial if p,ps < 0, as the sign rule
predicts, or if they are strong enough, |on| > |p;|. We can
show (see Sec. IV) that the threshold p; scales with the signal
correlation strength pg:

p: = Bps. 2)

This result holds for either discretely spiking or Gaussian
neurons (see Sec. IV) and the prefactor B < 1 gets smaller
and even approaches 0 as the SNR increases. It is also smaller
when these SNRs are dissimilar between cells, consistent with
previous reports [40]. When the SNRs are weak and similar,
we have B ~ 1. This analysis indicates that noise correlations
are beneficial when they are of the same strength as signal cor-
relations, but also that this benefit is enhanced when neurons
are reliable.

Our definition of the noise synergy relies on comparing the
noise-correlated and uncorrelated cases at fixed noise level or
SNR. However, increasing noise correlations at constant SNR
decreases the effective variability of the response, as measured
by the noise entropy of the joint response of the pair (see
Sec. IV). This means that high noise correlations imply a more
precise response, which could explain the gain in information.
To study this possible confounding factor, we also computed
Al at equal noise entropy, instead of equal SNR, and found
that strong noise correlations are still beneficial, with modified
p* = 2ps/(1+ p2) < 1 (see Sec. IV).

Our theoretical predictions rely on the assumption that
noise (Pearson) correlations do not vary with the stimulus.
We wondered whether the theory was robust to stimulus-
dependent noise correlations. Previous work based on Fisher,
rather than Shannon, information suggested that noise corre-
lations are detrimental when aligned to the signal direction in

each point of response space [38,52]. This structure, called
differential or information-limiting correlations, implies that
noise correlations vary as a function of the stimulus itself.
Their detrimental effect can be intuited from the definition
of the Fisher information [38] and in fact provide a sort of
worst-case scenario for the effect of noise correlations, as the
alignment of noise and signal is satisfied locally for all values
of the stimulus and thus maximally detrimental according
to the sign rule. To investigate this scenario, we performed
a numerical analysis of the noise synergy in a two-neuron
system with information-limiting correlations [see Ap-
pendix A and Fig. 8(a)]. We find that information-limiting
correlations become increasingly beneficial to the mutual in-
formation as their strength increases [Fig. 8(b)], while they
are always detrimental to the Fisher information [Fig. 8(c)],
consistent with previous results. While perhaps counterintu-
itive, this result can be understood by considering the effect
of the curvature of the response curve, which induces nonlo-
cal, nonlinear effects (ignored by the Fisher information) that
become stronger with increasing noise correlations [Fig. 8(a)].
Again, it is worth stressing that information-limiting correla-
tions were designed to be maximally detrimental. Our finding
that even those are beneficial as long as noise correlation is
strong enough provides strong evidence that our conclusion
is very general, the only exception being the trivial case of
perfectly correlated neurons (p; = 1).

C. Large sensory populations in high dimension

We then asked how these results extend from pairs to large
populations, by considering a large number of neurons tiling
sensory space [Fig. 3(a)]. To go beyond neurons tuned to a sin-
gle stimulus dimension and account for the ability of neurons
to respond to different stimuli in a variety of natural contexts,
we assume that each neuron responds to high-dimensional
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stimulus, such as a whole image, a temporal sequence, or
a movie. As different stimuli are shown, the spike rate of
each neuron will vary. For computational ease, we take these
fluctuations to be Gaussian of variance V.

To account for the empirical observation that nearby neu-
rons tend to have close receptive fields, we correlate the
responses of any two neurons with a strength that decreases as
a function of their distance in sensory space, with characteris-
tic decay length Lg [Fig. 3(b)]. The value of the correlation
between nearest neighbors quantifies the signal correlation
ps. For simplicity, the response noise is also assumed to be
Gaussian of variance V. To model positive noise correla-
tions between nearby neurons observed in both the retina
[2,14,16,17,21] and cortex [1,5,12,23,27,28,30-32], we as-
sume that they also decay with distance, but with a different
length L, [Fig. 3(b)]. The noise correlation between nearest
neighbors, defined as p,, quantifies their strength.

In this setting, both signal and noise correlations are posi-
tive and the sign rule alone would predict a detrimental effect
of noise correlations. The mutual information can be com-
puted analytically in terms of simple linear algebra operations
over the neurons’ covariance matrices (see Sec. IV) [53].
Using these exact formulas, we examined how the mutual
information changes as a function of the noise correlation o,
for different values of the signal correlation ps [Fig. 3(c)] and
of the SNR V,/V,, [Fig. 3(d)].

The results qualitatively agree with the case of pairs of
neurons considered previously. Weak noise correlations im-
pede information transmission, in accordance with the sign
rule. However, they become beneficial as they increase past a
critical threshold oy, and this threshold grows with the signal
correlation strength. It also decreases and even vanishes as the
SNR is increased [Fig. 3(d)] (see Sec. IV for a discussion of
the large-SNR limit). This means that more reliable neurons
imply an enhanced benefit of noise correlations. We further
proved that, even at low SNR, there always exists a range
of noise correlation strengths where noise correlations are
beneficial (see Sec. IV). The general dependence of p; on the
correlation ranges Ls and L, is shown in Fig. 4.

Based on the analysis of pairs of neurons, we expect in-
homogeneities in the SNR V,/V,, of neurons to enhance the
benefit of noise correlations. To study this effect, we let the
power of the signal V; vary between cells, while the noise
level V;, is kept constant. Assuming that each cell is assigned
a random value of V;, we can compute the correction to the
critical noise correlation p;. We find that p} decreases at
leading order with the magnitude of the inhomogeneity (see
Sec. IV). This result confirms that, in large populations of
neurons as well, variability among neurons makes it more
likely for noise correlations to have a beneficial effect.

D. Spectral decomposition

Mutual information is a single number that provides a
global quantification of coding efficiency, but says nothing
about what is being transmitted. Likewise, a positive noise
synergy indicates that noise correlations are beneficial overall,
but it does not tell us what feature of the stimulus is better
encoded, nor which specific interactions between signal and
noise allow for that benefit. We wondered what features of the
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FIG. 4. Behavior of p;. Here p; changes nonmonotonically with
the signal L, and noise L, correlation ranges and is concave with
respect to these parameters. The maximum value of p; at a given L,
is achieved when L, = L,.

signal were enhanced by strong positive noise correlations in
our population encoding model.

Due to the translation-invariant structure of the model, the
mutual information and noise synergies may be decomposed
spectrally as a sum over spatial frequencies k (expressed in
units of inverse distance between nearest neighbors),

1/2
Al = E/ dklog (M)’ 3)
2 ) ip 1+ Sk)/Vy

where S(k) is the power spectrum of the stimulus, N (k) is that
of the noise (see Sec. IV), and n — o0 is the total number of
neurons. In this decomposition, low frequencies correspond
to long-range collective modes, while high frequencies corre-
spond to fine-grain features.

Natural stimuli involve spatially extended features impact-
ing many neurons. This causes neural responses to exhibit
strong long-range signal correlations between neurons, cor-
responding in our model to large Lg [Fig. 3(b)]. Most
information is then carried by low-frequency modes of the
response [Fig. 5(a)].

Noise correlations concentrate noise power at low frequen-
cies and decrease noise power at high frequencies for a fixed
noise level V; [inset of Fig. 5(b)]. As a result, noise correla-
tions enhance information in the high-frequency modes of the
signal (k > k*), at the expense of the low-frequency features
[Fig. 5(b)], which are already well represented. Figure 5(c)
shows the spectral decomposition of the noise synergy as
a function of the noise correlation range L,. The criti-
cal frequency k* = (1/2m)arccos(e”!/I) above which noise
correlations are beneficial only depends on L, [Fig. 5(c)].
However, the relative information gains in each frequency
domain depends on the strengths of the signal and noise
correlations.

In summary, noise correlations enhance fine details of the
stimulus to the detriment of its broad features, which are
already sufficiently well encoded. This redistribution of the
noise across the spectrum drives the gain in information. This
effect is generic to any choice of the correlation lengths, and

033012-5



MAHUAS, BUFFET, MARRE, FERRARI, AND MORA

PRX LIFE 3, 033012 (2025)

(a)- (b)% ©) 1og 5
s 1 O;\ Noise corr. 5 0.21 3 i 5
§ . \\\ range L, 2 0.0 Y g b g
S 0.8 X0 === 0 2 g - < } g
[ 1 © | = \ ©
8 £ _0.21 S 6 \ £
: 0.6 g g \‘\ g
=2 S 0.4 T 4 5
c 0.4+ > s \ >
S <3 2 0 o o
Bo2d 000 TTRIEY=== 2 -0.6 0 0.1 0.2 03 04 05 @ 2 2
g > Spatial frequency k © @
5 00 @ —0.81 =5 : iy
=£7%0 01 02 03 04 05 S 00 01 02 03 04 05 00 01 02 03 04 05 S

=2 =2

Spatial frequency k

Spatial frequency k

Spatial frequency k

FIG. 5. Spectral analysis of stimulus information encoding. (a) Spatial spectral decomposition /(k) of the mutual information between
stimulus and response for a system with SNR = 2, Ly = 2, and p, = 0.4 for various ranges of the noise correlations (L, = 0 corresponds to
the absence of noise correlations). (b) Spectral decomposition of the noise synergy Al(k) = log{[1 + S(k)/N(k)]/[1 + S(k)/V,]}. The inset
shows the power spectrum of the noise. (c) Heatmap showing the noise synergy spectral decomposition as a function of the noise correlation
range L,. The critical spatial frequency k* above which noise correlations are beneficial is shown as a black dotted line.

we expect it to hold for other forms of the power spectra and
receptive field geometries.

E. Noise correlations in the retina favor the encoding
of fine stimulus details

To test our predictions, we studied experimentally the
impact of noise correlations on the encoding of features at
different spatial scales in the retina. We recorded ex vivo the
spiking activity of seven OFF-« retinal ganglion cells from
a mouse retina using the same experimental technique as
described before. We presented the retina with a multiscale
checkerboard stimulus composed of frames made of random
black and white checkers, flashed at 4 Hz. Each frame was
made of a checkerboard with a given spatial resolution (checks
of sizes 12, 24, 36, 72 and 108 ym). From the recorded
activity, we inferred an artificial convolutional neural network
(CNN) with interactions [50] and used the inferred model to
build a large synthetic population of 49 cells organized on
a triangular lattice [Fig. 6(a)]. Previous studies have demon-
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strated the ability of CNNs to capture the stimulus response
of RGCs accurately [54-58]. We checked that the resulting
correlation structure was consistent with previous reports, fol-
lowing an exponential decay as a function of distance with a
characteristic length of 110 um (Fig. 7), comparable to obser-
vations of 170-290 um in the rat [20]. We then generated a
large dataset of repeated responses to regular black and white
checker flashes. Each checker was composed of checks of a
given size (sizes ranging from 140 to 420 wm, with 28-pm in-
crements) and for each check size, 50 spatially offset versions
of the checker were showed. We trained a linear decoder of
each pixel value (black or white) on this synthetic dataset and
a second decoder on the synthetic data in which the activity
of each cell was shuffled across repetitions to destroy noise
correlations (see Sec. IV).

The two decoders were then applied to the testing datasets,
synthetically generated in the same way as the training sets,
to decode each pixel from the response. For a fair compari-
son, the second decoder was applied to data in which noise
correlations were removed by shuffling, as in the training.
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FIG. 6. Noise correlations benefit small-scale features at the detriment of large-scale ones. (a) We built a large population of 49 RGCs
based on seven neurons recorded from the mouse retina. A deep GLM [50] was fit to the experimental population and its central neuron
model was tiled on a triangular lattice to create a large RGC network. Couplings between the central experimental cell and its neighbors were
symmetrized (green links in the population plot and green lines in the inset plot) and averaged to obtain the coupling filters between nearest
neighbors in the synthetic population (blue links in the synthetic mosaic and blue lines in the inset). (b) Information /4, and noise synergy A/l
per pixel for stimulus features of increasing scales (§ = 2 check sizes in units of interneuron distance). These quantities were computed via a
decoding approach applied to a binary flashed checkerboard stimulus with various check sizes. Error bars are the standard error obtained by
repeating the analysis on bootstrapped data. In the absence of noise correlations, little information is transmitted about small stimulus features.
By contrast, large-scale features are well encoded and information per pixel saturates towards one bit as check size grows. The noise synergy is
positive for small and intermediate check sizes and negative for larger checks, in line with the theoretical results highlighted in Fig. 5. (c) Noise
correlations nearly double the amount of information encoded about stimulus features of small and intermediate sizes, while only decreasing

information for the largest checks by less than 10%.
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FIG. 7. Correlation structure in augmented data. Noise correla-
tions in data were generated from the convolutional neural network
model (obtained with a time bin of 50 ms). An exponential fit as
a function of distance between neurons returns a robust correlation
length of 110 um.

The mutual information carried by the decoders was then
estimated separately for each checker size. To limit bor-
der effects, the mutual information was estimated for each
pixel within a small hexagon centered on the central cell
of the synthetic population, of size (distance between op-
posite sides of the hexagon) equal to the distance between
cells.

We found that the gain in mutual information afforded
by noise correlations is large and positive for small and in-
termediate check sizes, while moderately negative for large
checks [Figs. 6(b) and 6(c)]. These results suggest that noise
correlations benefit the encoding of small-scale features of the
stimulus, at the expense of the large-scale ones, which are
easier to encode. Noise correlations can therefore trade the
encoding power of large-scale features to improve sensitivity
to the small-scale ones.

III. DISCUSSION

Many experimental works have shown that neurons with
the strongest positive noise correlations are similarly tuned
to the stimulus [1,5,12,23,27,28,30-32]. Here the sign rule
[7,9,37] would predict a detrimental effect of shared vari-
ability, at odds with the efficient coding hypothesis [59],
which is supported by a large body of work showing that
noise correlations are indeed beneficial [15,18,20,39,40,43].
Our work resolves this inconsistency by showing that be-
yond a critical value p;, noise correlations become beneficial
to information encoding regardless of their sign. We exper-
imentally demonstrated this effect in recordings of retinal
neurons subject to stimuli with different statistics and showed
that it generalizes to large populations of sensory neurons.
The effect depends on the spatial scale: Large-scale (low-
dimensional) modes give rise to strong signal correlations,
making positive noise correlations detrimental, while small-
scale (high-dimensional) modes benefit from positive noise
correlations since their signal correlations are small. These
small-scale features correspond to high frequencies, and thus
to local differential features, consistent with the analysis on

pairs of neurons showing that accuracy in the difference of
neural activities is enhanced by noise correlations [Fig. 1(i)].

Since much theoretical work has been done on the impact
of noise correlations, it is useful to emphasize the different
ways in which our approach differs from previous studies.
First, we consider nonlinear effects in the noise parameter
[Eq. (1)]. Crucially, the second-order term is responsible for
the violation of the sign rule. Second, we study mutual in-
formation rather than Fisher information. However, most of
our results also hold for the Fisher information (see Ap-
pendix B). Third, we used constant stimulus-independent
noise correlations, in the sense of Pearson. However, we
also showed that, counterintuitively, strong noise correlations
could be beneficial even in the case of information-limiting
correlations [38,52] (see Appendix A and Fig. 8), which is
the most unfavorable case of stimulus-dependent noise cor-
relation. More generally, we considered the impact of such
stimulus-dependent noise correlations within our framework
(see Appendix A) and showed that these fluctuations can
improve the noise synergy in two ways: by being large
and by being correlated with the noise level V,(6), also
assumed to be stimulus dependent. Our results thus ex-
tend and clarify previous theoretical work [35,60] under a
common information-theoretic framework. Finally, relative to
Ref. [36], we take the large population limit by considering
large networks with finite correlation length, in units of in-
terneuron separation, rather than by increasing the density of
neurons; that scaling makes it possible to uncover the benefit
of noise correlations at short length scales.

Our spectral analysis of scales and dimensionality helps
understand apparently contradictory claims in the literature.
On the one hand, noise correlation should be detrimental for
coding, because it impedes denoising by pooling the signal of
multiple neurons [1,36]. On the other hand, studies focusing
on the stimulus response of large sensory populations have
observed a positive gain [15,18,20,40,45]. Our study suggests
the following interpretation: When the neural population en-
codes a low-dimensional stimulus, as the angle of a drifting
gratings, similarly tuned nearby neurons become strongly sig-
nal correlated and their noise correlations are detrimental [36].
In the case of high-dimensional stimuli, like naturalistic im-
ages or videos, signal correlations between them are positive
but weak, so that noise correlations become larger than the
threshold p; and therefore beneficial.

Our work also shares some similarity with Ref. [41], where
the authors predicted the optimal patterns of noise correla-
tions maximizing information transmission by a population
of neurons. They showed that at high SNR, optimal noise
correlations follow the sign rule. This result does not rule out
that high levels of noise correlations violating the sign rule
could be beneficial (albeit not optimal), in agreement with
our theory. However, a direct comparison with our results is
difficult because in Ref. [41] noise correlations were tuned
through interneuron couplings that affect the mean response
of each neuron to the stimulus, which is kept constant in our
analysis. In fact, this effect leads to optimal noise correlations
of the same sign as signal correlations in the low-SNR regime
[41]. It was also shown to improve positional coding in the
hippocampus through the sharpening of stimulus tuning [42].
This apparent violation of the sign rule is however indirect
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FIG. 8. Impact of information-limiting correlations on stimulus information. An angular stimulus 6 is encoded by a pair of neurons
characterized by von Mises tuning curves (with parameters a = 40, b = 10, and w = 5). Their response is Gaussian of means p(f) and
12(6). Information-limiting correlations are defined by a covariance of the form: X,(8) = VoI 4 eu/(8)1/'(6)7, were € controls their strength,
and where we set Vy = V;/2. Note that ¥, now depends on 6. (a) Noise covariance ellipses for the correlated (plain line) and uncorrelated
(doted line) cases, for two example stimuli (blue points) on the manifold (grey), for an example of the system described above (with p; &~ 0.9).
Here, information limiting correlations will decrease the overlap between the two conditional response distributions. The mutual information
accounts not only for the detrimental local effects of information-limiting correlations, but also for such potentially beneficial non-linear and
global effects. (b) Relative mutual information gain (noise synergy) Al = luep/linaep — 1 as a function of €, where Iy, and Iingep quantify the
mutual information with and without (off diagonal terms of X, set to 0) noise correlations, for different levels of signal correlation ps. Mutual
information was computed via Monte Carlo integration. Information-limiting noise correlations become beneficial to the mutual information
if they are strong enough, except when cells are perfectly signal correlated. (c) By contrast, information-limiting correlations are always
detrimental to the Fisher information F(0) = ' (0)" £, '(6)1'(8). The relative Fisher information gain AF = (Fyey(0)/Finaep(0) — 1), where

Fyep(9) and Fiygep(6) denote the Fisher information with and without noise correlations, is always negative and decreases with € and py.

and distinct from the direct beneficial effect of strong noise
correlations that we discuss in this work.

Several studies have focused on the effect of noise cor-
relations on the Fisher information [4,18,36,39,40]. While
our main results are based on the mutual information, they
equivalently apply to the Fisher information in the Gaussian
case [33] (see Appendix B). To further test the robustness of
our conclusions, we demonstrated that our results are model
independent and hold for both binary and Gaussian neu-
rons. In addition, empirical results from the retinal recordings
[Fig. 1(j)] were obtained without any approximation or model
choice and agree with the theory.

We validated our theoretical predictions experimentally on
recordings of neurons from the retina. Our theory could be
further tested in large-scale retinal recordings in which the
population size is large enough to observe network effects,
by presenting stimuli in which signal correlations are weak
or tunable. An interesting question is whether the magnitude
of signal correlations in natural scenes is consistent with a
beneficial effect of noise correlations, in line with arguments
of efficient coding in the retina [61,62]. Applying our ap-
proach to data in sensory cortical areas where similar noise
correlation structures have been observed [4,5] could lead to
new understanding of the role of noise correlations in sensory
information processing. Another key open question is what
stimulus ensembles most benefit from noise correlations, as
well as where naturalistic stimuli stand in that regard. We have
further shown that noise correlations benefit the encoding of
high-frequency features of the stimulus, which correspond to
fine-grained neural activity patterns. Extending these results
to higher cortical areas would require understanding which
features from the stimulus drive such activity patterns.

IV. METHODS
A. Covariance and correlation measures

The average responses of two neurons 1 and 2 are
given as function of the stimulus 6 by the tuning curves
w1(0) = (r1)e and u,(0) = (r2)e. Signal correlations are de-
fined as p; = Corrg (141, (2 ) and noise correlations as p, () =
Corr(ry, r2|0). The sum of these two coefficients does not
have a simple interpretation in terms of total correlation
or covariance, but we can also decompose the total cor-
relation coefficient between r; and r, as Corr(ry, ) =
rs + rn, With rg = Cove(uy, a)/+/ Var(ry)Var(r,) and r, =
(Cov(ry, r210))e/+/ Var(ry)Var(rz).

B. Pairwise analysis
1. Tuning curves

We consider a pair of neurons encoding an angle 6. The
responses of the two neurons, r| and r,, are assumed to be
binary (spike or no spike in a 10-ms time window) and corre-
lated. Their average responses w(6) and wu,(0) are given by
von Mises functions [Fig. 1(a)]

exp [ cos (0 — 6f)/w] — exp(—1/w)
exp(l/w) —exp(—1/w)

wi(6) =a +b 4

Signal correlations between the two neurons can be tuned by
varying the distance between the center of the two tuning
curves 6! and 62. The tuning curve width w was set arbi-
trarily to 5, the amplitude a to 0.4, and the baseline b to 0.1.
The strength of noise correlations is set to a constant of 6,

Pn(0) = pn.
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2. Small correlation expansion

When noise correlations p, are constant and small, the
noise synergy may be expanded as [46]

1 o "
Al = —rgrg + E(Pé - "}21) = Epn(pn - pn)v )

where the second equality highlights the dependence on p,.
The critical p;; may be written as

on = Bpos, (6)

v and the prefactor o =1— Vn2 /Vtgt,
with  the

shorthand Vi, = +/Var(r)Var(ry), V,=
(v/Var(ri10)Var(r210))g, and Vi = /Var[u,(0)]Var[n(6)]
corresponding to measures of total, noise, and signal variances
in the two cells.

By Cauchy-Schwartz inequality we have

V2 < (Var(ri10)) o (Var(r16))s, (N

with p = Sk

which entails

BS :

—— <1, 8
Ncosh%—i—Rﬂ ®)

where R = +/RiR, and AlnR =In(R/R;), with R; =
Var(u;)/(Var(r;]6))e the signal-to-noise ratio of the cells; R
measures the overall strength of signal-to-noise ratios, while
A InR measures their dissimilarity. The last inequality implies
that noise correlations are always beneficial for p, > p;.

3. Gaussian case

To test the theory’s robustness to modeling choices, we also
considered a continuous rather than binary neural response,
r; = u;(0) + ér;, where both w; and 8r; are Gaussian variables
defined by their covariance matrices X ;; = Covg(u;, ;) and
X,ij = (Cov(ri, rj|0))e. The noise synergy can be calculated
through classic formulas for the entropy for Gaussian vari-
ables, yielding

1 |zs+zn||vn|>
Al = —log [ =s ™ Zalltnl ) ©)
2 g<|zs+vn||zn|

where |X| denotes the determinant of matrix X and V; is the
diagonal matrix containing the noise variances of the cells
Vh.ii = Zn.ii- Note that this formula is general for an arbitrary
number of correlated neurons. In the pairwise case considered
here, matrices are of size 2 x 2. The condition for beneficial
noise correlations Al > 0 is satisfied for p, > p;, with

o = Bpss (10)
with
B = AR : 5 <
cosh =52 + (1 - p; )R/Z

which has a similar form to Eq. (8).

4. Noise synergy at constant noise entropy

Increasing noise correlations at constant V;, decreases the
effective variability of the response, as measured by the noise
entropy H({r1, r}|0) = In(2me|%,|'/?), with |Z,| = V(1 —
02) in the case two neurons with the same noise level. To

correct for this effect, we also computed A/ at constant noise
entropy, by rescaling the noise variances in the correlated and
uncorrelated cases V, . and V,, ,,, so that their resulting noise
entropies are equal S, = V(1 — p7) = V. The critical
noise correlation at which Al > 0 is then given by

pr =22 <, (11

1+ p2
where the last inequality implies that strong enough noise
correlations are always beneficial.

5. Retinal data

Retinal data were recorded ex vivo from a rat retina us-
ing a microelectrode array [47] and sorted using SPYKING
CIRCUS [49] to isolate single neuron spike trains. From the
ensemble of single cells, we could isolate a population of
32 OFF-a ganglion cells. Three stimulus movies with dif-
ferent spatiotemporal statistics were presented to the retina:
a checkerboard movie consisting of black and white checks
changing color randomly at 40 Hz and repeated 79 times; a
drifting grating movie consisting of black and white stripes
of width 333 um moving in a fixed direction relatively to the
retina, at speed 1 mm/s, and repeated 120 times; and finally
a movie composed of ten black disks jittering according to a
Brownian motion on a white background, repeated 54 times.

C. Gaussian population and spectral analysis

We consider a population of n neurons organized along
a one-dimensional lattice with constant interneuron spacing.
Their mean response and noise are assumed to be Gaussian,
with their noise and signal covariances given by an exponen-
tially decaying function of their pairwise distances:

Tij = Vee TR, (12)

Thij = Va(8ij 4+ ple” ). (13)

Here Vi and Vj, are the signal and noise variance of the
single cells. The parameter p0 sets the strength of noise
correlations such that nearest neighbors have noise corre-
lation p, = pg exp(—1/Ly,). When n is large and boundary
effects can be ignored, the system is invariant by transla-
tion and we can diagonalize ¥ and X, in the Fourier basis
Vi = \/Lﬁ exp(—i2mkl/n). Denoting the spectra of ¥ and %,
by S(//n) and N(I/n), the expression of the noise synergy
[Eg. (9)] can then be written as a sum over modes

| (n—Zn/z N <1+S(l/n)/N(l/”))
S\ s )

Al =

(14)
I=—(n—1)/2

which simplifies in the n — oo limit to

12
Al 1/ 1Og<1 +S(k)/N(k))dk’ (15)

n2)p 1+ SV
with
Stk) = V. L—p : (16)
"1 —2pscos(2mk) + p?
N<k>=vn<1 P L= ) a7)
1 — 2%, cos(2mk) + A2
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where p; = exp(—1/L;) is the nearest-neighbor signal corre-
lation, A, = exp(—1/L,), and k is a wave vector interpretable
as a spatial frequency in units of the system’s size, up to a
27 factor. Examining Eq. (15), we see that noise correlations
are beneficial for frequencies for which N (k) < V,, which
happens for k > k*, where k* = (1/27) arccos(e™ /).

In the low-noise regime R = V,/V;, > 1, the noise synergy
reduces to

172
a1 / " logIN G Valdk > 0, (18)
n 2J
where the inequality stems from Jensen’s inequality, because
—log is a convex function, and —log[ﬂﬁ2 dkN(k)/V,] =
0. Therefore, in that regime, noise correlations are always
beneficial.

In the high-noise limit R < 1, the noise synergy becomes

172
Al l/ <_S(k) _ S(k))dk. (19)
n 2 -1/2 N(k) Vn

Computing this integral gives the critical noise correlation

1—22
PsT—F [ 5
1 — 2005 + pg

where p"™ = (1 + A,)/2 is the maximum possible value of
pn [ensuring that the noise spectrum N (k) is non-negative
for all k]. The last inequality in Eq. (20) implies that there
always exists a regime in which strong noise correlations are

beneficial.

< e, (20)

n

Pn =

Nonidentical neurons

To study the effect of inhomogeneities among neurons, we
considered the case where the signal variance of each cell
is different and drawn at random as \/‘73’ = u + n;, where
n; is normally distributed with zero mean and variance v?.
The noise synergy can be rewritten in the high-noise regime

(RK 1)as
Al ~ 1Tr(2,2 ! — Zv,7Y). 1)

Averaging this expression over 7; yields

2

1 v _
Al ~ Al + EmTr[E" 'RI-%y], (2
where Al is the noise synergy in a uniform population (with
Vi = u? 4+ v?) and the second term is always positive, with
R=(V])/Va = (1 + )/ V.
Taking the continuous limit (n — o0) in Eq. (22), similarly
to the integral limit of Eq. (15), allows us to write the critical
noise correlation p; as

4y p2(1 =22
1_\/ N ypsz( 2) .
(1 +V) (1 _}\nps)

(23)

*,U
* Pn

1—pp®
pn: - 5
I+y 2

where y = v?/u? quantifies the relative magnitude of inho-
mogeneities and p;°" is the critical noise correlation value in
a uniform population [Eq. (20)]. This modified critical noise
correlation value is always smaller than in the uniform case

and scales linearly at leading order with the inhomogeneity
parameter y:

(1= 25 Y fo). 9
B " 1 - ;Os)\n

D. Decoding analysis
1. Experimental and synthetic data

We presented a mouse retina with a stimulus consisting
of a black and white random checkerboard flashed at 4 Hz,
each frame with a given spatial resolution (checks of sizes
12, 24, 36, 72, and 108 um). Retinal ganglion cell activ-
ity was recorded ex vivo using a microelectrode array and
single-neuron activity isolated via spike sorting using SPYK-
ING CIRCUS [49]. We isolated a population of Nee;s = 7 OFF-«
retinal ganglion cells, which presents strong noise correlations
in their response [17]. The original recording contained a 15-s
checkerboard movie repeated 90 times as well as 90 different
22.5-s-long unrepeated movies.

We inferred a deep generalized linear model (GLM) of
the central cell among seven from the experimental popu-
lation [Fig. 6(a)], consisting of a stimulus-processing filter,
and filters for the spiking history of the cell as well as its
six neighbors (couplings). The stimulus-processing part of
the model consisted of a deep neural network composed of
two spatiotemporal convolutional layers followed by a readout
layer. The whole model was fit to the data using the two-step
inference approach [50].

A synthetic population of 49 OFF-« ganglion cells was
then constructed by arranging them on a triangular lattice of
7 x 7 points. Each cell responds according to the inferred
GLM with translated receptive fields. Nearest neighbors were
coupled with the average of the GLM couplings inferred be-
tween the central cell from the experiment and its neighbors.

To stimulate this synthetic population, we generated a syn-
thetic stimulus ensemble from 550 regular black and white
checker frames, each with a given check size ranging from
140 to 420 um (with increments of 28 um). Every checker of
a given size was presented for five different regularly spaced
offsets ranging from 0 to 224 um in both the horizontal and
vertical directions, resulting in 25 different frames per size.
To further ensure that the color of each pixel in the stimu-
lus ensemble is black or white with equal probability, each
checker frame also had its color-reversed version in the set,
resulting in 50 different frames for a given check size. A single
snippet from the synthetic stimulus ensemble consisted of a
250-ms white frame followed by one of the 550 aforemen-
tioned checker frames.

We built a training, a validation, and testing set for the
dependent and independent decoders by simulating the syn-
thetic population for sets of 3750, 1250, and 5000 repetitions
(respectively) of each synthetic stimulus snippets.

2. Decoders

The binary decoders are logistic regressors taking in the
integrated response of the population over the N, = 5 past
bins of 50 ms to predict the ongoing stimulus frame. The
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predicted stimulus at time ¢ and repeat k is given by

X(x, 3, t,k) = f(Ae,r(t, k) + ey, (25)

where x and y are the pixel indices along the two dimensions
of the stimulus, f(x) = (1 + e~*)~! is the sigmoidal function,
A,y is a matrix of size (N, Nees), 7(¢, k) is a matrix of size
(Neenis, N7 ) containing the spike history of the population at
time ¢ and repeat k, and By, is a pixelwise bias. Each decoder
was trained by minimizing the average binary cross entropy
(BCE) between predicted the stimulus X (x, y, 7, k) and the
true stimulus X (x, y, 1), (BCE(x, y, t, k)) .,y x, where

BCE(x, y,t,k) = — X(x,y,1)In [X(x, vy, t, k)]

— [1 =X, y,0)]In[l —X(x,y,t, k).
(26)

Training was done by stochastic gradient descent on the
synthetic datasets using the training (3750 repetitions) and
validation (1250 repetitions) sets. Optimization was done us-
ing stochastic gradient descent with momentum, with early
stopping when the validation loss did not improve over six
consecutive epochs. During that procedure the learning rate
was divided by 4 whenever the validation loss did not improve
for three consecutive epochs.

We probed the decoders’ abilities to decode features of
different spatial scales by decoding the simulated responses
of the synthetic population to the checker stimuli with varying
check size from the testing set. Performances of the decoders
were assessed by computing the mutual information between
each pixel’s color X and its decoded value X, separately
for the different sizes of checks. The noise synergy was
then computed as the difference between the mutual informa-
tion averaged over pixels for the dependent and independent
decoders.

Error bars were computed as follows. We inferred ten deep
GLMs on bootstraps of the original training set, obtained
by resampling with replacement the stimulus-response pairs
used for training. These ten models were used to generate ten
surrogate training sets, from which ten separate decoders were
inferred with noise correlations and another ten without noise
correlations. Then synthetic test sets for the checker decoding
task were generated from each of the ten models and the per-
formance of each decoder was computed separately with and
without noise correlations, yielding ten values of the mutual
information and ten values of the noise synergy (both aver-
aged over pixels). The error bars are the standard deviations
of the resulting information, noise synergy, and synergy-to-
information ratios (i.e., relative noise synergy) over the ten
bootstraps.
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APPENDIX A: STIMULUS-DEPENDENT CORRELATIONS

Theoretical developments in the present work focused
on the effect of constant noise correlation (in the sense of
Pearson) on the mutual information between stimulus and
response. In reality, noise correlations, i.e., correlations of the
response conditioned on the stimulus, may also depend on the
stimulus value. This dependence may arise via a dependence
on either the firing rates of the cells [64] or the stimulus
itself [18,65]. Although a complete discussion of the effect of
nonconstant noise correlations on mutual information is out
of this paper’s scope, we succinctly extend our framework to
give intuition about this phenomenon.

Starting again from the framework described in Sec. IV B
and relaxing the assumption of constant noise correlations,
we can show [Eq. (A7) in Ref. [46]] that the noise synergy
expanded and truncated at second order in the correlations
for a pair of cells encoding for stimulus 6 is given, with the
definitions from Sec. IV, by

Al = —rgra + 3{(p2(0)), — r2]. (A1)
We can decompose this information gain as
Al = AL + Al + Al , (A2)

where Al is given by Eq. (5) with constant noise correlations
Pn = {(pn(0))s and the two other terms contain the effects of
the variations of p,(0). The first term Al = %Varg [pn(0)] >
0 directly accounts for the effect of fluctuations of p,(0),
while Al ; is linked to its correlation with the noise variance:

Vn(9)>
Viot 19

1 _ V()
X (§<[pn(9)+pn] V. >9+rs>-

tot

Algp = — <[pn(9) — Pl

(A3)

This contribution is zero when noise correlations p,(6) are
not correlated to the noise variance of the pair V,(6), but
it can in general be positive or negative depending on how
these two quantities covary. We saw in the analysis in Fig. 1
that the effect of strong positive noise correlations between
OFF-« cells from the rat retina can be qualitatively explained
by the second-order approximation with constant noise cor-
relations. This suggests that, at least for this type of neuron,
the contribution of noise correlation fluctuations to the mutual
information does not constitute the bulk of the effect.
Previous work investigated the effect of nonconstant noise
correlations on sensory coding. When focusing on the mutual
information [35,60], studies essentially relied on decompo-
sitions of the mutual information derived from correlation
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measures that stray from classical Pearson correlations and
their intuitive meaning (see Appendix D in Ref. [46] for a
discussion on that point). As a consequence, interpretation
of their results in terms of pairwise noise correlations is not
straightforward.

Another line of work derived the notion of information-
limiting correlations [38,52], which are correlations that
always align noise with the signal’s direction, at any point
of the manifold. Such correlations, however, are only truly
information limiting in the case of the Fisher information
(they were in fact derived from the linear approximation of
the Fisher information [38]). The Fisher information only ac-
counts for how an ideal decoder can distinguish two infinitely
close stimuli 6 and 6 4 df with vanishing dé. It thus relies
on a linear analysis (first order in a small error parameter)
and ignores higher-order effects. In contrast, the mutual infor-
mation is a global measure of information that accounts for
how the conditional response distributions are distinguishable
from the marginal response distribution and includes all orders
of the error parameter. While information-limiting correlation
are always detrimental to the Fisher information, they can
benefit the mutual information by decreasing the overlap be-
tween conditionals. Figure 8(a) illustrates an example of such
an effect, in which the high curvature of the response curve
causes information-limiting correlations to actually increase
the discriminability of nearby stimuli. Since it is a function
of the curvature, it is a nonlinear effect that cannot be cap-
tured by the Fisher information, but it does impact the mutual
information.

Figure 8(b) quantifies the effect on the mutual information
in a concrete case with von Mises tuning curves (see the
caption for details). It shows that strong information-limiting
correlations are always beneficial to the mutual information,
while always being detrimental to the Fisher information
[Fig. 8(c)]. One must note, however, that in the particu-
lar case of perfectly stimulus correlated neurons (ps = 1),

information-limiting correlations will always be detrimental,
as they will increase the overlap between conditional response
distributions and the marginal response distribution.

APPENDIX B: STRONG NOISE CORRELATIONS
AND FISHER INFORMATION

We consider a pair of neurons encoding an arbitrary vari-
able 6. The responses r of these neurons are assumed to be
Gaussian with mean p(6) and constant covariance matrix X,
where w(6) are the tuning curves. In this context, the Fisher
information is defined as [38]

Faep(0) = ' (0) 2, 1/ (0).

Expanding this expression for a pair of neurons with equal

(BD)
. . 1 oo, .
noise variance X, = V“(p 1 ) yields
1L(6) + (6)
Faep(0) = [t A AR I8 T

24401y (6)
Va(1=p2) '

P07 + w507

(B2)
In the absence of noise correlations (p, = 0), the Fisher infor-
mation simplifies to

wi(0)® + p5(0)
Va ’
To quantify the overall Fisher improvement, we introduce
the quantity AF = (Fyep(6)/Fingep(6) — 1)o. Defining £(0) =
2p, (05 (0)
O +i1y0)"

Endep )= (B3)

the Fisher improvement becomes

_ palon — (E©))o]

L—p3
Therefore, strong positive noise correlations will benefit the
Fisher information whenever they exceed the critical value

orF = (£(0))p.

AF (B4)
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