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The evolution of many microbes and pathogens, including circu-
lating viruses such as seasonal influenza, is driven by immune
pressure from the host population. In turn, the immune systems
of infected populations get updated, chasing viruses even farther
away. Quantitatively understanding how these dynamics result
in observed patterns of rapid pathogen and immune adaptation
is instrumental to epidemiological and evolutionary forecasting.
Here we present a mathematical theory of coevolution between
immune systems and viruses in a finite-dimensional antigenic
space, which describes the cross-reactivity of viral strains and
immune systems primed by previous infections. We show the
emergence of an antigenic wave that is pushed forward and
canalized by cross-reactivity. We obtain analytical results for
shape, speed, and angular diffusion of the wave. In particular,
we show that viral–immune coevolution generates an emergent
timescale, the persistence time of the wave’s direction in anti-
genic space, which can be much longer than the coalescence
time of the viral population. We compare these dynamics to
the observed antigenic turnover of influenza strains, and we
discuss how the dimensionality of antigenic space impacts the
predictability of the evolutionary dynamics. Our results provide
a concrete and tractable framework to describe pathogen–host
coevolution.

viral evolution | fitness wave | coevolution | host–pathogen dynamics

The evolution of viral pathogens under the selective pressure
of its hosts’ immunity is an example of rapid coevolution.

Viruses adapt in the usual Darwinian sense by evading immunity
through antigenic mutations, while immune repertoires adapt by
creating memory against previously encountered strains. Some
mechanisms of in-host immune evolution, such as the affinity
maturation process, are important for the rational design of vac-
cines. Examples are the seasonal human influenza virus, where
vaccine strain selection can be informed by predicting viral evo-
lution in response to collective immunity (1), as well as chronic
infections such as HIV (2–5), where coevolution occurs within
each host. Because of the relatively short time scales of selection
and strain turnover, these dynamics also provide a laboratory for
studying evolution and its link to ecology (6).

It is useful to think of both viral strains and immune protec-
tions as living in a common antigenic space (6), correspond-
ing to an idealized “shape space” of binding motifs between
antibodies and their cognate epitopes (7). While the space of
molecular recognition is high-dimensional, projections onto a
low-dimensional effective shape space have provided useful
descriptions of the antigenic evolution. In the example of
influenza, neutralization data from hemagglutination-inhibition
assays can be projected onto a two-dimensional antigenic space
(8–10). Mapping historical antigenic evolution in this space sug-
gests coevolutionary dynamics pushing the virus away from its
past positions, where collective immunity has developed. Impor-
tantly, the evolution of influenza involves competitive inter-
actions of antigenically distinct clades in the viral population,
generating a “Red Queen” dynamics of pathogen evolution (11,
12). Genomic analysis of influenza data has revealed evolution
by clonal interference (13); this mode of evolution is well known
from laboratory microbial populations (14). In addition, the viral

population may split into subtypes. Such splitting or “speciation”
events, which are marked by a decoupling of the corresponding
immune interactions, happened in the evolution of influenza B
(15) and of noroviruses (16).

The joint dynamics of viral strains and the immune systems
of the host population can be modeled using agent-based sim-
ulations (17, 18) that track individual hosts and strains. Such
approaches have been used to study the effect of competition
on viral genetic diversity (19), to study geographical effects
(20), and to study the effect of vaccination (21). Alternatively,
systems of coupled differential equations known as susceptible-
infected-recovered (SIR) models may be adapted to incorpo-
rate evolutionary mechanisms of antigenic adaptation (6, 22,
23). Agent-based simulations in two dimensions were used to
recapitulate the ballistic evolution characteristic of influenza
A (18) and to predict the occurrence of splitting and extinc-
tion events (24). In parallel, theory was developed to study the
Red Queen effect (12, 25), based on the well-established the-
ory of the traveling fitness wave (26–28). While effectively set
in one dimension, this class of models can nonetheless predict
extinction and splitting events assuming an infinite antigenic
genome (12).

In this work, we propose a coevolutionary theory in an
antigenic interaction space of arbitrary dimension d , which is
described by joint nonlinear stochastic differential equations
coupling the population densities of viruses and of protected
hosts. We show that these equations admit a d -dimensional
antigenic wave solution, and we study its motion, shape, and sta-
bility, using simulations and analytical approximations. Based on
these results, we discuss how canalization and predictability of
antigenic evolution depend on the dimensionality d .
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Results
Coarse-Grained Model of Viral–Immune Coevolution. Our model
describes the joint temporal evolution of populations of viruses
and immune protections in some effective antigenic space of
dimension d . Both viral strains and immune protections are
labeled by their position x = (x1, . . . , xd) (or “phenotype”) in
that common antigenic space (Fig. 1A). In that space, viruses
randomly move as a result of antigenic mutations and proliferate
through infections of new hosts. Immune memories are added
at the past positions of viruses. Immune memories distributed
across the host population provide protection that reduces the
effective fitness of the virus. We coarse grain that description by
summarizing the viral population by a density n(x, t) of hosts
infected by a particular viral strain x and immunity by a den-
sity h(x, t) of immune memories specific to strain x in the host
population.

At each infection cycle, each host may infect R0 unprotected
hosts, where R0 is called the basic reproduction number. How-
ever, a randomly picked host is susceptible to strain x with
probability (1− c(x, t))M , where c(x, t) is the coverage of strain
x by immune memories of the population and the number M
of immune memories carried by each host. Because of cross-
reactivity, which allows immune memories to confer protection
against close-by strains, immune coverage is given as a function
of the density of immune memories,

c(x, t) =
1

M

∫
dx′h(x′, t)H (x− x′), [1]

where H (x− x′) = exp(−|x− x′|/r) is a cross-reactivity kernel
describing how well memory x′ protects against strain x, and r
is the range of the coverage provided by cross-reactivity. In sum-

A D

B C

Fig. 1. A simple model of viral–host coevolution predicts the emergence of
an antigenic wave. (A) Schematic of the coevolution model. Viruses prolif-
erate while effectively diffusing in antigenic space (here in two dimensions)
through mutations, with coefficient D. Past virus positions are replaced by
immune protections (light blue). Immune protections create a fitness gra-
dient for the viruses (green gradient), favoring strains at the front. Both
populations of viruses and immune populations are coarse grained into den-
sities in antigenic space. (B) Snapshot of a numerical simulation of Eqs. 2 and
3 showing the existence of a wave solution. The blue colormap represents
the density of immune protections h(x, t) left behind by past viral strains.
The current virus density n(x) is shown in red. (C) Close-up onto the viral
population, showing fitness isolines. The wave moves in the direction of the
fitness gradient (arrow) through the enhanced growth of stains at the edge
of the wave (black dots). (D) Distribution of fitness across the viral pop-
ulation (corresponding to the projection of B along the fitness gradient).
Parameters for B–D: D/r2 = 3 · 10−9, Nh = 108, ln R0 = 3, M = 1.

mary, the effective growth rate, or “fitness,” of the virus is given
by f (x, t)≡ ln[R0(1− c(x, t))M ].

The coupled dynamics of viruses and immune memories are
then described by the stochastic differential equations (with time
in units of infection cycles throughout):

∂tn(x, t) = f (x, t)n(x, t) +D∂2
x n +

√
n(x, t)η(x, t) [2]

∂th(x, t) =
1

Nh

[
n(x, t)−N (t)

h(x, t)

M

]
. [3]

Here η is a Gaussian white noise in time and space,
〈η(x, t)η(x′, t ′)〉= δ(x− x′)δ(t − t ′), accounting for demo-
graphic noise (29). This stochastic term is crucial, as it will
drive the evolution of the wave. The diffusion constant D
describes the effect of infinitesimal mutations on the phenotype,
D =µ

〈
δx2

1

〉
/2, where µ is the mean number of mutations per

cycle, and
〈
δx2

1

〉
is the mean-square effect of each mutation

along each antigenic dimension (assuming that mutations do
not have a systematic bias, 〈δx1〉= 0). The continuous-diffusion
assumption implied by Eq. 2 is valid only when there are
many small mutation effects, µ� 1 and δx� r , in contrast
with regimes where mutations are rare but have a substantial
fitness effect drawn from a distribution (25, 30). Our choice
is simpler in that it describes the mutation process through a
single parameter D . Along with the choice of the cross-reactivity
kernel H , it also naturally preserves the isotropy of the antigenic
space.

The total viral population size, or number of infected hosts,
N (t) =

∫
dxn(x, t) is subject to fluctuations. At the same time,

the host population size Nh remains constant because newly
added memories (first term of right-hand side of Eq. 3) overwrite
existing ones picked uniformly at random (second term of right-
hand side of Eq. 3). Since each host carries M immune receptors,
we have

∫
dxh(x, t) =M .

If we assume that the system reaches an evolutionary steady
state, with stable viral population size N (t) =N , then Eq. 3 can
be integrated explicitly:

h(x, t) =
M

N

∫ t

−∞

dt ′

τ
e−

t−t′
τ n(x, t ′), [4]

with τ =MNh/N . Eq. 4 shows how the density of protections
reflects the past evolution of the viral population.

Antigenic Waves. We simulated Eqs. 2 and 3 on a square lattice
(Methods) and found a stable wave solution (Fig. 1 B–D). The
wave has a stable population size N and moves approximately
ballistically through antigenic space, pushed from behind by the
immune memories left in the trail of past viral strains (Fig. 1B).
These memories exert an immune pressure on the viruses, form-
ing a fitness gradient across the width of the wave (Fig. 1C),
favoring the few strains that are farthest from immune memories,
at the edge of the wave.

We assume that the solution of the coupled evolution equa-
tions Eqs. 2 and 3 takes the form of a moving quasispecies in a
d -dimensional antigenic space,

n(x, t) =
N√
2πσ2

exp

[
− (x1− vt)2

σ2

]
ρ(x2, . . . , xd). [5]

Here, we have written the solution in a comoving frame, in which
a motion with constant speed v takes place in the direction
of the coordinate x1, and fluctuations in the other dimensions,
ρ(x2, . . . , xd , t), centered around xi = 0 for i > 1, are assumed
to be independent. In the next sections, we analyze solutions
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of this form. First, we project the d -dimensional antigenic wave
onto the one-dimensional fitness space; this projection produces
a traveling fitness wave (26–28, 31, 32) that determines the
antigenic speed v and the mean pair coalescence time 〈T2〉
of the viral genealogy. Second, we study the shape of the d -
dimensional quasispecies and determine the fluctuations in the
transverse directions. These fluctuations produce a key result of
this paper: Immune interactions canalize the evolution of the
antigenic wave; this constraint can be quantified by character-
istic time scales governing the transverse antigenic fluctuations.
Canalization is most pronounced in spaces of low dimensionality
d and, as we discuss below, affects the predictability of antigenic
evolution.

Speed of Antigenic Evolution. Projected onto the fitness axis f =
f (x, t), the solution is approximately Gaussian (Fig. 1D). This
representation suggests a strong similarity to the fitness wave
solution found in models of rapidly adapting populations with
an infinite reservoir of beneficial mutations (26–28, 31, 32). To
make the analogy rigorous, we must assume that the fitness gra-
dient in antigenic space is approximately constant, meaning that
fitness isolines are straight and equidistant. Mutations along the
gradient direction have a fitness effect that is linear in the dis-
placement, while mutations along perpendicular directions are
neutral and can be treated independently. Note that while we
will use this projection onto fitness to compute the speed of
the antigenic wave, the underlying antigenic wave remains in d
dimensions; we will come back to transverse fluctuations in the
next sections.

There are several models of fitness waves that differ in the
assumptions on the statistics of mutational effects. Our assump-
tion of diffusive motion makes our projected dynamics equiv-
alent to those studied in ref. 32, which itself builds on earlier
work (27). This equivalence results from the two key assump-
tions of the mutation model in antigenic space: Mutations have
a small effect, and their distribution is isotropic, meaning that
there are as many deleterious as beneficial mutations. In the limit
where the wave is small compared to the adaptation time scale,
vτ�σ, the wave may be replaced by a Dirac delta function
at x = (vt , 0, . . . , 0) in Eq. 4. One can then calculate explic-
itly the immune density (upstream of the wave) and coverage
(downstream of the wave, using Eq. 1):

h(x, t)≈ M

vτ
e−

vt−x1
vτ Θ(vt − x1)δ(x2) · · · δ(xd), [6]

c(x, t)≈ e−(x1−vt)/r

1 + vτ/r
, x1≥ vt , xi>1� r , [7]

where Θ(x ) = 1 for x ≥ 0 and 0 otherwise. This idealized expo-
nential trail of immune protections h(x, t) corresponds to the
blue trace in Fig. 1B and the coverage or fitness gradient to the
isolines in Fig. 1C.

In the moving frame of the wave, (u, x2, . . . , xd), with u = x1−
vt , the local immune protection and viral fitness can be expanded
locally for u, xi� vτ (see ref. 25 for a similar treatment in a one-
dimensional antigenic space):

f ((u, xi>1);t)≈ ln

[
R0

(
1− e−u/r

1 + vτ/r

)M]
≈ f0 + su, [8]

where f0 = lnR0−M ln[1 + r/(vτ)] is the average population
fitness, and

s = |∂x1 f |=
M

r

(
R

1/M
0 − 1

)
[9]

is the fitness gradient (for f0 = 0, see below). Rescaling the anti-
genic variable x1 as sx1, this process is equivalent to the evolution

of a population where mutation effects are described by diffu-
sion in fitness space with coefficient Ds2. This is precisely the
model from which the fitness wave solution of refs. 27 and 32
was described (SI Appendix). In the following we use results from
these works to describe the antigenic wave. However, we note
that in the usual fitness wave theory, population is kept con-
stant by construction, which implies that fitness is relevant only
when compared to the mean of the population. By contrast, in
our model population size is itself a dynamical variable, and fit-
ness is defined as an absolute growth rate. In this version of the
model, the fitness of the whole viral population undergoes con-
tinuous negative drift due to the constant adaptation of immune
systems, encoded in the −svt term in Eq. 8. This negative fit-
ness drift has an analogous effect to subtracting the mean fitness
in models with constant population size, making the equivalence
possible.

The fitness wave theory allows us to make an analytical pre-
diction about the properties of the antigenic wave. Let us start
with its population size N , which is regulated by how fast the
immune system catches up with the wave. The immune turnover
time τ in Eq. 4 is inversely proportional to N : The larger the
population size is, the faster immune memories are updated,
increasing the immune pressure on current viral strains (lower
f0) and thus decreasing N . As the moving wave reaches a stable
moving state, its size N becomes stable over time, giving the con-
dition (1/N )dN /dt = f0 = 0, which in turn constrains the ratio
between the wave’s size and speed:

N

v
=

MNh

r

(
R

1/M
0 − 1

)
=Nhs. [10]

But the fitness wave theory predicts that the speed of the wave
itself depends on the population size. The larger N is, the more
outliers at the nose of the fitness wave, and the farther out they
may jump in antigenic space, establishing fitter ancestors of the
future population. This results in a fitness wave whose speed
depends only weakly on population size and mutation rate (ref.
32 and SI Appendix),

vF ≈D
2/3
F

[
24 ln(ND

1/3
F )

]
1/3, [11]

where DF = s2D and vF = sv are the diffusivity and wave speed
in fitness space, which are related to their counterparts in anti-
genic space through the scaling factor s . Substituting this scal-
ing into Eq. 11 yields a relation between antigenic speed and
population size,

v ≈D2/3s1/3
[
24 ln(N (Ds2)1/3)

]
1/3, [12]

which closes the system of equations: Using the definition of
s (Eq. 9), Eqs. 10 and 12 completely determine N and v as
a function of the model’s parameters (through a transcenden-
tal equation; see SI Appendix). We validated these theoretical
predictions for N and v by comparing them to numerical sim-
ulations, which show good agreement over a wide range of
parameters (Fig. 2 A and B). We note that the alternative fitness
wave model of Desai and Fisher (28) predicts different scal-
ing relations between speed and population size, including for
an arbitrary distribution of fitness effects (30). The major dif-
ference to our description is that we assume infinitesimal and
reversible fitness effects. Relaxing that assumption to account
for rare but strong mutational effects would affect Eq. 12, but
the dependence on N would still be logarithmic at most.

Shape of the Antigenic Wave. The width σ of the wave in the direc-
tion of motion is given by Fisher’s theorem, which relates the rate
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BA

C D

Fig. 2. Analytical prediction of wave properties. Shown are the numeri-
cal versus analytical predictions for the wave’s population size N (A), speed
v (B), width σ along the wave’s direction of motion (C), and width σ⊥ in
the direction perpendicular to motion (D), with d = 2 dimensions. Lengths
are in units of the cross-reactivity range (so that r = 1, with no loss of gen-
erality). Parameters: Nh = 108 (squares), 1010 (circles), or 1012 (triangles);
ln R0 = 1 (solid symbols) or 3 (open symbols); M = 1 (small symbols) or 5
(large symbols).

of change of the average fitness to its variance in the population:
∂t f = Var(f ). In our description fitness and the antigenic dimen-
sion x1 are linearly related with coefficient s , implying s2σ2 = sv .
The result of that prediction for σ is validated against numerical
simulations in Fig. 2C.

The wave is led by an antigenic “nose” formed by a few
outlying strains of reduced cross-reactivity with the concurrent
immune population, generating high fitness. These strains have
phenotype uc = sσ4/4D = v2/(4Ds) and fitness suc . They serve
as founder strains from which the bulk of the future population
will derive some time ∼ uc/v =σ2/4D later (SI Appendix). As a
result, two strains taken at random can trace back to their most
recent common ancestor to some average time 〈T2〉=ασ2/2D
in the past, where α≈ 1.66 is a numerical factor estimated from
simulations (32).

To explain the width σ⊥ of the wave in the other phenotypic
dimensions than that of motion (xi>1), we note that in these
directions evolution is neutral. Two strains taken at random in
the bulk are expected to have drifted, or “diffused” in physical
language, by an average squared displacement

〈
∆x2

i

〉
= 2DT2

from their common ancestor, so that their mean-square distance
is 4D 〈T2〉= 2ασ2 along xi . If one assumes an approximately
Gaussian wave of width σ⊥, the mean-square distance between
two random strains along xi should be equal to 2σ2

⊥. Equating
the two estimates yields σ2

⊥=ασ2. Fig. 2D checks the validity of
this prediction against simulations.

Both longitudinal and transversal fluctuations in antigenic
space are instances of quantitative traits under interference
selection generated by multiple small-effect mutations. The
width of these traits is governed by the common relation〈
∆x2

i

〉
= 2D 〈T2〉∼σ2, which expresses the effective neutrality

of the underlying genetic mutations (33). This relation says that
antigenic variations in all dimensions scale in the same way with

the model parameters, and the wave should have an approxi-
mately spherical shape. Consistently, here we find a wave with
a fixed ratio α≈ 1.66 between transverse and longitudinal vari-
ations. This implies a slightly asymmetric shape (which may be
nonuniversal and depend on the microscopic assumptions of our
mutation model).

In what parameter regime is our theory valid? The fitness
wave theory we built upon is meant to be valid in the large pop-
ulation size, N � 1. In addition, we assumed that the fitness
landscape was locally linear across the wave. This approxima-
tion should be valid all of the way up to the tip of wave,
given by uc , since this is where the selection of future founder
strains happens. This condition translates into uc� r , imply-
ing D� r2/ ln(N )2 [using uc = v2/(4Ds) and Eqs. 9 and 12],
where D is in antigenic unit squared per infection cycle. This
result means that one infection cycle will not produce enough
mutations for the virus to leave the cross-reactivity range. In
that limit, another assumption is automatically fulfilled, namely
that the width of the wave be small compared to the span of
immune memory: σ� vτ . Our simulations, which run in the
regime of very slow effective diffusion (D/r2 . 10−6) and have
relatively large population sizes (N & 104), satisfy these condi-
tions. This explains the good agreement between analytics and
numerics.

Equations of Motion of the Wave’s Position. The wave solution
allows for a simplified picture. The wave travels in the direction
of the fitness gradient (or equivalent to the gradient of immune
coverage) with speed v (Fig. 3A). Occasionally the population
splits into two separate waves that then travel away from each
other and from their common ancestor (Fig. 3B). The tip of
the wave’s nose, which contains the high-fitness individual that
will seed the future population, determines its future position
in antigenic space. In the directions perpendicular to the fitness
gradient, this position diffuses neutrally with coefficient D . This

BA

C D

Fig. 3. Stochastic behavior of the wave: diffusive motion, splits, and extinc-
tions. (A) The wave moves forward in antigenic space but is driven by its
nose tip, which undergoes antigenic drift (diffusion) in directions perpen-
dicular to its direction of motion. These fluctuations deviate that direction,
resulting in effective angular diffusion. (B) When antigenic drift is large,
the wave may randomly split into subpopulations, creating independent
waves going in different directions. Each wave can also go extinct as size
fluctuations bring it to 0. (C) Cartoon illustrating the wave’s angular dif-
fusion. Selection and drift combine to create an inertial random walk of
persistence time tpersist. (D) Analytical prediction (Eq. 17) for the persis-
tence time, versus estimates from simulations. Symbols and colors are the
same as in Fig. 2.
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motivates us to write effective equations of motion for the mean
position of the wave:

dx
dt

=−
(
v +

√
2D‖ξ‖(t)

) ∂xc

|∂xc|
+
√

2Dξ⊥(t), [13]

c(x, t) =

∫ t

−∞

dt ′

τ
e−

t−t′
τ
− |x−x(t′)|

r , [14]

where ξ‖ and ξ⊥ are Gaussian white noises in the directions
along, and perpendicular to, the fitness gradient ∂xf /|∂xf |=
−∂xc/|∂xc|. D‖ is an effective diffusivity in the direction of
motion resulting from the fluctuations at the nose tip. These
fluctuations are different from those suggested by D , as they
involve feedback mechanisms between the wave’s speed v , size
N , and advancement of the fitness nose uc . In the following, we
do not consider these fluctuations and focus on perpendicular
fluctuations instead.

Angular Diffusion and Persistence of the Antigenic Wave. In the
description of Eqs. 13 and 14, the viral wave is pushed by immune
protections left in its trail. The fitness gradient, and thus the
direction of motion, points in the direction that is set by the
wave’s own path. This creates an inertial effect that stabilizes
forward motion. On the other hand, fluctuations in perpendic-
ular directions are expected to deviate the course of that motion,
contributing to effective angular diffusion. To study this behav-
ior, we assume that motion is approximately straight in direction
x1 = vt and study small fluctuations in the perpendicular direc-
tions, x⊥= (x2, . . . , xd), with |x⊥|� r (as illustrated in Fig. 3C).
Eqs. 13 and 14 simplify to (SI Appendix)

∂tx⊥(t) =

∫ +∞

0

dt ′

T

x⊥(t)− x⊥(t − t ′)

t ′
e−t′/T +

√
2Dξ⊥(t),

[15]

where T = (v/r + 1/τ)−1 = (r/v)R
−1/M
0 is an effective mem-

ory time scale combining the host’s actual immune memory and
the cross-reactivity with strains encountered in the past.

Eq. 15 may be solved in Fourier space. Defining x̃⊥(ω) =∫ +∞
−∞ dte iωtx⊥(t), it becomes

− iωx̃⊥(ω)

(
1 +

ln(1− iωT )

iωT

)
=
√

2D ξ̃⊥(ω). [16]

To understand the behavior at long times �T , we expand
at small ω: −ω2x⊥(ω)≈

√
8D ξ̃⊥(ω)/T or equivalently in the

temporal domain ∂2
t x⊥≈

√
8Dξ⊥(t)/T . This implies that the

direction of motion, ê∼ ∂xf /|∂xf | ∼ ∂tx/|∂tx|, undergoes effec-
tive angular diffusion in the long run: ∂t ê =

√
8Dξ⊥(t)/(vT ).

The persistence time of that inertial motion,

tpersist =
v2T 2

4D
=

r2

4D
R
−2/M
0 , [17]

does not depend explicitly on speed, population size, or the
dimension of antigenic space. However, a larger diffusivity
implies larger N and v while reducing the persistence time.
Likewise, a larger reproduction number R0 or smaller memory
capacity M speeds up the wave and increases its size, but also
reduces its persistence time. This implies that, for a fixed number
of hosts Nh , larger epidemic waves not only move faster across
antigenic space, but also change course faster.

This persistence time scales as the time it would take a single
virus drifting neutrally to escape the cross-reactivity range, r2/D .
For comparison, the much shorter time scale for a population of
viruses to escape from the cross-reactivity range r ,

tescape =
r

v
=TR

1/M
0 =

NhM

N
(R

1/M
0 − 1), [18]

scales with the inverse incidence rate Nh/N . This is consistent
with the whole population having been infected at least once
every ∼Nh/N infection cycles. This separation of time scales is
consistent with the observation that evolution in the transverse
directions is driven by neutral drift, which is much slower than
adaptive evolution in the longitudinal direction. Both tpersist and
tescape are longer than the coalescence time of the viral popula-
tion, uc/v ∼σ2/4D , since they reflect long-term memory from
the immune system. However, while tescape∼Nh/N is related to
the reinfection period and is thus bounded by the hosts’ immune
memory (itself bounded by their lifetime, which we do not con-
sider), tpersist can be longer than that. This is possible due to
inertial effects, which are allowed by the high-order dynamics of
Eq. 15 generated by the immune system. This is very much like
when, in mechanics, a massive object set in motion in a given
direction will keep that direction without the need for an external
force to maintain it.

The high-frequency behavior of Eq. 16 has a logarithmic diver-
gence, meaning that the total power of ê is infinite unless we
impose a (ultraviolet) cutoff. Such a regularization emerges
from the fine structure of the wave. While the motion of the
wave is driven by its nose tip, the immune pressure extends
back only to the recent past of the bulk of the distribution,
which stands at a distance uc away from the nose. In other
words, there is a lag (and thus a gap uc in antigenic space)
between the most innovative variants that drive viral evolu-
tion and the majority of currently circulating variants that drive
host immunity. Mathematically, this implies that the domain of
integration of the first term in the right-hand side of Eq. 15
should start at tc = uc/v , which regularizes the divergence. A
more careful analysis provided in SI Appendix shows that this
regularization does not affect the long-term diffusive behavior
of the wave.

Canalization, Speciations, and Predictability of Antigenic Evolu-
tion. We now examine how deflections of the wave in the
transverse direction determine the predictability and stabil-
ity of the viral quasispecies. Assuming t�T , angular diffu-
sion causes motion to be deflected as (SI Appendix)

〈
x2
⊥
〉

=
8(d−1)D

3T2 t3. Crucially, this deflection depends on the dimension
of the antigenic space, because the displacement acts addi-
tively in each of the transversal coordinates. Higher dimen-
sion means more deviation from the predictable course of the
wave and thus less predictability. We can define a predictability
time scale

tpredict∼ [8(d − 1)/3]−1/3T 2/3(r2/D)1/3, [19]

which is the time it takes for prediction errors to become of
the order of the cross-reactivity range. In low dimensions, this
time scales as a weighted geometric mean between tescape∼T
and tpersist∼ r2/D . However, at high dimensions tpredict may be
significantly reduced, causing loss of predictability even below
tescape. The prediction time scale is distinct from the previously
discussed persistence time: tpredict involves the integrated dis-
placement in the transversal direction, while tpersist quantifies
the diffusion of the tangent velocity vector. Thus, tpredict may be
interpreted as quantifying the predictability of the actual loca-
tion of the next viral population in antigenic space, while tpersist
gives the predictability of the general direction of evolution,
which changes more slowly. Therefore, the persistence time is
both harder to extract from data and less relevant for actionable
predictions.

To get a sense of numbers, we can compare our results with
epidemiological data, taking the evolution of influenza as an
example, with an infection cycle time of 3 d. It is assumed that
individuals lose immunity to the circulating strain of the flu
within ∼5 y ∼500 cycles, meaning that the wave would travel
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a distance r in t = 500; i.e., v/r ∼ 2 · 10−3. For instance, with
Nh = 109 to 1010, R0 = 2, and M = 1, we may choose D/r2 =
3 · 10−6 to get a speed of the same order, v/r ∼ 1.3 · 10−3, and
tpersist∼ 2 · 104∼ 200 y. By contrast, the predictability time scale
tpredict is much shorter and depends on dimension, albeit slowly,
ranging from∼20 y for d = 2 to about 2 y for d = 1,000. We stress
that these numbers are obtained by scaling laws and should not
be taken as precise quantitative predictions.

Large deflections may also cause speciations, or splits, which
occur when two substrains coexist long enough to become inde-
pendent from the immune standpoint. This happens when two
sublineages see the difference of their transverse positions ∆x⊥
become larger than ∆x0∼ r , within some limited period given
by the coalescence time. We estimated the rate of such splitting
events using a saddle-point approximation (SI Appendix):

ksplit≈
√

3

8

v2

4D
e−L, L=α

(
s3R

−2/M
0 D2r4

(d − 1)v5

)1/4

[20]

with α some numerical factor. Simulations confirmed the validity
of this scaling (Fig. 4A).

The splitting rate grows with the dimension (Fig. 4B), consis-
tent with the intuition that departure from canalized evolution
is easier when more directions of escape are available. Splitting
events are expected to strongly affect our ability to predict the
future course of the wave. However, the rarity of such events
(exponential scaling of ksplit) means that they will have a lower
impact on predictability than deflections. These results provide
a theoretical and quantitative basis from which to assess the
effect of dimension on predictability and possibly estimate d
from antigenic time course data of real viral populations.

Discussion
In this work, we have developed an analytical theory for studying
antigenic waves of viral evolution in response to immune pres-
sure. We showed that predictability is limited by two features
of antigenic evolution, transversal diffusion and lineage specia-
tions of the antigenic wave, both of which explicitly depend on
the dimensionality of antigenic space.

To derive these results, we explicitly embedded the antigenic
phenotype in a d -dimensional Euclidean space. This descrip-
tion is different from previous work that considered one- (25) or
infinite-dimensional antigenic spaces (12). It allows for the possi-
bility of compensatory mutations and makes it easier to compare

BA

Fig. 4. Rate of speciation. (A) Rescaled rate of splitting events, defined as
the emergence of two substrains at distance ∆x0 = 0.1r from each other
in antigenic space, meaning that they are becoming antigenically indepen-
dent. The predicted scaling, ksplit∼ (v2/D)e−L, as well as the definition of
the collective variable L as a function of the model parameters, is given
by Eq. 20. The line shows a linear fit of the logarithm of the ordinate.
(B) Predicted rate of splitting as a function of the dimension d, for R0 = 2,
M = 1, Nh = 109, and D/r2 = 3 · 10−6, with ∆x0 = r. Symbols and colors are
the same as in Fig. 2.

results with empirical studies of viral evolution projected onto
low-dimensional spaces (8, 9). Unlike these studies, however, our
work does not address the question of how an effective dimen-
sion of antigenic space arises from the molecular architecture of
immune interactions. Rather, we focused on the implications of
the dimensionality of antigenic space for phenotypic evolution
and its predictability.

Our results suggest a hierarchy of time scales for viral evolu-
tion. The shortest is the coalescence time 〈T2〉, which determines
population turnover. Then comes tescape, which is the time it
takes the viral population to escape immunity elicited at a pre-
vious time point. The longest time scale is the persistence time
tpersist, which governs the angular diffusion of the wave’s direc-
tion, but has no bearing on the prediction of the actual position
of the dominant strain in antigenic space. That time scale is
due to inertial effects. It does not rely directly on the hosts’
immune memories and may thus exceed their individual life-
times. Finally, the prediction time scale tpredict, beyond which
prediction accuracy falls below the resolution of cross-reactivity,
scales between tescape and tpersist at low dimensions. tpredict mea-
sures the predictability of transversal fluctuations and is thus the
most relevant for actual predictions of future dominant strains
in antigenic space. Importantly, it decreases with the dimension
of the antigenic space and may become arbitrarily low at very
high dimensions. The fact that the evolution of influenza strains
is hard to predict beyond 1 y suggests that the effective dimension
may indeed be large.

Our solution builds on the fitness wave solution for a diffu-
sion model of mutation effects (27, 32). It implies a particular
dependence of the wave’s speed on the population size, Eq.
12. General distribution of noninfinitesimal mutational effects,
such as considered in ref. 30, would yield different expressions
for the speed. However, we expect most of our other results to
hold—in particular, all expression that do not carry an explicit
logarithmic dependence on N , as well the effective equations of
motion for the wave. Our results strongly rely on the assump-
tion of a homogeneous, isotropic antigenic space. We expect our
results to be affected by anisotropies (e.g., in the mutational
or the cross-reactivity kernels) or by structure in the intrinsic
fitness landscape (i.e., not linked to immunity). Such structure
may funnel the wave in preferred directions, hinder it, or favor
its splitting. Generally, the local geometry and metric of the
space are expected to determine the evolutionary behavior. For
instance, Yan et al. (12) assumed a Hamming distance metric in
an effectively infinite antigenic space, meaning that any mutation
is both an escape mutation and a candidate for a lineage split. By
contrast, in our geometry, escape happens only in the direction of
the wave, while splits originate from mutations perpendicular to
that direction, due to the choice of a Euclidean metric. While our
results emphasize the role of the effective dimension d , studying
other geometrical effects is an interesting topic for future work.

Despite these caveats, it is interesting to ask whether the
effective antigenic dimension d can be extracted from data. A
possible scheme for doing so starts by inferring the effective
model parameters. R0 may be estimated from exponential epi-
demic growth in a susceptible population. Dependence of key
quantities on M such as s is weak. M may be assumed to be
of the order of the number of antigenically distinct infections
encountered during a host’s lifetime, ∼ 4 to 6 (every 15 y). D/r2

may be inferred from v/r , which can be estimated from cross-
immunity assays or from the incidence rate N /Nh . Alternatively,
since D/r2 is the inverse time it takes for mutations to neutrally
evade immunity, it could be estimated directly from genomic
data by computing the time for unselected mutations (whose rate
is inferred from synonymous mutations) to affect antigenic sites.
Interestingly, if v/r and D/r2 can be inferred independently,
predictions about the wave’s shape, width, angular diffusion, and
splitting do not depend on the particular choice of fitness wave
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theory. Assuming that all these parameters are known, the split-
ting rate, which depends sensitively on d (Fig. 4B), could be used
to infer an effective dimension. Since splitting is rare and may not
be observed in practice, one could define instead partial splits,
where a sublineage diverges an antigenic distance ∆x0< r from
the main lineage, for which the same scaling as Eq. 20 holds (SI
Appendix). Alternatively, our results could be used to check the
consistency of dimensionality-reduction schemes based on sero-
logical assays (8–10), by testing our predicted relations between
the speed of the wave, its width and length, and angular diffusion
properties, and ask what choice of dimension best agrees with
our theory.

Our framework should be applicable to general host–pathogen
systems. For instance, coevolution between viral phages and bac-
teria protected by the CRISPR-Cas system (34) is governed
by the same principles of escape and adaptation as vertebrate
immunity. Even more generally, our theory (Eqs. 2 and 3) may
be relevant to the coupled dynamics of predators and preys inter-
acting in space (geographical or phenotypic), opening potential
avenues for experimental tests of these theories in synthetic
microbial systems. Given the current context of the global severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pan-
demic, it is natural to ask whether our results could be applicable
to predict its evolution. While our theory describes the long-
term coevolution of viral strains with the hosts’ immune systems,
in which most hosts have been exposed to at least one strain
of the virus, SARS-CoV-2 is still in a phase of growth and has
not exhausted the reservoir of susceptible hosts. As the situ-
ation develops, it will be interesting to see whether its future
evolution follows a Red Queen type of evolution like influenza,
goes extinct, or splits into many antigenically independent sub-
lineages. While our model may shed light on these questions,
fine microscopic details such as geographical and population
structure impose additional challenges for predictions.

Methods
We simulated discrete population dynamics of infected hosts n (x, t)) and
immune protections nh(x, t)≡Nhh(x, t) (all integers) on a 2D square lattice
with lattice size ∆x ranging from 10−5r to 0.1r. Each time step corresponds
to a single infection cycle, ∆t = 1. At each time step, 1) viral fitness f is
computed at each occupied lattice site from the immune coverage Eq. 1;
2) viruses at each occupied lattice site are grown according to their fitness,
n(x, t + 1)∼ Poisson[(1 + f∆t)n(x, t)]; 3) viruses are mutated by jumping to
nearby sites on the lattice; and 4) the immune system is updated accord-
ing to a discrete version of Eq. 3, by implementing nh(x, t + 1) = nh(x, t) +

n(x, t) and then removing N(t) protections at random (so that Nh remains
constant).

To implement step 1, we used a combination of exact computation of
Eq. 1 and approximate methods, including one based on nonhomogeneous
fast Fourier transforms (35, 36). Details are given in SI Appendix.

To implement step 3, we drew the number of mutants at each occupied
site from a binomial distribution Binomial(n(x, t), 1− e−µ∆t). The number
of new mutations m affecting each of these mutants is drawn from a Poisson
distribution of mean µ∆t conditioned on having at least one mutation. The

new location of each mutant is drawn as x + δx, with δx = round(
∑m

i=1 εi)
(rounding is applied to each dimension), where εi is a vector of random
orientation and modulus drawn from a Gamma distribution of mean δ∼
2∆x and shape parameter 20. This distribution was chosen to maximize the
number of nonzero jumps while maintaining isotropy. We then define D =

µ
〈
δx2

1

〉
/2.

To find the wave solution more rapidly, the viral population was initial-
ized as a Gaussian distribution centered at (0, 0) with size N and width σ in
all dimensions, to which 0.1% additional viruses are randomly added within
the interval (0; uc) along x1 (N, σ, and uc being all given by the theory pre-
diction). Immune protections are placed according to Eq. 6. The first 20,000
time steps serve to reach steady state and are discarded from the analysis.
When a population extinction (N = 0) or explosion (N = Nh/2) occurs, the
simulation is resumed at an earlier checkpoint to avoid reequilibrating. Sim-
ulations are ended after 5 · 106 steps or after 20 consecutive extinctions or
explosions from the same checkpoint.

To analyze the organization of viruses in phenotypic space, we save snap-
shots of the simulation at regular time intervals. For each saved snapshot
we take all of the coordinates with n> 0 and then cluster them into sep-
arate lineages through the python scikit-learn DBSCAN algorithm (37, 38)
with the minimal number of samples min samples = 10. The ε parameter
defines the maximum distance between two samples that are considered to
be in the neighborhood of each other. We perform the clustering for differ-
ent values of ε and select the value that minimizes the variance of the 10th
nearest-neighbor distance. Clustering results are not sensitive to this choice.
This preliminary clustering step is refined by merging clusters if their cen-
troids are closer than the sum of the maximum distances of all of the points
in each cluster from the corresponding centroid.

From the clustered lineages we can easily obtain a series of related
observables, such as its speed v obtained as the derivative of the center’s
position. The width of the lineage profile in the direction of motion σ as
well as in the perpendicular direction σ⊥ is obtained by taking the standard
deviation of the desired component of the distances of all of the lineage
viruses from the lineage centroid. Reported numbers are time averages
of these observables. We can track their separate trajectories in antigenic
space. A split of a lineage into two new lineages is defined when two
clusters are detected where previously there was one, and their distance
is larger than ∆x0, the chosen threshold for calling a split.

To estimate the persistence time, we first subsample the trajectory so that
the distance between consecutive points is bigger than 6(〈σ〉+ std(σ)) so
that fast fluctuations in the population size do not affect the inference. We
take the resulting trajectory angles and smooth them with a sliding win-
dow of 5. Then we divide the trajectory into subsegments and compute the
angles’ mean-square displacement (MSD) over all lineages and all subseg-
ments. We consider time lags only bigger than twice the typical smoothing
time, and, if the MSD trace is long enough, we also require the time lag
to be bigger than 2T . Finally, we keep only time lag bins with at least 10
datapoints. We fit the resulting time series to a linear function ax + b and
get the persistence time as 2

a . We compute the reduced χ2 as a goodness-
of-fit score. Results are shown for simulations that had enough statistics to
perform the fit, lasted at least 105 cycles, and had a reduced χ2 below 3.

Data Availability. There are no data underlying this work.
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