
Diversity of immune strategies explained by
adaptation to pathogen statistics
Andreas Mayera, Thierry Morab,1, Olivier Rivoirec, and Aleksandra M. Walczaka

aLaboratoire de Physique Théorique, CNRS, Université Pierre et Marie Curie, and École Normale Supérieure, 75005 Paris, France; bLaboratoire de Physique
Statistique, CNRS, Université Pierre et Marie Curie, and École Normale Supérieure, 75005 Paris, France; and cLaboratoire Interdisciplinaire de Physique, CNRS
and Université Grenoble Alpes, 38000 Grenoble, France

Edited by Peter G. Wolynes, Rice University, Houston, TX, and approved May 11, 2016 (received for review January 14, 2016)

Biological organisms have evolved a wide range of immune mecha-
nisms to defend themselves against pathogens. Beyond molecular
details, these mechanisms differ in how protection is acquired,
processed, and passed on to subsequent generations—differences
that may be essential to long-term survival. Here, we introduce a
mathematical framework to compare the long-term adaptation of
populations as a function of the pathogen dynamics that they
experience and of the immune strategy that they adopt. We find
that the two key determinants of an optimal immune strategy are
the frequency and the characteristic timescale of the pathogens.
Depending on these two parameters, our framework identifies
distinct modes of immunity, including adaptive, innate, bet-hedging,
and CRISPR-like immunities, which recapitulate the diversity of
natural immune systems.
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Immune systems have evolved to protect organisms against large
and unpredictable pathogenic environments. However, immunity

always comes at a cost (metabolic and maintenance costs, auto-
immune disorders, etc. (1), and this cost must be balanced by the
benefits that protection confers (2, 3). Faced with the problem of
evolving a suitable defense, different organisms, from archaea to
humans, have developed different strategies to identify and target
pathogens, which have given rise to a diversity of mechanisms of
immunity.
A large effort has been made to elucidate these mechanisms

down to their molecular details in a variety of species (4–9). Be-
yond many differences, these studies have revealed many com-
monalities (10, 11), which hint at a possible general understanding
of the trade-offs that shape their design (1, 2). For instance, in-
dependently of the well-known adaptive immune systems of jawed
vertebrates, jawless vertebrates (e.g., lampreys) have developed
an alternative adaptive system that uses a distinct molecular
family of receptors, but both systems function largely in the same
way, relying on the generation of a large number of diverse re-
ceptors expressed by two types of lymphocytes (B- or T-like
cells). Likewise, the innate immune systems of invertebrates and
vertebrates share many similarities, relying on the selected ex-
pression of germ-line Toll-like receptors upon infection. Some
of the features of vertebrate immunity are even shared with
bacteria, who have developed their own targeted immunity based
on the CRISPR/Cas system (9, 12), which itself bears strong re-
semblance to genome protection through interfering RNAs in
eukaryotes (13).
Independently of how they evolved and their particular molec-

ular implementation, we may classify these diverse mechanisms
into a few broad modes of immunity: heritable but not adaptable
within an individual’s lifetime, as innate immune systems; heritable
and adaptable within a lifetime but with the benefits of adaptation
being nonheritable, as adaptive immune systems; acquired from the
environment and heritable, as the CRISPR/Cas system; and mixed
strategies combining several of these elements. These broad
distinctions call for general principles to characterize the conditions

under which one or another mode of immunity may be expected to
evolve (1, 10, 11). The diversity and variability of threats from the
pathogenic environment suggest that different modes of immunity
may offer better protection, depending on the patterns of occur-
rence and virulence of pathogens or the effective population size
of the protected population. Here we apply a general theoretical
framework for analyzing populations in a varying environment (14)
to predict the emergence of the basic forms of observed immunity.

Model
Individuals reproduce in the presence of pathogens, which ran-
domly appear and may persist for several generations and dis-
appear before possibly reappearing at a later time (Fig. 1A). In
our framework, a given pathogen has a probability α to appear
and a probability β to disappear from one generation to the next
(Fig. 1B). The pathogenic dynamics are quantified both by the
pathogen frequency πenv = α=ðα+ βÞ, which is the probability that
it is present at any given generation, and by the characteristic
timescale τenv =−1=lnð1− α− βÞ, which sets how fast pathogens
appear and disappear. Although other parameterizations may be
considered, this choice for τenv preserves the symmetry between the
presence and absence of the pathogen (SI Appendix A: Parameterizing
a Two-State Markov Chain).
Pathogens reduce the fitness of the individuals in the pop-

ulation and the immune system is designed to mitigate this effect.
An individual’s fecundity, defined as its expected number of de-
scendants in the next generation ξ, depends on the pathogenic
environment and its ability to protect itself against it. Each path-
ogen independently lowers the fecundity of an unprotected
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individual by a relatively large cost factor cinfected > 0 (Fig. 1D). This
cost is reduced to a lower cost cdefense < cinfected when the individual
is protected by its immune system; however, this protection comes
at a basal cost cconstitutive < cdefense of maintaining the immune de-
fense in absence of the pathogen (Fig. 1E).
We explore the choices and trade-offs underlying various

modes of immunity along three axes: adaptability, heritability,
and mode of acquisition. The first one, adaptability axis, con-
cerns how much resources are invested in the protection for the
return of an efficient response. This trade-off imposes a re-
lationship between cdefense and cconstitutive (Fig. 1E): The more
effective the defense is (the lower cdefense), the higher the
maintenance cost (the higher cconstitutive). For example, having a
large number of immune cells specialized against a specific
pathogen allows for a quick and efficient response in the case of
invasion, but this enhanced protection comes at the cost of
producing and maintaining these cells in the absence of the
pathogen. This strategy is adopted, for example, by much of the
innate immune systems of plants and animals (4). On the con-
trary, the adaptive immune system keeps a very small specialized
pool of lymphocytes for each potential antigen and makes them
proliferate only in the case of infection (10). Having the ma-
chinery of adaptive immunity comes at some upfront investment
cost, but the huge diversity of adaptive immune repertoires then
allows for a response against many pathogens at essentially no
marginal constitutive cost. It is this marginal constitutive cost
that determines when to use a mode of defense once an organism
has the machinery (SI Appendix D: Nonindependent Pathogen–
Protection Pairs). We assume that the cost of defense grows faster

at small constitutive costs than at large ones (reflected in the
convexity in Fig. 1E). The second one, heritability axis, is defined
by the probability q that the protection is not transmitted to
the offspring (Fig. 1B). Finally, the third one, acquisition axis,
specifies how individuals may acquire the protection without
inheriting it from their parent. This acquisition may occur ran-
domly independently of the environment, with probability p, for
instance by mutation or phenotypic switching, as is the case for
antibiotic resistance in bacteria (15); or it can be induced by the
presence of the pathogen with probability puptake, as in CRISPR-
Cas immunity (Fig. 1B) (9). This mechanism comes at an extra
cost cuptakeðpuptakeÞ due to maintenance and the risks of uptaking
foreign genetic material (Fig. 1C), in addition to the state-
dependent cost cstate (Fig. 1D). To account for the dangers
associated with taking up foreign DNA we assume that cuptake
increases superlinearly with puptake.

Results
Each choice of the parameters cconstitutive, q, p, and puptake defines
a specific immune strategy. This strategy is optimal if a pop-
ulation that adopts it outgrows in the long run any other pop-
ulation following a different strategy. Our goal is to characterize
this optimal strategy, in particular its dependency on the two key
properties of the pathogen, its frequency πenv and its character-
istic time τenv. We achieve this goal by maximizing the long-term
growth rate of populations, defined by ð1=tÞlnNðtÞ, where NðtÞ is
the total population size at generation t (Fig. 1A) (16). Conve-
niently, because the fecundity is affected independently by the
different pathogens, each pathogen contributes additively to the
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Fig. 1. A model to explore the incidence of different modes of immunity on the long-term growth of populations. (A) A population of organisms, each
possibly protected against no, one, or several pathogens (no, one, or several colored circles), evolves in the presence of a pathogenic environment that varies
from generation to generation. The mean number of individuals with protection σ at generation t, NtðσÞ, is given by a recursion equation involving the mean
number of offspring ξðσ′, xtÞ for individuals with protection σ′ and the probability πðσjσ′, xtÞ that each of their offspring inherits a protection σ; both of these
quantities may depend on the current pathogenic environment xt . The long-term growth rate of the population is given by ð1=tÞlnNt at large t, with
Nt =

P
σNtðσÞ the total population size. (B) Dynamics of appearance and disappearance of pathogens xt and immune protection σ. A pathogen appears with

rate α and disappears with rate β; these rates define the frequency πenv = α=ðα+ βÞ and characteristic time τenv =−1=lnð1− α− βÞ of the pathogen. Protection
against a given pathogen is acquired spontaneously with rate p and lost from one generation to the next with rate q. Additionally, the presence of the
pathogen can increase the rate of acquisition of protection by puptake, as, e.g., in the CRISPR-Cas system of prokaryotes. (C) The ξ offspring produced by an
individual inherit the immune protections of their parent with rules specified in B. Each pathogen reduces the mean number of offspring ξðσ, xtÞ by a cost cstate
that depends on whether the individual is in state “infected,” “defense,” or “constitutive” relative to the pathogen and by a cost cuptakeðpuptakeÞ that depends
on the rate puptake at which protection is directly induced by the presence of the pathogen. (D) An unprotected organism pays a cost of infection cinfected if the
pathogen is encountered, which is reduced to cdefense if it is protected. A protected organism must, however, pay a constitutive cost cconstitutive even in the
absence of the pathogen, whereas an unprotected organism pays no cost. (E) We assume a trade-off between the constitutive and defense costs: A more
efficient defense (lower cdefense) requires more resources (higher cconstitutive).
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growth rate and can be studied separately (Fig. 1C and Materials
and Methods).
Remarkably, we obtain qualitatively different optimal solutions

for different values of πenv, τenv, with sharp transitions between
these strategies as we vary the parameters of the pathogen statis-
tics, allowing us to define distinct immune regimes (Fig. 2A). The
emergence of these very distinct regimes is not an assumption, but
the result of the optimization itself.
Fig. 2B describes these optimal strategies along the three axes of

variation outlined earlier. Along the first axis of variation, adapt-
ability, we find that frequent or persistent pathogens are best dealt
with by constitutively expressed immunity (cconstitutive = cdefense)
and rare and transient pathogens by investing minimally in the
defense (cconstitutive = 0, in blue); between these two extremes,
only a limited form of adaptation is required (cconstitutive < cdefense,
in green). Along the second axis, heritability, we find that car-
rying the protection at all times (q= 0) is beneficial against fast
pathogens but that losing the protection with probability q> 0 is
more advantageous for slow ones. Finally, along the third axis,
acquisition, we verify that there is no need to pay the price of
informed acquisition (puptake = 0) whenever protection is sys-
tematically inherited (q= 0); when it is not the case (q> 0),
we find that uptake is advantageous for sufficiently infrequent

pathogens (yellow and orange regions in Fig. 2B) but that only
for very infrequent pathogens does it becomes the exclusive
mode of acquisition of protection (p= 0, puptake > 0, in yellow).
Each of these distinct regimes, or phases, is instantiated by

natural immune systems (Table 1). For transient and rare
pathogens (blue phase in Fig. 2A), the optimal strategy is to
inherit a defense with minimal constitutive cost. This strategy is
characteristic of the adaptive immune system in vertebrates,
where an effective immune response is mounted from a small
number of precursor cells, the marginal cost of which is negli-
gible (10). For transient but frequent pathogens (purple phase in
Fig. 2A), the optimal strategy consists instead of inheriting a
maximally efficient protection that makes the individuals effectively
insensitive to the presence of the pathogen at the expense,
however, of a large constitutive cost. The recognition of patho-
gen-associated molecular patterns by pattern recognition re-
ceptors, for instance the recognition of lipopolysaccharide by
Toll-like receptors, is an example of such an innate strategy (4).
An intermediate phase (green in Fig. 2A) separates these two
extremes, where adaptation is present with a nonzero constitu-
tive cost. This strategy, which we call proto-adaptive, is repre-
sented by certain specialized cells of the innate immune system,
such as natural killer cells (17), whose abundance can vary as a
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Fig. 2. Optimal immune strategies as a function of the frequency and characteristic time of pathogens. (A) Distinct optimal immune strategies emerge for
different statistics of appearance of the pathogens. Each phase is characterized by the value of parameters indicated in B and named after a known immune
system that has similar characteristics (the term “adaptive” refers to the vertebrate immune system). (B) The different phases of immunity are defined by the
values of parameters along three main axes: adaptability (constitutive cost cconstitutive), heritability (1−q), and mode of acquisition (p and puptake). (C and D)
Optimal parameters as a function of πenv for τenv = 12 (C) and τenv = 0.8 (D). For slowly varying environments (C), rare pathogens are best targeted by CRISPR-
like uptake of protection, whereas frequent pathogens are best dealt with by spontaneous acquisition of protection, with a crossover in between where both
coexist. For faster varying environments (D), the constitutive cost invested in the protection goes from negligible to maximal as the pathogen frequency
increases. When it is maximal, the best strategy transitions from bet hedging (q> 0) to a full protection of the population (q= 0). (E) The correlation times
of protection in absence of the pathogen, τ=−1=lnð1−p−qÞ, and in its presence, τ=−1=lnð1−p−puptake −qÞ, are shown for πenv = 0.7 as a function of τenv.
Both times increase with the correlation time of the pathogen. Here, an infinite population size is assumed and the following parameters are used:
cinfection = 3;   cconstitutive = ð1.8− cdefenseÞ=ðcdefense − 0.2Þ;   cuptakeðpuptakeÞ= 0.1×puptake +p2

uptake (see Fig. S3 for other choices).
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function of experienced infections, effectively implementing an
adaptive memory within a single generation.
For slow and frequent pathogens (red phase), protection is

acquired with probability p> 0 and lost with probability q> 0
independently of the presence of the pathogen. This bet-hedging
strategy is implemented in bacteria that can switch on or off the
expression of phage receptors (8). For slow but infrequent path-
ogens (yellow phase in Fig. 2A), a form of bet hedging is again
present, but this time with a nonzero probability to acquire pro-
tection only in presence of the pathogen. An example of such a
Lamarckian strategy is the CRISPR-Cas immune system in bac-
teria (9). Finally, a mixed phase (orange in Fig. 2A) is also possible
where protection is randomly acquired at a rate that is increased
by the presence of the pathogen.
We can gain insight into the transitions between the different

phases by considering three analytically solvable simplifications
of the model, detailed in SI Appendix C: Analytical Insight into
the Transitions Between Strategies. In the first of these simplified
models, we can calculate the transitions from a purely constitu-
tive to a proto-adaptive to a purely adaptive strategy as the patho-
gen frequency πenv decreases. The second model highlights the
transition from a bet-hedging to a deterministic protection, whereas
the third one focuses on the transitions from a purely passive to a
purely active acquisition of the protection, with a mixed phase
in between.
It is instructive to examine how the parameters of immunity

vary within the phases (Fig. 2 C and D and Fig. S1). As one may
expect, the statistical properties of the protection tend to track
the pathogen statistics (18). The more frequent the pathogen is,
the more prevalent the protection in the population (Fig. 2C).
Likewise, the characteristic time of the protection, τ, grows with
that of the pathogen, τenv (Fig. 2E).
The assumptions that we made allow us to treat each pathogen–

protection pair independently of each other. However, there are
a number of ways in which this assumption may be questioned.
We discuss several in SI Appendix D: Nonindependent Pathogen–
Protection Pairs and we find that these generalizations do not
qualitatively affect our conclusions. For example, infections could
interact by inflicting more harm together than the sum of each one
alone, e.g., HIV in conjunction with other diseases (Fig. S2). This
case can be incorporated into our approach by considering a
modified effective cost including the extra cost of coinfection.
Another way in which pathogen–protection pairs could be corre-
lated is through a nonadditive cost of protection, if the marginal
cost of protection increases or decreases with the number of

protections. For example, if having protection against two patho-
gens is much more costly than twice the cost of having protection
against just one, then the optimal strategy may be to hedge bets by
keeping a subpopulation protected against one pathogen and an-
other subpopulation protected against the other. Finally, cross-
reactivity, the widespread ability of protections to recognize several
pathogens, is another departure from independence, which can be
partly overcome by grouping together pathogens recognized by
a common protection.

Discussion
The phase portrait in Fig. 2A rationalizes the salient differences
between the immune systems of prokaryotes and vertebrates.
Bacterial and archaeal organisms evolve on timescales that are
much closer to those of their pathogens than vertebrates. From
the viewpoint of microbes, the pathogenic environment is rela-
tively constant (τenv > 1), whereas for vertebrates a particular patho-
genic strain is unlikely to survive a single generation (τenv � 1).
Consistent with our results, vertebrates use fully heritable modes
of immunity and do not rely on bet hedging. To deal with in-
frequent and fast-evolving pathogens such as viruses, they re-
course to adaptive mechanisms by which they can up-regulate
their protection in case of an invasion. The three predicted
strategies—adaptive, proto-adaptive, and innate—correspond to
the known modes of immunity in vertebrates (19). Prokaryotes,
on the other hand, almost systematically use bet-hedging strat-
egies. They recourse both to the CRISPR-Cas system of acquired
immunity (9) and to innate immunity through, e.g., restriction
endonucleases (8), which correspond to the predicted Lamarckian
and innate bet-hedging strategies of the diagram, respectively.
These results are robust to changes of parameters, although
increasing costs can make bet hedging beneficial even at short
characteristic times (Fig. S3).
Bacteria and vertebrates also have very different population

sizes, which influence their overall survival probability. To eval-
uate this impact, we ran stochastic simulations, competing dif-
ferent strategies for increasing population sizes (Materials and
Methods and Fig. S4). The phase diagram in Fig. 2A is recovered
for population sizes as small as 1,000, whereas for smaller pop-
ulation sizes the boundaries between regimes are smeared. In
small populations, adaptive strategies are generally favored over
CRISPR-like strategies, and the amount of bet hedging in-
creases. In fact, for finite populations it is always beneficial to
recourse to some degree of bet hedging to react quickly to en-
vironmental changes and avoid extinction.

Table 1. Optimal strategies found in the phase diagram, their definition in terms of parameters of our framework, and
biological examples

Strategy

Defining characteristics

Biological examples
Perfect

heritability, q=0

Acquisition mode

Adaptability, cdefensep>0 puptake >0

Innate Yes Yes No Minimal Innate defense by recognition of pathogen-associated
molecular patterns by pattern recognition
receptors (4)

Protoadaptive Yes Yes No Intermediate “Trained” innate immunity (26), especially
defense by natural killer cells (17); “systemic
acquired resistance” in plants (20)

Adaptive Yes Yes No Maximal Adaptive immune systems of jawed and jawless
vertebrates (10)

Innate bet hedging No Yes No Minimal Mutation of phage receptors by bacteria (8)
CRISPR-like No No Yes Minimal CRISPR-Cas system in bacteria and archaea (9)
Mixed No Yes Yes Minimal Concurrent use of CRISPR-Cas system and mutations

of surface molecules by bacteria defending
against phages (27)
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Here, we consider the case of a common environment experi-
enced by all individuals. Having different parts of the population
experience different microenvironments that are not persistent
over generations does not change the population dynamics on
evolutionary timescales (Materials and Methods). These microen-
vironments can result from differing infection probabilities for
different subsets of the population, e.g., arising from spatial niches,
or other nonpathogenic factors such as nutrient availability that
influence the capability of individuals to cope with pathogens. If
there are microenvironments that persist over many generations,
then our results hold in each microenvironment. An optimal strat-
egy might then exploit the additional predictability stemming from
knowing the statistical properties of the microenvironments and use
the microenvironment diversity as a means of bet hedging.
Our results also suggest that plants and some invertebrates,

which also have long generation times compared with the vari-
ation time of pathogens, should be endowed with adaptive and
proto-adaptive immune systems, in addition to innate protec-
tion mechanisms (6). Consistent with this prediction, the innate
branch of the plant immune system is able to increase protection
in the entire plant following a local infection through “systemic
acquired resistance” (20), providing the mechanistic basis of an
inducible, proto-adaptive immune system. In addition, virus-
derived small interfering RNAs, which accumulate during
infections, are portrayed as likely candidates of adaptive immu-
nity in plants and invertebrates—they are induced by the virus
and keep a memory of past infections (21–23). Interestingly,
small RNA-based immunity has been shown to be inheritable in
Caenorhabditis elegans (24), an invertebrate with a short gener-
ation time of around 4 days, in agreement with our result that
CRISPR-like immunity is desirable in this case.
By analyzing the long-term fate of populations under minimal

assumptions concerning the rules governing adaptability, heri-
tability, and acquisition of immune protections, we have re-
covered the basic known modes of immunity. Remarkably our
results hold even for a single pathogen. The key determinants of
optimal immune strategies are found to be the statistical fea-
tures of pathogen occurrence: its frequency and its characteristic
timescale. As an implication, a diverse pathogenic environment,
with varying statistics, will favor mixed solutions, consistent with
the observation of multiple immune systems within the same
organism—such as adaptive and innate immune systems in ver-
tebrates or CRISPR and innate defense in bacteria. Naturally,
the molecular implementation of these general principles differs
greatly even between organisms sharing the same type of im-
munity. However, an evolutionary perspective that accounts for
the costs and benefits of protection is enough to explain the most
salient features of immunity. It will be interesting to extend our
framework to account for other essential features of immunity,
e.g., the acquisition of protection by horizontal transfer or the
coevolutionary dynamics between pathogens and their hosts. In
view of our analysis, it is already less surprising that complex
forms of immunity such as the adaptive immune system have
evolved separately in jawed and nonjawed vertebrates, with the
same general features but different molecular encodings.

Materials and Methods
Population Dynamics. The pathogenic environment is described by an
L-dimensional vector x (symbols in boldface type refer to vectors), where xi = 1
if pathogen i is present and 0 otherwise. Protection of an organism against
these pathogens is also described by an L-dimensional vector σ, where σi = 1 if
the protection (antibody, T-cell receptor, CRISPR spacer) against pathogen i is
present and 0 otherwise.

We consider the dynamics of a population of organisms reproducing at
discrete times t. At each generation, each individual produces a stochastic
number ξ of offspring, whose distribution depends on the state σ of that
individual and the environment xt . We denote its mean by ξðσ, xtÞ. Let
Ntðσjxt′<t+1Þ be the mean number of organisms in the population at time t
with protection σ, for a given environment history ðxt′<t+1Þ (16). The change

in population composition from one generation to the next is governed by
the reproductive success of individuals in each state s, modified by stochastic
state switching from parents to offspring

Nt+1ðσjxt′<t+1Þ=
X
σ′

Ntðσ′jxt′<tÞξðσ′, xtÞπðσjσ′, xtÞ, [1]

where πðσjσ′, xtÞ is the switching probability from protection state σ′ to state σ.
Note that the protection state switching probability, which represents to
what extent protection is inherited, acquired, or lost, generally depends on
the state xt of the environment. For ease of notation, we omit in the follow-
ing the condition on the environment ð · jxt′<tÞ when referring to condi-
tional means.

A similar recursion to Eq. 1 can be written for the fraction of the population
in each state, ntðσÞ=NtðσÞ=Nt , with Nt =

P
σNtðσÞ the total population size

nt+1ðσÞ= 1
Zt

X
σ′

ntðσ′Þξðσ′, xtÞπðσjσ′, xtÞ, [2]

where Zt is a normalization constant enforcing
P

σntðσÞ= 1. The population
size is given by Nt =N0∏t−1

t′=0Zt′, so that the long-term growth rate,
Λ=limT→∞ð1=TÞlnNT , is given by

Λ= lim
T→∞

1
T

XT
t=0

lnðZtÞ. [3]

The strategy with maximal long-term population growth rate outperforms in
the long run any other strategy for almost every sequence of environments in
populations of infinite size. This rate thus provides a measure of long-term
fitness (16).

We assume that the mutation and inheritance probabilities of different
pathogen–protection pairs are independent of each other, i.e., that πðσjσ′, xtÞ
factorizes over the pathogens

πðσjσ′, xtÞ= ∏
i
πi
�
σi jσ′i , xi;t

�
. [4]

The entries of πiðσi jσ′i , xi;tÞ are given in Fig. 1B: πið1j0, xÞ=p+ xpuptake and
πið0j1, xÞ=q.

In addition, the effects of different pathogen–protection pairs on the
growth rate are taken to be additive (Fig. 1C), so that

ln ξ=Rmax −
XL
i=1

�
cinfection,i   ð1− σiÞxi

+  cconstitutive,i   σið1− xiÞ+ cdefense,i   σixi
+  cuptake

�
puptake,i

�i
,

[5]

where Rmax is the growth rate in the absence of any immune cost. With these
assumptions, the distribution ntðσÞ also factorizes over i

ntðσÞ= ∏
L

i=1

�
rti σi +

�
1− rti

�ð1− σiÞ
�
, [6]

where rti is the fraction of the population having protection i at time t.
Plugging this ansatz into Eq. 2 with Eqs. 4 and 5 yields the following re-
cursion for rti  :

rt+1i =
h�
1− rti

�
e−cinfection,i x

t
i

�
pi +puptake,ixti

�
+  rti e

−cdefense,i xti −cconstitutive,ið1−xti Þð1−qiÞ
i.

h�
1− rti

�
e−cinfection,i x

t
i +  rti e

−cdefense,i xti −cconstitutive,ið1−xti Þ
i
.

[7]

The recursion depends on the sequence of xti , which is a stochastic
binary process switching from 0 to 1 with probability α and from 1 to
0 with probability β (Fig. 1B). Note that the sequence xti is the same for the
whole population (a quenched variable in the statistical mechanics sense). We
have Zt = eRmax∏L

i=1z
t
i , with

zti = e−cuptakeðpuptake,iÞh�1− rti
�
e−cinfection,i x

t
i + rti e

−cdefense,i xti −cconstitutive,ið1−xti Þ
i
. [8]

From Eq. 3, it then follows that
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Λ=Rmax +
XL
i=1

 
lim
T→∞

1
T

XT
t=1

ln zti

!
. [9]

The long-term growth rate is a sum of independent terms for each pathogen–
protection pair, which allows us to treat the problem of maximizing the
long-term growth rate one pathogen at a time.

Numerical Solution. The cost function of the optimization, Λ, can be ap-
proximated by solving the recursion equation describing the relative fre-
quency of organisms with different protection states in the population for a
large enough number of generations (we used at least 106 generations). Our
goal is to optimize Λ over the four parameters p,q,puptake, cconstitutive (or over
the subset of free parameters for a given strategy) constrained to their
domain of definition. For numerical purposes, all four parameters are first
mapped onto the unit interval ½0,1�. The noise in the evaluation of Λ arising
from its approximation from finite time data makes the optimization chal-
lenging. Because the process is ergodic, averaging over very long periods is
equivalent to repeating the process multiple times. The noise can therefore
be reduced by both prolonged simulation or repeated sampling at the ex-
pense of a higher computational cost per function evaluation. To find the
global optimum of this noisy function under the bound constraints on the
parameters we use a two-phase algorithm. In the first phase the DIRECT
algorithm (25) provides us with a rough, but global optimization for which
we use a relatively low-quality approximation. The results of this first phase
are then refined by a pattern-search algorithm with an adaptive sampling of
the function (described in detail in SI Appendix B: Pattern-Search–Based
Optimization for Problems with Noisy Function Evaluations), using the pa-
rameters Δtol = 0.0005 (for Fig. S1 Δtol = 0.005), α= 0.005.

To obtain a phase diagram such as the one shown in Fig. 2A we first
performed a global optimization over all four parameter values as described
above, for every environment condition ðπenv, τenvÞ (Fig. S1). Based on the
optimal parameters found in this step, we defined the features of the
emerging phases (Table 1). All phases are defined by a subset of the vari-
ables lying at a constraint boundary. To calculate precise phase boundaries,
we find the frequency of pathogens πenv at a given characteristic time τenv
for which the difference in long-term growth rates between a given pair of
strategies vanishes. To obtain the root of the difference function, we use a
bisection algorithm. To decrease noise, the difference is calculated across

pairs of simulations using the same sequence of pathogens fxtg and the
function is sampled adaptively to ascertain statistical significance. The bi-
section algorithm is run up to a tolerance of 0.025 in πenv and then the
precise position of the root is interpolated assuming linearity of the differ-
ence function within the interval. To prevent, e.g., the mixed strategy from
reducing to a CRISPR-like strategy, we impose that the parameters that are
not set to a fixed value in a particular strategy are not closer than a toler-
ance 0.005 (0.0005 for q) of the boundary.

All source code associated with this manuscript is available online at
https://github.com/andim/evolimmune.

Simulations with Finite Populations Sizes. To study the influence of the effects
of finite population size we perform direct agent-based simulations of a
population of adapting individuals with strategies evolving on a slow
timescale. The population has a finite size N that remains fixed over the
course of the simulation. At every generation the parents of the N indi-
viduals are drawn from the individuals making up the previous generation
with probabilities proportional to the mean number of offspring ξ of these
individuals. The offspring’s state σ is determined from the state of its
parent σ′ according to the switching rates πðσjσ′, xtÞ defined previously.
Along with the state σ, the switching rates themselves, πðσjσ′, xÞ, as well as
the degree of adaptability, cconstitutive—in other words, the parameters
defining the immune strategy—are also transmitted to the offspring. They
also change from parent to offspring, although at a much slower rate than
the state to preserve a clear separation of timescales between short-term
and long-term adaptations. In this setup, selection acts on the strategies.
After an equilibration phase, we collect statistics on the strategies adopted
by individuals in the population. To get rid of the effect of deleterious mu-
tations that do not eventually fix in the populations the mutation rate and
size were scaled down exponentially with time. As population size is finite
deleterious mutations can fix in the population, which means that even in the
limit of zero mutation rate there remains a spread in the distribution of
strategies. Hence we represent not only the median as a measure of the
central tendency of a parameter, but also the interquartile range as a mea-
sure of its spread.
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SI Appendix A: Parameterizing a Two-State Markov Chain
The parameterization that we use is based on the average frequency
that the chain is in one of its states and on a characteristic timescale of
state changes. Concretely, the first parameter is the fraction of gen-
erations during which a pathogen is present πenv = hxi= α=ðα+ βÞ;
and the second parameter is the autocorrelation time of the
chain, defined from its autocorrelation function: hxtxt′i− hxi2 =
πenvð1− πenvÞð1− α− βÞjt−t′j ≡ πenvð1− πenvÞexpð−jt− t′j=τenvÞ or
τenv ≡−1=lnð1− α− βÞ: We have chosen the autocorrelation time
over alternative timescales such as the persistence time of the path-
ogen ~τenv =−1=lnð1− βÞ; because the autocorrelation time is sym-
metric in the switching rates: Long stretches of continuous pathogen
absence play a role in the choice of a strategy as long stretches of
continuous pathogen presence. Our choice of characteristic time
provides a measure for the degree of predictability of the next state
given the current state. For instance, for a characteristic time of zero,
1− α= β; no information on the next state can be gained from
knowing the current state. The parameterization has the additional
property that all combinations πenv ∈ ½0; 1� and τenv ∈ ½0;∞� corre-
spond to valid values of α∈ ½0; 1�; β∈ ½0; 1�; which is not the case for
all combinations of ðπenv;~τenvÞ; for example.

SI Appendix B: Pattern-Search–Based Optimization for
Problems with Noisy Function Evaluations
The goal of stochastic programming is to find the minimum over
a bounded domain Ω of a function

min
y∈Ω

f ðyÞ=E½Fðy;ωÞ�; [S1]

which is not known explicitly, but needs to be approximated by eval-
uating a function Fðy;ωÞ dependent on a random variable ω. The
quality of this approximation can be increased by sampling F multi-
ple times at the expense of higher computational cost. The numer-
ical optimization of the long-term growth rate considered in this
work falls into this class. The long-term growth rate can generally
not be calculated explicitly but is approximated numerically from
long but finite simulations of the population dynamics. These simu-
lations depend on the history of pathogen presence and absence xt;
which is a random variable. In the following we use the generic
notation of the optimization problem of Eq. S1, which can be
mapped onto the problem of optimizing long-term population
growth rates through f ↔ −Λ;   y↔ ðp; q; puptake; cconstitutiveÞ;   ω↔ xt:
We developed an algorithm to solve a stochastic programming

problem with bound constraints. The algorithm combines a com-
pass search, a simple pattern-search algorithm that allows for easily
incorporating bound constraints (28), with the idea of adapting the
number of evaluations of F dynamically to control the noise in the
approximation (29, 30). An advantage of the algorithm over alter-
native methods for noisy optimization such as stochastic approxi-
mation (31) is that it allows one to define stopping criteria in terms
of parameter convergence instead of relying on more indirect
stopping criteria such as decrease conditions. For the optimization
problem considered in this paper, this algorithm works reliably and
efficiently enough to allow for the many optimizations needed for
a phase diagram such as shown in Fig. 2.
Let us define the set of search directions considered at each it-

eration as D= f±eiji= 1; . . . ; ng; where ei is the ith unit vector; and
let us further define PΩðyÞ= argminy′∈Ωjy′− yj2 as the projection of
a point y onto Ω (32). The projection onto box constraints consid-
ered here is particularly simple and computationally efficient as
it just sets coordinate entries outside of the bounds to the bound

value. Given an initial guess for the parameter vector y0; an initial
step size Δ0; and an initial number of times F should be sampled
N0; the algorithm proceeds as follows to find the optimal parameter
vector to within a tolerance of Δtol:

1) Initialize parameter vector y← y0; step size Δ←Δ0; and num-
ber of samples N←N0:

2) While (Δ≥Δtol) or (y or N updated during last iteration):

a) For each step Δd along positive and negative coordinate
directions d∈D:
i) If f ðy′Þ< f ðyÞ (as judged from N samples of F at both

points), where y′=PΩðy+ΔdÞ; then update the pa-
rameter vector y← y′:

ii) Else if new point y+Δd is feasible, i.e., y+Δd∈Ω;
and if f ðy+ΔdÞ= f ðyÞ cannot be ruled out based on
N samples of F at both points (criterion below), then
either one oversteps the minimum or statistical power
is insufficient. Therefore, first try half-step in the same
direction, and if it fails increase sampling:

A) If f ðy+ ðΔ=2ÞdÞ< f ðyÞ (as judged from N samples
of F at both points), then update parameter vector
and reduce step size:

y← y+
Δ
2
d

Δ←Δ=2:

B) Else increase sampling:

N← 2N:

b) If no updates during preceding loop, then contract pat-
tern size:

Δ←Δ=2:

For the comparisons between objective function values, we use
hypothesis testing on N paired samples of F; i.e., we evaluate
Fðy;ωiÞ;Fðy;ωiÞ for ωi; i= 1; . . . ;N and calculate pairwise differ-
ences. The hypothesis testing uses a confidence level α, which
indirectly controls how much the function is sampled. To correct
for the multiple tests performed for different directions, we use
a Bonferroni correction by using a confidence level α=ð2nÞ for
individual tests, where 2n is the number of search directions.

SI Appendix C: Analytical Insight into the Transitions
Between Strategies
By analytically solving three simplified problems, we provide
additional insights into the choice of strategy. For brevity of
notation, we set cdef = cdefense; ccon = cconstitutive; and cinf = cinfected:

When to Regulate the Response. For pathogens changing with a small
characteristic timescale, there is a transition from adaptive to proto-
adaptive to innate strategies for standard parameters (Fig. 2) as
a function of πenv: For all three strategies considered here, the
complete population is always protected, q= 0; and there is no
active acquisition, puptake = 0: The equation for the instantaneous
growth rate at generation t (Eq. 8 of the main text) thus simplifies to
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zt =
�
e−cdef if   xt = 1
e−ccon if   xt = 0;

[S2]

where growth depends only on the absence or presence of path-
ogen during the current generation regardless of what happened
at previous generations. The optimal long-term growth rate can
then be calculated analytically by weighting the instantaneous
growth rates in the presence and absence of pathogen by the fre-
quency of the two environmental states

Λ=−πenvcdefðcconÞ− ð1− πenvÞccon: [S3]

This expression for the long-term growth rate directly gives us
some insight into how the frequency of the pathogen affects
how much the response should be regulated. The more frequent
the pathogen is, the more often the defense is actually used
and thus the less it should be regulated. By maximizing Λ over
ccon ∈ ½0; cmax

con � for a given trade-off function cdefðcconÞ; we obtain
analytical expressions for the phase boundaries. One finds the
following conditions for local optimality of the three strategies:

πenv < πðapÞenv πðapÞenv ≤ πenv ≤ πðpoÞenv πðpoÞenv < πenv
ccon = 0 0≤ ccon ≤ cmax

con ccon = cmax
con

with

πðapÞenv =
�
1−

dcdef
dccon

����
ccon=0

�−1

; [S4]

πðpoÞenv =
�
1−

dcdef
dccon

����
ccon=cmax

con

�−1

: [S5]

As we assume a convex trade-off shape, we have πðapÞenv < πðpiÞenv ; which
implies a succession of adaptive, proto-adaptive, and innate strategies
for increasing πenv as seen in Fig. 2. If instead the trade-off function
cdefðcconÞ is concave, then the proto-adaptive phase vanishes.

When to Hedge Bets. For the very frequent pathogens, the optimal
strategy is to have protection at all times, whereas for less frequent
pathogens some bet hedging is often favored (Fig. 2 and Fig. S3).
To understand the transition from bet-hedging innate to de-
terministic innate immunity, we compare the long-term growth
rates of populations, using these strategies. For simplicity, we re-
strict the analysis to strategies with no heritability, p= 1− q; and
no regulation, cdef = ccon: The fraction of protected individuals is
constant across generations and the long-term growth rate can be
calculated analytically as

Λ= πenv ln½ð1− pÞe−cinf + pe−ccon �+ ð1− πenvÞln½1− p+ pe−ccon �:
[S6]

Optimizing the long-term growth rate over the fraction of pro-
tected organisms p yields

πenv < πð0iÞenv πð0iÞenv ≤ πenv ≤ πðioÞenv πðioÞenv < πenv
p= 0 0≤ p≤ 1 p= 1

with

πð0iÞenv =
eccon − 1
ecinf − 1

; [S7]

πðioÞenv =
1− e−ccon

1− e−cinf
: [S8]

This shows the existence of three regimes. For rare pathogens tol-
erance is optimal (as we are looking only at unregulated strate-
gies), for frequent pathogens it is best to always protect, whereas
in between bet hedging is favored. The existence of these different
phases is a known result in the bet-hedging literature when both
phenotypes can survive in both environmental states (33), as is the
case here. The assumption p= 1− q makes the derivation of this
result exact when the environment itself is memoryless, α= 1− β:
In the presence of temporal correlations in pathogen occurrence,
we expect bet-hedging strategies to be favored for a larger range
of pathogen frequencies, as they can exploit the predictability of
the environment.

When to Acquire Actively. For pathogens with large temporal cor-
relations, the optimal strategy changes from an active, to a mixed, to
a passive mode of acquisition (Fig. 2). To understand these tran-
sitions, we again turn to an analytical solvable limit.As these strategies
are favored in the presence of temporal correlations, the limit of
temporally uncorrelated strategies p= 1− q considered in the pre-
vious section is not the most pertinent. We turn instead to another
analytical solvable limit, in which growth rate differences are very
large compared with the generation time, ccon � 1;   cinf − cdef � 1:
In this limit, the fraction of protected individuals is Markovian as all
parents of individuals in the current generation were in the favored
state of the last environment (all maladapted individuals die). We
note that similar results can be obtained in the limit of large
environmental correlation times τenv without assuming com-
pletely specialized phenotypes (34). The long-term growth rate
can therefore be expressed analytically based on the proba-
bilities Qij of observing an environmental state i followed by state
j (Q00 = ð1− πenvÞ ð1− αÞ;  Q01 = ð1− πenvÞα;  Q10 = πenvβ;  Q11 =
πenvð1− βÞ) as

Λ=Q00 lnð1− pÞ+Q10 ln q+Q01 ln
��
p+ puptake

�
ecdef

	
+Q11 ln½ð1− qÞecdef �− cuptake

�
puptake

�
: [S9]

By comparing the terms in which p and puptake appear in this expres-
sion, the strengths and weaknesses of the two acquisition modes
become evident. Passive acquisition has a diversification cost due
to unnecessary switching into state 1 in the absence of pathogen
(Q00 lnð1− pÞ). Active acquisition does not have this penalty,
but is more difficult to implement and comes with an extra cost
cuptakeðpuptakeÞ dependent on its uptake rate. As the probability
Q00 is high for rare and temporally correlated pathogens, the relative
cost of random acquisition is especially high for these pathogens,
where most of the time mutations conferring gain of protection are
deleterious. Optimizing the expression of the long-term growth rate
over p; puptake ∈ ½0; 1�; we find the following optimality conditions:

πenv < πðcmÞ
env πðcmÞ

env ≤ πenv ≤ πðmiÞ
env πðmiÞ

env < πenv
p= 0; puptake > 0 p> 0; puptake > 0 p> 0; puptake = 0

with

Q00



πðcmÞ
env

�
=

Q01



πðcmÞ
env

�
g−1

h
Q01



πðcmÞ
env

�i; with  g


puptake

�
= puptake

dcuptake
dpuptake

;

[S10]

πðmiÞ
env = 1−

dcuptake
dpuptake

����
puptake=0

: [S11]

Thus, in this limit, a CRISPR-like strategy is favored for rare patho-
gens, an innate bet-hedging strategy for frequent pathogens, and
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mixed strategies in between, in agreement with the numerical results
reported in Fig. 2 of the main text.

SI Appendix D: Nonindependent Pathogen–Protection Pairs
The factorization of the recursion relation defining the pop-
ulation dynamics allows us to treat the problem one pathogen at
a time. This makes the problem mathematically tractable and the
results easily interpretable. Different protection–pathogen pairs
can be treated independently, however, only if a number of as-
sumptions are met: The costs must be additive, one protection
protects against only one pathogen and vice versa, and the dy-
namics of different pathogens are independent. A full treatment
of the general, nonfactorized problem is outside the scope of this
work, but in the following we discuss how relaxing some of these
assumptions affects the optimal strategy. Specifically, we con-
sider simple cases with only two pathogen–protection pairs to
build intuition of where we expect qualitative changes in optimal
strategies and where and how we can relate back to the results
for the factorizing case.

Nonadditive Cost of Infection. If the cost of an infection is amplified
by coinfections by other pathogens, then we expect the optimal
strategies to be similar to the ones emerging for a single pathogen,
but with a higher effective cost of infection cinfection (for the in-
fluence of a higher cost of infection on the phase diagram see
Fig. S3F). The effective cost should take into account the extra
cost incurred by the presence of a coinfection weighted by its
probability of occurrence.
To test this intuition, we consider a simple case with two patho-

gens, where we impose cconstitute = cdefense and puptake = 0: A com-
pletely unprotected organism pays a cost cinfection if it gets infected by
one pathogen and a cost 2cinfection + ν if it gets infected by both.
Solving the problem numerically shows that the optimal fraction of
protection against the two pathogens increases with ν (Fig. S2) as
expected. The Pearson correlation coefficient between being pro-
tected against one or the other pathogen remains small even for ν of
the order of cinfection; meaning that the optimal strategy remains
close to the independent case.

Nonadditive Cost of Protection.As with the case of nonadditive cost
of infection, we expect nonadditive costs of protection to result
in a modified effective cost of protection (for the influence of
changing the cost of protection see Fig. S3G). However, for
a nonindependent cost of protection, an optimal immune strat-
egy might differ significantly from the factorizing case. In par-
ticular, the optimal strategy may regulate the total number of
protections at a given time to either exploit the economies of
scale (if protection against many pathogens is relatively cheaper)
or avoid an overburdening cost (if protection against many
pathogens at the same time is relatively more costly).
Some of the immune strategies that require a lot of machinery

to function, such as vertebrate adaptive immunity or CRISPR-Cas

immunity, might come at the expense of a large fixed investment
cost, csystem; in addition to their state-dependent costs. This non-
additive cost can be viewed as shared equally between all patho-
gen–protection pairs concerned by the adaptive strategy. It does
not break the independence between them, but rather adds an
offset cost csystem=L; where L is the number of pathogen–pro-
tection pairs, which will shift the transition at which adaptive
immunity becomes favorable.

Cross-Reactive Protection. In most biological defense systems, there
is some degree of cross-reactivity; i.e., defense against several
pathogens can be achieved with the same protection. This feature
can be incorporated in our framework by introducing a more
complicated form of the dependency of the number of offspring
on the protection state σ: We expect the optimal strategy to
exploit cross-reactivity by having dissimilar protections that col-
lectively tile the space of possible pathogens (18). Then, the
dynamics of pathogens can be effectively reduced to the presence
or absence of any of the pathogens within the scope of a given
protection.
To validate this intuition, we consider a single protection that is

efficient against two pathogens of frequencies πenv;1 and πenv;2:
Assume that the cost of defense is the same whether we defend
against one or both pathogens, as summarized by the costs in the
table below,

σnðx1; x2Þ ð0; 0Þ ð1; 0Þ ð1; 0Þ ð1; 1Þ
0 0 cinf cinf 2cinf
1 ccon cdef cdef cdef ;

where ðx1; x2Þ indicates which one of the two pathogens is pres-
ent. If the protection strategy is memoryless (p= 1− q), then the
long-term growth rate is

Λ=
�
1− πenv;1

��
1− πenv;2

�
ln r00 + πenv;1

�
1− πenv;2

�
ln r10

+
�
1− πenv;1

�
πenv;2 ln r01 + πenv;1πenv;2 ln r11;

[S12]

where rx1x2 is the average growth rate in environment ðx1; x2Þ:
r00 = pe−ccon + 1− p; r01 = r10 = pe−cdef + ð1− pÞe−cinf ; r11 = pe−cdef +
ð1− pÞe−2cinf : The long-term growth rate can be alternatively ex-
pressed as

Λ=
�
1− πenv;eff

�
ln r00 + πenv;eff ln r10 + πenv;1πenv;2 ln

r11
r01

; [S13]

with πenv;eff = πenv;1 + πenv;2 − πenv;1πenv;2: The last term in this expres-
sion is small either for infrequent pathogens (πenv;1πenv;2 � πenv;eff)
or if a large fraction of the population is protected (1− p � 1 and
hence r01 ≈ r11). Neglecting this second-order term, we are left with
the expression corresponding to a single pathogen with effective
frequency πenv;eff ; in agreement with our expectation.
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Fig. S1. Optimal parameters from a global optimization of long-term growth rate. Regions where a parameter is unconstrained at the optimum are shown in
purple. Phase boundaries pertaining to the shown parameter are in white. A maximum number of 10,000 function evaluations are used for the first phase of the
optimization. The second phase of the optimization is terminated at a tolerance in the parameter values of 0.005. The same model parameters as in Fig. 2 are used.
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Fig. S2. Optimal protection strategy against two equally frequent pathogens πenv,1 = πenv,2 = 0:4 as a function of the degree of nonadditivity of the cost of
infection ν. (A) Fraction of population protected against a particular pathogen. (B) Pearson correlation coefficient between the protection states against the
two pathogens. As costs are nonadditive, the problem no longer factorizes and the optimal strategy no longer chooses protections against different pathogens
independently. However, here the optimal strategy treats each pathogen almost independently, as measured by the low correlation coefficient. With an
increasing cost of coinfection, more protection is needed, in agreement with our intuition that coinfection leads to higher effective costs. Parameters:
cinfection =2, cdefense = cconstitutive = 1, and optimization of the distribution over protection states respecting the probability simplex constraints, using an accel-
erated projected gradient algorithm as described in ref. 18.
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Fig. S3. Influence of parameter choice on the phase diagram presented in Fig. 2. In A–H, Left the parameter choices are shown and in A–H, Right the phase
boundaries between adaptive (a), proto-adaptive (p), innate (i), innate bet hedging (ib), mixed (m), and CRISPR-like (c) strategies are shown. As a reference,
lines in lighter color show trade-off and uptake cost for the parameter set used in Fig. 2. (A) Phase diagram for parameters used in Fig. 2. (B) More expensive
active acquisition (cuptake multiplied by a factor of 2). (C) Different functional form for cost of active acquisition: cuptake = 0:05×puptake + 2×p2

uptake: (D) More
permissive state-dependent costs (costs multiplied by a factor of 0.5). (E) Less permissive state-dependent costs (costs multiplied by a factor of 1.5). (F) Higher
cost of infection. (G) Higher cost of immune protection. (H) Different functional form for cost trade-off, cdefense =1:4− 0:6× cconstitutive +0:2× c2constitutive:
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Fig. S4. Influence of finite population size on optimal immune strategies from an agent-based simulation with evolving strategy parameters (switching rates
and degree of adaptability) as described in the text. For the infinite population, p is shown only for q>0, because for q= 0 the value of p is not constrained
other than being positive. Subplots show the median (solid line) and interquartile range (shaded area) of the strategy parameters at the end of a simulation of
100,000 generations length. Both are calculated from 500 independent simulations. In each simulation, the strategy parameters evolve from a random initial
distribution via mutation and selection. Mutations take place with a rate 0:01expð−t=10; 000Þ per generation and are normally distributed with mean zero and
SD 0:25 expð−t=10; 000Þ: The bound constraints on the parameters were enforced by setting the strategy parameters to the boundary value if outside after
a mutation. Costs of different immune states are as in Fig. 2.
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