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Biological populations are subject to fluctuating environmental conditions. Different adaptive strategies can
allow them to cope with these fluctuations: specialization to one particular environmental condition, adoption of
a generalist phenotype that compromises between conditions, or population-wise diversification (bet hedging).
Which strategy provides the largest selective advantage in the long run depends on the range of accessible
phenotypes and the statistics of the environmental fluctuations. Here, we analyze this problem in a simple
mathematical model of population growth. First, we review and extend a graphical method to identify the
nature of the optimal strategy when the environmental fluctuations are uncorrelated. Temporal correlations in
environmental fluctuations open up new strategies that rely on memory but are mathematically challenging to
study: We present analytical results to address this challenge. We illustrate our general approach by analyzing
optimal adaptive strategies in the presence of trade-offs that constrain the range of accessible phenotypes. Our
results extend several previous studies and have applications to a variety of biological phenomena, from antibiotic
resistance in bacteria to immune responses in vertebrates.
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I. INTRODUCTION

Nothing is as constant as change. This age-old adage applies
to biological populations, which may respond by evolving
mechanisms to mitigate the consequences of environmental
fluctuations [1–5]. This adaptation can be implemented at
different levels. At an individual level, the simplest strat-
egy consists in adopting a generalist phenotype that does
reasonably well across environments. At a population level,
another strategy is to constantly generate a phenotypically
diverse mixture of individuals, each specialized to a different
environmental condition. Which strategy provides the largest
selective advantage in the long run depends on the nature of
environmental fluctuations and on the fitness costs and trade-
offs limiting the range of accessible phenotypes. For instance,
although tracking the environment to adopt a phenotype
specialized to each current condition may seem optimal,
this strategy is often precluded by the costs of constantly
monitoring environmental changes and of frequently switching
between phenotypes.

Which strategies are best to deal with environmental fluc-
tuations is a long-standing question in evolutionary biology.
Interest in this question has recently been rekindled by
laboratory experiments with populations growing in controlled
fluctuating environments [6–8], theoretical developments pro-
viding links to ideas from information theory and stochastic
thermodynamics [9–11], and its relevance to understanding
nongenetic modes of inheritance [12,13] and how biological
populations might respond to climate change [4,14].

Here, we study this question in a model of population
growth in a randomly fluctuating environment. The model
considers a large population of organisms characterized by
their phenotype and replicating at discrete generations. An
optimal adaptive strategy is defined by the choice of phe-
notypes and switching rates between them that ensures the
largest long-term population growth rate. We analyze how
this optimal strategy depends on the environmental statistics

and the replication rates. The analysis reveals transitions
between qualitatively different strategies: nonswitching or
single-phenotype strategies, where all of the population is of
the same phenotype; and switching or bet-hedging strategies,
where the population diversifies. Further transitions arise
between strategies where the population adopts a phenotype
specialized in a single environment and strategies relying on a
generalist phenotype.

Our work extends the growing literature investigating
transitions between optimal adaptive strategies [13,15–18] and
generalizes some of our previous results on the adaptation of
immune strategies to pathogen statistics [19]. In particular, we
derive exact expressions for the transitions between different
modes of immunity in memoryless environments when the
strategy includes an adjustable investment into immunity. We
also calculate analytically the transitions between switching
and nonswitching strategies between two phenotypes in
temporally correlated environments. After briefly introducing
the mathematical framework (Sec. II), we present a graphical
method for studying transitions in optimal adaptive strategies
in temporally uncorrelated environments (Sec. III) and apply
it to the case of an immune system with adjustable investment
(Sec. IV). We then turn to the case of temporally correlated
environments and provide analytical and numerical results on
transitions in this more general setting (Sec. V).

II. POPULATION GROWTH IN FLUCTUATING
ENVIRONMENTS

We are interested in describing the evolution of a possibly
phenotypically heterogeneous biological population (of cells,
organisms, etc.) in a fluctuating environment. We describe
the population at generation t by the number Nt (σ ) of
individuals with a given phenotype σ . Phenotypes differ by
their replication rate f (σ,x), which give the mean number
of offspring produced by an individual of phenotype σ in
environmental condition x (see Fig. 1). The environment
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FIG. 1. Model of population growth in a fluctuating environment. (a) A population composed of individuals of different phenotypes σ grows
in a changing environment xt . Between each discrete generation, the phenotype of each individual may switch. (b) The environment follows a
stochastic dynamics described by a Markov chain with transition rates p(x|x ′). The population composition changes between generations due
to the effects of selection (an individual with phenotype σ in environment x produces in average f (σ,x) offspring) and phenotype switching
(an individual with phenotype σ ′ has probability π (σ |σ ′) to have an offspring with phenotype σ ).

is described as a discrete Markov chain with a transition
matrix p(x|x ′), which we assume to be stationary and
ergodic. The population changes under the influence of the
selective pressures generated by the differences in replication
rates between phenotypes, and through phenotype switches
described by a transition matrix π (σ |σ ′). In the limit of
infinitely large population size, the population composition
follows the recursion [20]

Nt+1(σ ) = f (σ,xt )
∑
σ ′

π (σ |σ ′)Nt (σ
′). (1)

An alternative formulation in which multiplication pre-
cedes mutation can be defined by mapping Nt (σ ) →
Nt (σ )/f (σ,xt−1) [19]. The two formalisms are equivalent as
long as the switching rates do not depend on the environmental
state. Equation (1) can also be written in a compact matrix
notation as

N t+1 = A(xt ) N t , with A
(xt )
σ,σ ′ = f (σ,xt )π (σ |σ ′). (2)

Here and in the following, we write vectors and matrices in
bold notation.

The different modalities by which populations might
cope with fluctuating environmental conditions correspond
to different properties of the switching matrix π (σ |σ ′). For
nonswitching strategies, the whole population has the same
phenotype σ̃ and the switching matrix consists in a row of
ones, π (σ |σ ′) = 1 if σ = σ̃ and 0 otherwise. If the chosen
phenotype is a better all-rounder, doing intermediately well
across environments, this corresponds to an individual-level
generalist strategy. Generalist strategies at the individual level
can also be achieved through sensing cues about the environ-
ment and adjusting the phenotype accordingly [4]. If sensing
does not affect what is transmitted to the next generation, then
the dynamics of the (genetically or epigenetically) transmitted
part of the phenotype are equivalent to the dynamics of a
generalist phenotype in the large population size limit. Sensing
and plasticity with transgenerational effects has been studied
elsewhere [3,11] but will not be considered in the following.
For switching strategies, we may distinguish those with and
without memory. In a switching strategy without memory,
the probability of switching to a phenotype does not depend
on the parental phenotype, π (σ |σ ′) = π (σ ). Such strategies
implement population-level bet hedging, i.e., diversification of

the population into phenotypes that may each be specialized
to one of the environmental conditions to come. Switching
with memory, where π (σ |σ ′) does depend on σ ′, provides the
basic ingredients, variation and heritability, to enable adaptive
tracking of the environment through Darwinian evolution. In
the limit where switching is very rare, π (σ |σ ′) � π (σ ′|σ ′)
for σ �= σ ′, the phenotypic dynamics is equivalent to the
strong-selection, weak-mutation limit of population genetics
[13]. The model thus integrates in a common mathematical
framework a range of different modes of response to environ-
mental variations.

Over long evolutionary time scales, selection might act on
the adaptive mechanisms to adjust them to the statistics of envi-
ronmental fluctuations. Explicit models of the evolution of the
switching rates π (σ |σ ′) show that variation in switching rates
can indeed be selected upon [13,16,21]. Transgenerational
feedback reinforcing the production of successful phenotypes
provides an alternative mechanism to learn a good strategy
[22]. Which adaptive strategy do we expect to evolve in the
long run? Here, we focus on the optimal strategy representing
the optimal possible end product of this evolution. In our
model, the optimal switching rates maximize long-term growth
rate, defined as

� = lim
T →∞

1

T
ln NT /N0, (3)

where NT = ∑
σ NT (σ ) is the total population size. To

understand why this is the relevant measure of evolutionary
success in the long run, consider a population with two
subpopulations following different strategies. Then in the
long run the population following the strategy with highest
long-term growth rate almost surely outnumbers the one
following the other strategy for almost every sequence of
environments [23]. The question of which adaptive strategy
π∗(σ |σ ′) has the largest selective advantage is thus recast as
the problem of maximizing the long-term growth rate over
possible strategies:

π∗(σ |σ ′) = arg max
π(σ |σ ′)

�, (4)

for given replication rates f (σ,x) and given environmental
dynamics p(x|x ′). This is the problem that we address in this
paper.
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FIG. 2. Illustration of the steps of a graphical method of finding the best adaptation strategy in uncorrelated environments. (a) Fitness
values of phenotypes across environments (orange dots). (b) Fitness values achievable by switching strategies (orange area) are those inside
the convex hull of the fitness values of the different phenotypes. A necessary condition for optimality is to lie on the Pareto frontier (blue line).
[(c), (d)] The optimal strategy has the fitnesses (red or green star) at which the isolines of the long-term growth rate for given environmental
frequencies (red lines for p(2) = 0.7 and green lines for p(2) = 0.3) are tangential to the Pareto frontier. (c) In fitness space, the isolines are
curved. (d) To determine the optimal strategy, it is more convenient to work in log-fitness space, where the isolines are straight lines.

III. WHEN AND HOW TO BE A GENERALIST
IN UNCORRELATED ENVIRONMENTS

A. Extended fitness set and Pareto optimality

The simplest environmental fluctuations to consider are
memoryless fluctuations, where the state of the environment is
independent of its state in the previous generation, p(x|x ′) =
p(x). In this case, no gain can be expected from keeping a
memory of past phenotypic states, and the optimal adaptive
strategy is also memoryless, π (σ |σ ′) = π (σ ). Since the pop-
ulation composition is constant over generations, the number
of offspring depends only on the state of the environment
and (1) reduces to a recursion for the total population size
Nt = ∑

σ Nt (σ ):

Nt+1 = Ntf (xt ), (5)

where

f (x) =
∑

σ

f (σ,x)π (σ ) (6)

is the average population fitness. Graphically, it is conve-
nient to represent each possible phenotype σ as a point
in the space of environmental conditions x (where each
environment x defines a dimension), with coordinates given
by the replication rates f (σ,x) [orange dots in Fig. 2(a)].
The set Df = {∑σ f (σ,x)π (σ )|∑σ π (σ ) = 1,π (σ ) � 0} of
achievable f (x) when switching rates π (σ ) are varied then
corresponds to the convex hull of these points [orange area in
Fig. 2(b)]. In the ecological literature, this set of achievable
strategies is known as the extended fitness set and was
introduced by Levins [1].

The recursion for the total population size (5) is solved by
NT = N0

∏
t f (xt ). Taking logarithms, we have ln NT /N0 =∑T

t=1 ln f (xt ) and we can apply the law of large numbers to
write the long-term growth rate (3) as a weighted average of
log fitnesses,

� =
∑

x

p(x) ln f (x), (7)

with weights given by the frequency of each environment.

Finding the optimal strategy π∗(σ ) that maximizes � =∑
x p(x) ln

∑
σ f (σ,x)π (σ ) over the domain allowed by the

rules of probabilities is a convex optimization problem whose
solution is well known [1,15,20,23–25]. It is useful to rephrase
the problem as the optimization of � = ∑

x p(x) ln f (x)
over the fitnesses f constrained to belong to the extended
fitness set Df introduced above. One can go further and
equivalently optimize � = ∑

x p(x)m(x) over the log fitnesses
m(x) = ln f (x) contrained to belong to ln(Df ). Going from π

to f to m simplifies the expression of the objective function
� but makes the domain of optimization more complex.

Equation (7) shows that the long-term growth rate is an
increasing function of each environment fitness f (x). Increas-
ing fitness in one environment is always desirable if this can
be done without impairing fitness in any other environment.
Thus, any optimal solution must lie on the set of fitnesses f
for which no improvement can be made in one environment
without impairing performance in another, called the Pareto
frontier. Usually, no phenotype provides the best fitness for
all environments due to trade-offs between performance under
different conditions. Thus, the Pareto frontier is generally not a
single point but a line when the environment alternates between
two conditions [blue line in Fig. 2(b)], and a hypersurface of
dimension n − 1 when the environment alternates between
n conditions. To find the overall optimum along the Pareto
front requires consideration of the explicit way in which
performances for different objectives combine into a scalar
measure, which is determined in our case by the frequency of
the different environments (7).

B. Graphical method for finding the optimal strategy

The various views of the optimization problem discussed
in the previous subsection imply a graphical method to
determine the optimal strategy. For simplicity, we illustrate
it by considering switching between only two environments
(Fig. 2). Starting from the graphical representation of the
Pareto front for the set of achievable fitnesses [Fig. 2(b)], we
need to find the point of this frontier with the highest growth
rate: This is done graphically by representing the growth rate
isolines �[f (1),f (2)] = K [red and green lines in Fig. 2(c)
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where the two colors corresponds to different environmental
statistics] given by (7):

f (2) = eK/p(2)

f (1)p(1)/p(2)
. (8)

By plotting the isolines for different K , we can find the
isoline for the largest K that still intersects with the Pareto
frontier, called the supporting line. The intersection point
defines the optimal achievable fitnesses f � [red and green stars
in Fig. 2(c)]. The optimal adaptive strategy can be obtained
from f � by inverting (6) restricted to the phenotypes spanning
the Pareto frontier [blue dots in Fig. 2(c)]. This construction
was first proposed by Levins [1].

Here, we propose to go one step further and work in log-
fitness space to circumvent the difficulty of handling curved
isolines. In log-fitness space, the isolines are linear and normal
to the vector p:

p(1)m(1) + p(2)m(2) = K. (9)

If the Pareto front has a tangent of slope −p(1)/p(2),
the tangent point thus defines the optimal strategy for the
environment p [Fig. 2(d)]. More generally, the supporting
isoline corresponding to the optimal growth rate shares at least
one point with the Pareto frontier but is otherwise entirely
above that frontier.

The graphical method generalizes to d environments by
studying the extended fitness set in a space of d dimension,
according to the following procedure. First, represent the
phenotypes’ fitnesses as points in the space of different
environments, each environment defining a dimension [orange
dots in Fig. 2(a)]. Second, construct the convex hull of these
points to find the fitnesses achievable by switching strategies
Df [orange area in Fig. 2(b)] and find the Pareto-optimal
frontier of that set [blue line in Fig. 2(b)]. Third, plot this Pareto

surface in log-fitness space [blue line in Fig. 2(d)]. Finally, find
the hyperplane normal to p that is a supporting hyperplane
of the Pareto frontier [red and green lines in Fig. 2(d)], and
read off the optimal strategy as the intersection point between
that hyperplane and the Pareto frontier [red and green stars in
Fig. 2(d)].

When the Pareto frontier is contained in a hyperplane,
fitnesses can be rescaled onto the unit simplex,

∑
x f (x) = 1,

with no loss of generality [15]. In this case, the optimal
strategy is given in terms of the rescaled fitnesses as f � = p,
making the graphical construction even simpler (Fig. 10 and
Appendix A).

C. Transitions among switching, nonswitching,
and generalist strategies

The graphical method provides a visual approach to classify
the different possible adaptive strategies. For the sake of sim-
plicity, we start again with the case of a two-state environment
and first assume that only two phenotypes are accessible: a
blue phenotype (σ = 1) best suited to environment 1 and
an orange phenotype (σ = 2) best suited to environment 2
[Figs. 3(a)–3(c)]. In this case, the Pareto front is a segment
joining the two phenotypes. In log-fitness space, this segment
is curved and concave, implying that ∂m(2)/∂m(1) is a
decreasing function of m(1). Different environmental statistics
are characterized by the frequencies p(1) and p(2) = 1 − p(1)
of the two environmental states. The value of p(1) sets the
slope −p(1)/p(2) of the isolines of growth rate that we should
consider (9).

Depending on the value of p(1), different cases arise. First,
if p(1) is too high or too low, there is no tangent to the
Pareto front of slope −p(1)/p(2) and the support point lies
at one of the two extremities of the Pareto front. In these
cases, the optimal strategy [crosses in Fig. 3(b)] is to adopt

(a) (b) (d)

(f)(c)

(e)

FIG. 3. Transitions of the optimal strategy as a function of environmental frequencies without [(a)–(c)] and with [(d)–(f)] a generalist
phenotype. [(a), (d)] Pareto frontier of achievable fitness vectors by phenotypes (dots) and their mixtures (lines). [(b), (e)] In log-fitness space, a
tangent construction (gray lines) yields the optimal strategy (gray crosses) for different environments (from dark to light gray for p1 = 1 → p1 =
0 in 0.2 steps). [(c), (f)] Transitions between switching and nonswitching strategies as a function of the probability of encountering environment
1. Parameters: [(a)–(c)] f (σ = 1) = (1,0.3),f (σ = 2) = (0.4,1); [(d)–(f)] f (σ = 1) = (1,0.2),f (σ = 2) = (0.3,1.0),f (σ = 3) = (0.8,0.7).
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a constant phenotype—the phenotype optimal for the most
frequent environmental state. When p(1) takes an intermediate
value, the isoline is tangent to the Pareto frontier at an interme-
diate support point, indicating an optimal strategy involving
switching between the two possible phenotypes. As a function
of the frequency of encountering different environments, there
are thus two transitions, from nonswitching to switching and
to nonswitching again. This succession of optimal strategies
is read off as a function of the environmental frequency from
the Pareto line [Fig. 3(c)].

One can make the problem more interesting by adding
a third “generalist” phenotype, which does relatively well
across both environments [Figs. 3(d)–3(f), green dot]. This
generalist creates a kink in the Pareto frontier, meaning that it
will be optimal as a constant phenotype for a certain range of
environmental conditions. Thus, depending on the frequencies
of the two environmental states, the optimal strategy consists
either of having a constant specialized phenotypes (blue
or orange) when one environment is much more frequent
than the other, a constant generalist phenotype (green) when
the two environments have similar frequencies, or switching
between a specialized phenotype and the generalist phenotype
in intermediate situations [Fig. 3(f)]. The transition from
specialist to generalist was studied in a similar model in
Ref. [15], but in the slightly different context of a continuous
choice of strategies.

These conclusions generalize to an arbitrary number d

of environmental states. It follows from the graphical con-
struction that for a given statistics of the environment, the
number of discrete phenotypes between which the population

may switch in optimal strategies is at most equal to the
number of different environmental conditions, d: The subset
of the extended fitness set corresponding to this switching
is the polytope of dimension d − 1 whose vertices are these
d phenotypes (a segment for d = 2, a triangle for d = 3).
This observation may be viewed as extending to changing
environments the principle of competitive exclusion, which
states that a single niche cannot support more than one species.

We complement the graphical analysis by analytical results
in the simplest case of two environments and two phenotypes
illustrated by Figs. 3(a)–3(c). Since only the relative fitnesses
in each environment are relevant for the dynamics, we set
without restriction of generality the replication rate of each
phenotype in its preferred environment to 1. The other
phenotype has a selective disadvantage, with replication rate
wx < 1:

f (σ,x) =
{

1 σ = x,

wx σ �= x.
(10)

The parameter wx can be interpreted as the degree of
specialization: wx = 1 means no specialization, while wx = 0
means extreme specialization. Since p(1) = 1 − p(2) and
π (1) = 1 − π (2), there are just two free parameters p2 ≡ p(2)
and π2 ≡ π (2). In these variables, the long-term growth rate
(7) is written as

� = p2 log[(1 − π2)w2 + π2]

+ (1 − p2) log[1 − π2 + π2w1)].
(11)

To find the optimal fraction of the population with phenotype
2, π�

2 , Eq. (11) is to be maximized over π2 ∈ [0,1]. The
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FIG. 4. Transitions between switching and nonswitching strategies depend on environmental selectivity and environmental frequencies. In
a temporally uncorrelated environment changing randomly between two states, 1 and 2, a population of organisms is adapted optimally by
either being in a single phenotypic state or by having a mixture of phenotypes (bet hedging) depending on the statistics of the environment
and the degree to which the phenotypes are specialized. In environment x = 1 (2) phenotype 2 (1) has replication rate wx relative to the other
phenotype. (a) Transitions as a function of specialization level and environmental frequency in the symmetric case, w1 = w2 = w. The black
lines mark the transition from single-phenotype to bet-hedging strategies: Above the upper (lower) line the entire population optimally has
phenotype 2 (1), whereas between the two lines phenotypic diversification provides an advantage. The optimal fraction of phenotype 2 in the
bet-hedging region is shown by the colored lines. (b) Regions of selection factors in which bet hedging is the preferred strategy (shaded areas)
for environments with different frequencies of being in state 2. Either strong selection or a precise mapping between the relative selection
factors and the relative environmental frequencies are needed to make bet hedging optimal.
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optimization yields

π�
2 =

⎧⎪⎨
⎪⎩

0 if p2 � plb
2 ,

p2−plb
2

pub
2 −plb

2
if plb

2 < p2 < pub
2 ,

1 if p2 � pub
2

(12)

with lower and upper bounds

plb
2 = w2

1 + (1 − w2)w1/(1 − w1)
, (13)

pub
2 = 1

1 + (1 − w2)w1/(1 − w1)
(14)

on the environmental frequencies for which diversification is
optimal. The calculation recapitulates the conclusions from
the graphical method [Fig. 3(c)]. In the limit where selection is
very stringent, w1 → 0 and w2 → 0, the transitions disappear,
plb

2 → 0 and pub
2 → 1, and the optimal strategy reduces to

proportional betting,

π�
2 = p2. (15)

In the context of biological bet hedging, this result was already
noted by Cohen [24]; it was also derived earlier in the context
of gambling by Kelly [23].

The range of environmental frequencies for which bet
hedging is favored over the nonswitching strategies depends
strongly on the selectivity of the environments [Fig. 4(a)].
Consider for simplicity the symmetric case w1 = w2 = w;
then nonswitching strategies are favored for |p2 − 1/2| �
(1 − w)/[2(1 + w)]. In the limit, w → 0, the strategy tends to
proportional bet hedging, as discussed earlier. As w is larger,
the region of environmental frequencies for which switching
strategies are optimal is smaller. As there is smaller variability
in fitness across generations for the same phenotype, switching
is less needed to hedge against environmental fluctuations.

Instead of considering transitions in optimal strategies as
environmental frequencies are varied, we can also consider
transitions as selection pressures are varied at fixed environ-
mental frequencies [Fig. 4(b)]. As selection pressures are
decreased, there are transitions to a nonswitching strategy
[white areas in Fig. 4(b)]. The optimality of bet hedging
[shaded areas in Fig. 4(b)] for weak selection pressures
depends on a precise matching between the asymmetry in
selection pressures and environmental frequencies. This con-
clusion generalizes the results of Ref. [16], which considered
numerically asymmetric fitness landscapes, w1 �= w2, but only
with a symmetric environment, p1 = p2 = 1/2.

IV. TRANSITIONS BETWEEN OPTIMAL
IMMUNE STRATEGIES

Fitnesses achievable by single phenotypes (orange dots in
Fig. 2) can fill a set delimited by a continuous line, called
trade-off function, which is the Pareto frontier of nonswitching
strategies. It is common to consider such a continuous set
of phenotypes with all possible switching strategies between
them [1,15]. The Pareto frontier of switching strategies defined
in the previous section then delimits the convex hull of that
continuous set. The two Pareto frontiers (of switching and
nonswitching strategies) coincide if the trade-off function is
concave, i.e., if the set of achievable phenotypes is convex;

in that case, nonswitching strategies are optimal everywhere.
Otherwise, similar transitions as in the previous section will
arise [15]. In some biological situations, however, only some
combinations of phenotypes along a trade-off function may be
accessible at the same time, meaning that one cannot switch
between all phenotypes on the trade-off line. Such a constraint
on switching rates can induce discontinuous transitions, or
cause the coexistence of multiple locally optimal solutions, as
we now illustrate in a simple model of evolution of immunity.

Our illustrative example is a model that we proposed to
explain the diversity of immune strategies observed across the
tree of life [19]. The purpose is to show how different strategies
are associated with different statistics of pathogen dynamics.
In its simplest form, the model has two environmental states,
presence (x = 1) or absence (x = 0) of a pathogen. In a given
strategy, it has two accessible phenotypes, protected (σ = 1)
or unprotected (σ = 0). Strategies are represented by f =
(f (x = 0),f (x = 1)) as before.

The unprotected phenotype is fixed in fitness space:
f = (fbase,finf) (gray dot in Fig. 5), where finf < fbase is
the reduced fitness in infected unprotected individuals. By
contrast, the protected phenotype lies on a trade-off function:
f = (fcon,fdef(fcon)), with fcon ∈ [f min

con ,f max
con ] (dashed purple

line delimited by red and blue dots in Fig. 5). fcon < fbase

represents the reduced fitness of the protected phenotype in
the absence of pathogen due to the constitutive investment
into the protection. fdef > finf is the enhanced fitness of the
protected phenotype by its immune defense in the presence of
pathogen.

The choice of fcon along the trade-off function sets the
investment into the protection and is part of the strategy: Once
this strategy is fixed, it is possible to switch between protected
and unprotected phenotypes, but not between different points
of the trade-off function. This constraint can be justified
biologically by the high cost of plasticity that such switches
would incur.

The function fdef(fcon) encodes the trade-off between the
efficiency of the protection and its cost. By analogy with
immune mechanisms in vertebrates, we interpret it in terms of
adaptivity of the response within the lifetime of the organism,
with higher adaptivity enabling lower cost at the expense
of lower protective efficiency [19]. We therefore refer to
the maximally protective and costly strategy with fcon =
f max

con as innate immunity and to the minimally protective
and costly strategy with fcon = f min

con as adaptive immunity.
Intermediate strategies with f min

con < fcon < f max
con are referred

to as protoadaptive.
Within this model, the equation for long-term growth rate

in an uncorrelated environment (7) becomes

� = p ln[πfdef + (1 − π )finf]

+ (1 − p) ln[πfcon + (1 − π )fbase], (16)

where p ≡ p(x = 1) is the probability of the presence of
the pathogen and π ≡ π (x = 1) is the probability of being
protected. Here, the problem is not only to find the optimal
switching probability π�, but also to find the optimal protection
adaptability, f �

con. To summarize, the problem is as follows:
For a given p, finf,fbase and fdef(fcon), find f �

con and π� that
maximize long-term growth rate in Eq. (16).
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max

tolerance π  = 0

innate π  = 1, minimal f  con

protoadaptive π  = 1, intermediate f  con

adaptivex π  = 1, maximal f con

innate switching 0 < π  < 1, minimal f  con

protoadaptive switching 0 < π  < 1, intermediate f  con

adaptive switching 0 < π  < 1, maximal f con

Symbol Name Definition

Fitnesses of Pareto optimal strategiest 

FIG. 5. Strength of trade-offs between constitutive and defense cost of protection determine adaptation strategy in a fluctuating pathogenic
environment. In the model, unprotected individuals have a fixed fitness profile (gray dot). Protection comes in various degrees of adaptability
(dashed purple line) between maximal (blue dot) and minimal (red dot) level of constitutive investment in defense. Switching strategies are
possible where only a fraction π of the population is protected. They have fitnesses that are a linear combination of the fitness of unprotected
and protected individuals for a given level of adaptability. The optimal strategy needs to lie along the Pareto frontier of the possible fitnesses.
The strategies that lie on the Pareto surface allow reading off the succession of optimal strategies as the probability of encountering the pathogen
is decreased. (a) Strong trade-offs lead to switching strategies being better then adaptable protection. (b) For shallow trade-offs, the Pareto
frontier is achieved by adaptable defenses. (c) A combination of shallow and steep trade-offs can lead to only some degree of adaptability being
used. (d) A concave trade-off function can lead to first-order transitions in strategy and potential coexistence of locally optimal solutions.

We are particularly interested in transitions between f �
con,π

�

taking intermediate or extremal values within their respective
ranges. Given that each of these two variables can either
reach its lower or upper bound or take an intermediate value,
nine different cases may arise. However, since the level of
adaptability of the response is inconsequential if none of
the population is protected (π� = 0), only seven qualitatively
different immune defense strategies are relevant: tolerance
(π� = 0, gray dot in Fig. 5), innate (π� = 1, fcon = f min

con ,
blue dot in Fig. 5), adaptive (π� = 1, fcon = f max

con , red crossed
dot in Fig. 5), protoadaptive (π� = 1, f min

con < fcon < f max
con ,

light blue line with purple dashes in Fig. 5), innate switching
(0 < π� < 1, fcon = f min

con , blue line in Fig. 5), adaptive
switching (0 < π� < 1, fcon = f max

con , red line in Fig. 5), and
protoadaptive switching (0 < π� < 1, f min

con < fcon < f max
con ,

light-blue line in Fig. 5).
Which of these strategies is optimal in a given environment?

And what is the nature of the transitions between strategies as
the frequency of encountering the pathogen is varied? Here, we
apply the graphical method to answer these questions and show
how the answers depend critically on the shape of the trade-off
function. Our conclusions, summarized in Fig. 5, are supported
by analytical results derived in Appendix B. The analysis
extends our previous results on such transitions [19] to more
general classes of trade-off functions. It furthermore illustrates

the power of the graphical method to understand transitions
between strategies even in more complicated models.

The simplest case is when adaptability comes at an
excessive cost, as depicted in Fig. 5(a): An innate switching
strategy is then always preferable to an adaptive strategy. In this
case, as the probability of encountering the pathogen increases,
the optimal strategy transitions from tolerance [gray dot in
Fig. 5(a)] to an innate defense strategy [blue dot in Fig. 5(a)] via
an innate switching [blue line in Fig. 5(a)]. When adaptability
of the defense does not impair its effectiveness as severely, as
in Fig. 5(b), two new transitions occur. As the probability of
encountering the pathogen increases, the optimal strategy now
transitions from tolerance to, successively, adaptive switching,
adaptive, protoadaptive, and finally innate defense strategy. In
other cases, a switching protoadaptive defense strategy may
also be optimal, as in the case of the trade-off function of
Fig. 5(c). In this case, as the probability of encountering the
pathogen increases, the optimal strategy transitions from toler-
ance to, successively, protoadaptive switching, protoadaptive,
and finally innate defense strategy. Finally, we may consider
a case where the trade-off line is not convex, as in Fig. 5(d).
The Pareto frontier is then not necessarily concave, and we
might have first-order transitions between strategies. For the
trade-off shape shown in Fig. 5(d), there is a transition from
protoadaptive switching (blue line with purple dashes) directly
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to innate switching (blue line), with a discontinuity in the level
of adaptability of the response.

V. WHEN AND HOW TO USE MEMORY IN TEMPORALLY
CORRELATED ENVIRONMENTS

In temporally correlated environments, the past phenotypes
of an individual carry information about the next environmen-
tal state. The optimal switching strategy may thus involve
memory; i.e., it may be advantageous for π (σ |σ ′) to depend
on σ ′. Stochastic switching with memory serves an addi-
tional purpose relative to the memoryless switching strategies
considered so far: In addition to providing a bet-hedging
mechanism against the uncertainty of the environment, it
provides the variation and heritability needed for tracking the
environmental state. Here, we extend the previous analysis to
characterize the conditions under which temporal correlations
in environmental fluctuations favor switching strategies with
memory over nonswitching strategies. The graphical method
does not extend to correlated environments but we show that
the transitions between switching and nonswitching strategies
can be characterized analytically.

A. Insights from the adiabatic limit

It is instructive to start with long correlation times, when
the duration of each environmental state is much longer
than the time that it takes for the population to reach its
steady state composition. In this adiabatic limit, the model
is analytically solvable [3,20]. We present the solution for
the case where switching takes place between a number of
different phenotypes, with each phenotype σ being best in one
environment x, which we denote by the same symbol σ = x

(other cases can in fact always be reduced to this one [20]).
A calculation based on a series of eigendecompositions of the
growth matrix in different environments (see Appendix C for
derivation) leads to an expression of the long-term growth rate
as [20]

� =
∑

x

p(x) ln f (x,x)

+
∑
x,x ′

p(x|x ′)p(x ′) ln[π (x|x ′)�(x,x ′)], (17)

which involves the overlap �(x,x ′) between steady-state
population compositions in environments x,x ′, given by

�(x,x ′) = f (x,x ′)
f (x ′,x ′) − f (x,x ′)

+ f (x,x)

f (x,x) − f (x ′,x)
, (18)

if the environment changes, x �= x ′, and 1 otherwise.
Optimizing (17) over π (x|x ′) subject to the normalization

constraint leads to π�(x|x ′) = p(x|x ′). Within the adiabatic
limit, the optimal strategy is therefore always to diversify, with
switching rates equal to the environmental switching rates.
This generalizes the result that proportional betting is optimal
in the limit of strong selection, (15), to the case where reaching
steady state takes longer but environmental switches are rarer.
In contrast to the results in the previous section, switching is
always favored in the adiabatic limit, even when selection is
weak.

We can use the expression of (17) to ask how much each
phenotype σ should be specialized to its environement x = σ .
Being more specialized means higher fitnesses of the adapted
phenotypes, f (x,x), at the expense of lower fitnesses for the
maladapted phenotypes, f (x,x ′ �= x), assuming a trade-off
between the two. More specialized phenotypes have lower
relative replication rate w(x,x ′) = f (x,x ′)/f (x ′,x ′)[w(x,x ′)
reduces to wx ′ of (10) in the case of two environmental states].
By rewriting

�(x,x ′) = w(x,x ′)
1 − w(x,x ′)

+ 1

1 − w(x ′,x)
, (19)

we see that specialization also implies lower overlaps �(x,x ′),
and thus lower values for the second term in the long-term
growth rate (17). On the other hand, the first term in (17)
grows with f (x,x), i.e., with higher specialization. Because
of these contradictory terms, the optimal strategy along the
trade-off between f (x,x) and f (x,x ′) will depend on the
details of trade-off function and of the environmental statis-
tics. However, as environment fluctuations become slower,
p(x|x ′ �= x) → 0, the second term in (17) vanishes for x �= x ′,
letting the first term dominate. In that limit, highly specialized
phenotypes become more advantageous. This observation is
again in contrast with the results of the preceding section
[Figs. 3(d)–3(f), which have shown that generalists are optimal
under certain environmental conditions.

B. Connecting the limit of uncorrelated and adiabatically
switching environments numerically

So far we have considered two opposite limits: temporally
uncorrelated environments in Secs. III and IV and tempo-
rally correlated environments with long correlation times
in Sec. V A. These two limits give very different answers
to the questions of whether bet hedging is desirable or
whether generalist phenotypes can be optimal. To study the
intermediate regime between these two extremes, we first
start by presenting the results of a numerical study, based on
the recursion equation (1). We apply the numerical approach
described in Ref. [19]. In short, we approximate the long-term
growth rate numerically by simulating for a large number of
generations, and then use a derivative-free global optimization
algorithm to roughly find the global optimum. In practice,
we focus on two-state environments, which we characterize
by their characteristic time scale, tc, defined by e−1/tc =
1 − p(1|2) − p(2|1) and the probability of being in state 2,
p(x = 2). The numerical results show how the two limits are
connected for the case without (Fig. 6) and with a generalist
phenotype (Fig. 7). In temporally correlated strategies, phe-
notype frequencies vary with the environmental history. To
represent strategies in a simple way that generalizes the case
of memoryless strategies, we define π (σ ) as the steady-state
frequency of phenotype σ in a lineage,

∑
σ ′ π (σ |σ ′)π (σ ′) =

π (σ ). Consistent with results in the adiabatic limit, for
large tc switching strategies dominate across the range of
environmental frequencies (Figs. 6 and 7): ∀σ,π�(σ ) < 1. In
the case where there is an intermediate, generalist phenotype
(σ = 3), the switching takes place primarily between the
specialist types: π�(σ = 3) � 1 for large tc (Fig. 7), consistent
with the argument that specialized phenotypes are optimal
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FIG. 6. Switching strategies are favored over a larger range of
conditions if environmental states are temporally autocorrelated.
Here we generalize the results of Figs. 3(a)–3(c) about transitions
between switching and nonswitching strategies by considering the
influence of environmental correlation. The numerically obtained
optimal switching rate π�(σ = 2) is plotted as a function of tc, the
characteristic time scale of environmental changes, and p(x = 2),
the fraction of the time the environment is in state 2. The range of
environmental frequencies in which there is switching (0 < π� < 1)
increases with temporal correlations. As a comparison we also show
the analytical transition lines obtained in Sec. V C, Eqs. (30) and (31).

in the adiabatic limit (Sec. V A). The transition to a regime
where nonswitching strategies are optimal happens when the
temporal correlations of the environment are of the order of the
generation time, tc ∼ 1. In this regime, all three phenotypes
(two specialists and one generalist) may coexist in the optimal
strategy, ∀σ,π∗(σ ) > 0. Recall that such mixtures involving
more phenotypes than distinct environments are suboptimal
in memoryless environments, tc = 0, as deduced from the
graphical construction (see Sec. III C).

C. An analytical result for intermediate time scales

We present here an approach to derive analytically the
boundaries between optimal switching and nonswitching
strategies in correlated environments. The approach is based
on an expansion at small switching rates of the master equation
of the joint environmental and population switching process
near the transition boundary.

For notational convenience. we assume replication precedes
mutation and rewrite the recursion equation for the fraction
of the population in each state nt (σ ) = Nt (σ )/Nt with Nt =∑

σ Nt (σ ),

nt+1(σ ) = 1

Zt

∑
σ ′

π (σ |σ ′)f (σ ′,xt )nt (σ
′), (20)

where Zt is a normalization constant enforcing
∑

σ nt (σ ) = 1.
Since NT = N0

∏T
t=0 Zt the long-term growth rate given by

(3) becomes � = limT →∞ 1
T

∑T
t=0 ln Zt .

For simplicity, we consider a two-state model again. We
introduce the simplified notations π (1|2) = π12, π (2|1) = π21

for the type switching rates, p(1|2) = p12, p(2|1) = p21 for the
environment switching rates, denote nt (2) = nt , and redefine
xt to be 1 if the environment is in state 2 and 0 otherwise.
We use the same convention as in (10), f (1,1) = f (2,2) = 1,
w(2,1) = w1, and w(1,2) = w2. This allows us to rewrite the
recursion equation as

nt+1 = 1

Zt

[
nt (1 − π21)w1−xt

1 + (1 − nt )π12w
xt

2

]
(21)

with

Zt = ntw
1−xt

1 + (1 − nt )w
xt

2 . (22)

To analyze the transition from an optimal strategy where all
individuals have phenotype 1 to a strategy with some switching
to the other phenotype, we need to know whether a small π12

is better than π12 = 0; if that is the case, then switching is
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FIG. 7. Switching between specialists is the preferred adaptation strategy in highly correlated environments even if a generalist phenotype
is optimal in uncorrelated environments. Here we generalize the results of Figs. 3(d)–3(f) about transitions among switching, specialist,
and single-phenotype generalist strategies by considering the influence of environmental correlation. The numerically determined optimal
frequencies of different phenotypes π�(σ ) in a lineage are plotted as a function of tc, the characteristic time scale of environmental changes,
and p(x = 2), the fraction of the time the environment is in state 2. As a comparison, we also show the analytical transition lines between
single-phenotype and switching strategies obtained in Sec. V C, Eqs. (30) and (31) (solid lines) and the approximate transition line above which
switching takes place between the two specialist phenotypes as obtained in Sec. V A and Appendix C, Eq. (C15) (dashed lines).
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advantageous. We thus consider π12 � 1 and nt � 1. The
recursion (21) becomes at leading order in nt and π12:

nt+1 = π12 + (1 − π21)w1−xt

1 w
−xt

2 nt . (23)

ln Zt can also be expanded:

ln Zt = xt ln w2 − nt + ntw
1−xt

1 w
−xt

2

= xt ln w2 + nt (w1 − 1) + xtnt

(
w−1

2 − w1
)
. (24)

Over long times, the joint environmental-population process
is ergodic. The long-term growth rate is thus given as 〈ln Z〉,
where 〈.〉 indicates an average over the steady-state distribution
of x,n. The stationary solution to the nonlinearized master
equation over (x,n) is known analytically [26], but no simple
expression for the optimal strategy is. Below we derive the
simpler stationary solution for the first moment of the joint
distribution based on the linearizations (23) and (24), which
allows us to obtain the transition lines analytically. No switch-
ing (n = 0) gives a long-term growth rate of 〈x〉 ln w2. Thus
the difference in long-term growth rate between stochastic
switching and the single-phenotype strategy is

�� = 〈n〉(w−1
2 − w1

)( 〈xn〉
〈n〉 − 1 − w1

w−1
2 − w1

)
, (25)

which shows that stochastic switching is advantageous if

〈xn〉
〈n〉 >

1 − w1

w−1
2 − w1

. (26)

We can identify the right-hand side of this equation with
the lower bound environmental frequency plb

2 in uncorrelated
environments defined in (13). When there is no memory, n and
x are uncorrelated, the left-hand side reduces to 〈x〉 = p(x =
2), and we recover the result of (12). If there is memory, then n

and x are positively correlated through the effects of selection
on the population composition, which increases the fraction on
the left-hand side. This leads us to a first important conclusion:
Switching is favored over nonswitching strategies under a
wider range of environmental parameters in the presence of
temporal autocorrelation.

We go further and calculate analytically the left-hand side
of (26) at the transition. Some algebra shows that ρ1,t = 〈(1 −
xt )nt 〉 and ρ2,t = 〈xtnt 〉 satisfy the recursion

ρ1,t+1 = p21
[
π12p2 + (1 − π21)w−1

2 ρ2,t

]
+ (1 − p12)[π12(1 − p2) + (1 − π21)w2ρ1,t ], (27)

ρ2,t+1 = (1 − p21)[π12p2 + (1 − π21)w−1
2 ρ2,t ]

+p12[π12(1 − p2) + (1 − π21)w2ρ1,t ], (28)

where we use the short-hand notation p2 = p21/(p12 + p21) =
〈x〉 for the average fraction of generations the environment is
in state 2. Therefore, at steady state ρσ,t = ρσ,t+1 = ρσ , we
have

〈xn〉
〈n〉 = ρ2

ρ2 + ρ1

= p2[1 − (1 − π21)e−1/tcw1]

1 − (1 − π21)e−1/tcw1[(1 − p2)w1w2 + p2]
, (29)

where we recall that e−1/tc = 1 − p(1|2) − p(2|1) quantifies
memory in the environment. The expression in (29) is a
decreasing function of π21 so its maximum is achieved in the
limit of π21 going to zero. Setting π21 = 0 in (29) and plugging
the result into (26), we obtain the condition needed for optimal
switching to outperform always being in state σ = 1:

p2 >
(1 − w1)

(
1 − e−1/tcw−1

2

)
(
w−1

2 − w1
)
(1 − e−1/tc )

. (30)

The second transition, between optimal switching and always
being in state σ = 2, is given by the replacements w1 → w2,
w2 → w1, p2 → 1 − p2, yielding the condition

p2 <

(
w−1

1 − 1
)
(1 − e−1/tcw2)(

w−1
1 − w2

)
(1 − e−1/tc )

. (31)

These transitions reduce to (12) in the limit of no environ-
ment memory, tc = 0. The transition curves reach p2 = 0 and
p2 = 1 at tc = −1/ ln(w2) and tc = −1/ ln(w1), respectively.
The resulting phase diagram is shown in Fig. 6 along with a
numerical optimization, which confirms the results.

The analytical results show that temporal correlations in the
environment favor the evolution of stochastic switching. We
can compare to the case of uncorrelated environments consid-
ered in Fig. 4. While switching is only optimal in uncorrelated
environments if selection is strong in both environments (blue
line in Fig. 8), temporally correlated environments make it
optimal for smaller or asymmetric selection (e.g., red line in
Fig. 8). We may interpret this broadening of the range where
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FIG. 8. Environmental correlations increase the range of fitness
landscapes for which switching strategies are optimal. Region where
switching is optimal (in between colored lines) as a function of
environmental correlation time. Two-state environment as in Fig. 4
with symmetric environmental frequencies, p2 = p1 = 0.5. Selection
coefficient s(x) quantifies how much the best adapted phenotype
to environment x outperforms the suboptimal phenotype for that
environment.
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switching is optimal by noting that, in correlated environments,
switching does not just contribute to bed hedging but also to
adaptively tracking the state of the environment.

D. Continuous time limit

Lastly, we discuss the continuous time limit of (1) where our
results take a simple form. The limit is obtained by rescaling
the switching rates, growth rates, and times by δt , p(x|x ′) →
p(x|x ′)δt for x �= x ′, π (σ |σ ′) → π (σ |σ ′)δt for σ �= σ ′,
and ln[f (σ,x)] → m(σ,x)δt , t → t/δt , tc → tc/δt , ln wx →
ln wx/δt , � → �/δt and sending δt → 0, which yields

d N
dt

= Ax(t) N(t), (32)

where A
x(t)
σ,σ ′ = m[σ,x(t)]δσ,σ ′ + π (σ |σ ′).

We can take the limit of the results obtained in Sec. V C to
see how temporal autocorrelation influences the results in this
case. From (30), we obtain

p2 >
1 + tc ln w2

1 + ln w2/ ln w1
, (33)

and from (31)

p2 <
1 − tc ln w2

1 + ln w2/ ln w1
. (34)

The formulas are simpler and notably linear in the correlation
time tc (Fig. 9). The range of environmental frequencies
for which stochastic switching is optimal thus grows lin-
early with the environmental correlation time scale tc, as
−2tc ln w1 ln w2/ ln(w1w2).

The point p2 = 0 is reached by the first transition (33)
from the nonswitching to switching regime for tc = −1/ ln w2,
and the point p2 = 1 reached by the second transition for
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FIG. 9. Phase diagram in the continuous time limit. tc is the
environment correlation time, and p is the fraction of the time the
environment is in state 2. On the left of the blue line, the optimal
solution is for the population to have single phenotype σ = 1. On the
right of the red line, the optimal solution is to have single phenotype
σ = 2. In between, the optimal solution is to switch between both
phenotypes. The blue transition line reaches p = 0 at tc = −1/ ln w1,
while the red transition reaches p = 1 at tc = −1/ ln w2. Parameters:
ln w2 = −2 and ln w1 = −1.

tc = −1/ ln w1 (34), as in the discrete time case. In the
limit of no environmental memory, tc = 0, the two transitions
are at the same point ln w1/ ln(w1w2): This means that bet
hedging is never advantageous and the transition is from one
single-phenotype strategy to the other. This is in contrast with
the solution in discrete time, where there always is a window in
which bet hedging is favored, regardless of the environmental
memory. Since in any finite time interval, the environment
cycles through all its states, the population effectively only
sees the mean environment. The long-term growth rate in
continuous time is thus given by

� =
∑

x

p(x)
∑

σ

f (σ,x)π (σ ), (35)

which is a linear function in π (σ ). � is optimized by putting
all weight on the phenotype σ with largest average fitness∑

x p(x)f (σ,x). Thus no switching strategies can be optimal
and the optimal strategy always consists of a single phenotype.

VI. DISCUSSION

Our results provide a unified view of transitions be-
tween optimal adaptive strategies in randomly fluctuating
environments. By revisiting the fitness set representation of
Levins [1], valid for temporally uncorrelated environments,
we presented a graphical method, supplemented by analytical
calculations, to determine the transitions between bet-hedging
and single-phenotype strategies, as well as between specialist
and generalist phenotypes (Fig. 3), generalizing previous
results [1,15,20,23–25]. Extending the method to phenotypes
constrained by a trade-off function, we constructed graphically
and calculated analytically the transitions between optimal
strategies of diversification and adaptability in a simple model
of evolution of immunity [19] (Fig. 5).

As noticed in previous studies, temporal correlations in
the environmental conditions influences the choice of optimal
adaptation strategies [14,18,27]. The intermediate time scale
regime, where the environmental correlation time is of the
same order as the generation time, has been notoriously dif-
ficult to handle analytically. Here, we presented an analytical
approach to show how temporal correlations in environments
can be exploited by switching strategies that keep some
memory of previous phenotypes. Our results show that
temporal correlations broaden the range of selective pressures
for which a switching strategy is better than a single-phenotype
one. Everything else being equal, switching strategies are thus
more favorable in correlated environments than in uncorrelated
environments. To our knowledge, only one other analytical
approach is available to analyze optimal strategies in correlated
environments [18].

The results are independent of mechanisms, which may
take different forms. For instance, one mechanism to achieve
a generalist phenotype is through plasticity; i.e., a generalist
phenotype may partly or totally be induced by the environ-
mental condition. In our approach, however, only the value
of the replication rate f (σ,x) in environmental condition
x given the inherited type σ matters, not the process by
which it is achieved. Only when the induced phenotype may
be transmitted to the next generation, as, for instance, with
the Lamarckian CRISPR-like strategy of Ref. [19], does the
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FIG. 10. Mapping of the problem to the unit simplex helps optimizing long-term growth rate graphically. To determine the best strategy
using two phenotypes (blue and orange dots) and their mixtures (colored line), we rescale the original fitnesses (a) such that the sum of fitnesses
is constant (b). To do so, fitnesses are rescaled by dividing through the intercepts (red squares) of the line passing through the two points with
the axes (red line). In the scaled fitnesses, the optimal strategy has fitness vector f̃ � = p (red star), which can be be mapped back to the original
problem by reverting the rescaling. Where the so-determined fitnesses lie between the fitnesses of the two phenotypes, the optimal strategy
switches between both phenotypes with frequencies relative to how far the optimum is from the two phenotypes. If the optimal rescaled fitness
lies outside the achievable range of fitnesses, using the closest phenotype is optimal. (c) Optimal mixture of the two phenotypes as a function
of the frequency of environmental state 1.

distinction between inherited and induced phenotype, and
therefore the concept of plasticity, become relevant.

Possible extensions of our results include the influence
of nonrandom environmental changes, such as periodic en-
vironments [14,18,21,28], constraints on relative switching
rates [16,17,28], active sensing mechanisms [3], and heritable
plasticity [13,19], or finite population size effects [29]. Some of
these factors are known to lead to transitions between adaptive
strategies, e.g., the variability of environmental durations [18],
or cause the transitions to become discontinuous, e.g., when
switching rates are constrained to be independent of phenotype
[16,17,28].
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APPENDIX A: OPTIMAL STRATEGIES BY MAPPING
TO UNIT SIMPLEX

If the sum of fitnesses of a phenotype over environments
f (σ ) = ∑

x f (σ,x) is constant for all phenotypes, then any
mixture will also have a constant sum of fitnesses. The
normalization constraint on π then translates into an equivalent
constraint on f . The solution of the optimization problem in
its fitness form is then particularly simple [15,25]. Therefore,
where possible, it is worthwhile to map the optimization
problem to this simpler case by a rescaling of fitnesses
in different environments. Here we show how to perform

the rescaling and the conditions under which it is possible.
Figure 10 illustrates such a mapping in a simple case with two
environmental states.

The optimization problem is invariant with respect to
additions of terms that are constant with respect to the
variables over which one optimizes. Specifically, we can
add the term

∑
x p(x) log c(x) to Eq. (7) with all positive

c(x), which is constant with respect to π . This gives us
a new optimization problem with the objective function
�̃ = ∑

x p(x) log[f (x)c(x)] = ∑
x p(x) log f̃ (x), in terms of

the rescaled fitnesses f̃ (x) = ∑
σ π (σ )f̃ (σ,x) and f̃ (σ,x) =

f (σ,x)c(x). The equivalence of these problems shows that
a rescaling of the axes of fitness space does not change the
optimal adaptation strategy.

We can now try and use this rescaling to make the sum of
scaled fitnesses a constant, which we chose to be 1 without
restriction of generality. This means we aim to chose c(x),
such that

∑
x f̃ (σ,x) = ∑

x f (σ,x)c(x) = 1 holds for all σ .
In matrix-vector notation, we can represent these conditions
as the systems of equation

Fc = 1, (A1)

where 1 = (1,1, . . . ,1)T is the vector of all ones and F is
the matrix of phenotype fitness profiles with entries Fσ,x =
f (σ,x). Equation (A1) requires that the scalar products of c
with the row vectors of f (the phenotypes fitness profiles) are
equal to 1 for all rows. The vector c thus is a normal vector to
the hyperplane spanned by the fitness profiles. The mapping
is therefore only possible if a hyperplane passing through all
fitness profiles exists. The intercept dx of the hyperplane with
the x axis is given by c(dxex) = 1 ⇔ dx = 1/cx , where ex
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is the xth unit vector. Equation (A1) thus specificies that we
should rescale fitnesses by dividing through these intercepts to
achieve our goal of mapping the problem to the unit simplex.
The positivity of the scaling constants c(x) puts further
requirements on F for the mapping to work: Geometrically,
all intercepts need to be positive, or algebraically, the inverse
of the fitness matrix needs to have all positive row sums. In
the case where F is an invertible matrix, fitnesses should be
rescaled using c = F−11. If the scaling is possible, then in the
scaled variables the normalization constraint on π leads to a
normalization constraint on f̃ .

We can derive the optimal fitness profile using the Lagrange
formalism. The Lagrangian of the optimization problem is

L =
∑

x

p(x) ln f̃ (x) − λ

[∑
x

f̃ (x) − 1

]
, (A2)

where we have assumed that the optimum is in the interior of
Df̃ ; i.e., none of the non-negativity constraints on elements
π are active. Taking the derivative with respect to f̃ (x) and
setting it to zero yields f̃ �(x) = p(x)/λ. As we have rescaled
fitnesses such that the sum of fitnesses scale to 1 the Lagrange
multiplier is λ = 1. In the rescaled variables, the optimal
strategy thus allocates fitness to each environment proportional
to its frequency:

f̃ � = p. (A3)

From the optimum in the rescaled variables the optimum in
the original variables can be obtained by reversing the scaling
f �

i = f̃ �
i /ci .

Due to the non-negativity constraints on π (σ ), which we
have neglected so far in the discussion, only a subset of the unit
simplex is accessible if there are no phenotypes that are not
completely specialized to the different environments. Where
the unconstrained solution lies outside the feasible region,
a value on the boundary of the fitness set is constrained
optimum instead. The fitness allocation among the remaining
unconstrained directions still is proportional to the frequency
of the respective environments.

APPENDIX B: ANALYTICAL RESULTS ON OPTIMAL
IMMUNE STRATEGIES IN UNCORRELATED

ENVIRONMENTS

1. Optimization problem

The cost function of the optimization problem is the
long-term population growth rate, which depends on the
environmental statistics and the chosen strategy. The long-
term growth rate in uncorrelated environments for a given
p,fbase,finf,fdef(fcon) is given by (16), which we recall here:

�(π,fcon) = p ln[πfdef + (1 − π )finf]

+ (1 − p) ln[πfcon + (1 − π )fbase]. (B1)

To find the optimal strategy, we need to solve the following
optimization problem:

maximize
π,fcon

�(π,fcon)

subject to 0 � π � 1

f min
con � fcon � f max

con . (B2)

The optimization consists in finding the (global) maximum of
a two-variable objective function subject to bound constraints
on both variables. In the following derivations, we make use
of the ordering of the costs in the nontrivial case fbase �
fcon,fdef > finf and of the Pareto condition on the trade-off
line f ′

def(fcon) < 0.
This problem can be solved numerically, but as is shown

in the following, a lot of information is available from a
purely analytical treatment of the optimization problem. The
Karush-Kuhn-Tucker conditions give necessary conditions for
local optimality of a point π�,f �

con. For bound constrained
problems, these conditions boil down to the statement that the
partial derivative of the objective function with respect to either
variable needs to be [30] zero if the variable is in the interior
of its feasible interval, negative if the variable is at the lower
end of its feasible domain, and positive if the variable is at the
upper end of its feasible domain. Expressed in equations, the
necessary conditions for π�,f �

con to be locally optimal is that

∂π�(π�,f �
con)

⎧⎨
⎩

� 0, if π� = 0
� 0, if π� = 1
= 0, otherwise

(B3)

and that

∂fcon�(π�,f �
con)

⎧⎨
⎩

� 0, f �
con = 0

� 0, f �
con = 1

= 0, otherwise
. (B4)

The conditions provide only necessary but not sufficient con-
ditions for local optimality. A condition ensuring sufficiency
is that the Hessian at the optimum constricted to the feasible
directions is negative definite.

2. Derivatives of the cost function

The optimality conditions derived in the previous subsec-
tion involve the derivatives of the cost function, which can be
obtained using simple algebra and which we give below. The
derivative of the cost function with respect to π is given by

∂π� = p(fdef − finf)

finf(1 − π ) + fdefπ
− (1 − p)(fbase − fcon)

fbase(1 − π ) + fconπ
,

(B5)

∂fcon� = π

[
pf ′

def

finf(1 − π ) + fdefπ
+ (1 − p)

fbase(1 − π ) + fconπ

]
.

(B6)

For sufficiency, we also need to consider the second derivatives
of the cost function:

∂2
π� = − p(fdef − finf)2

[finf(1 − π ) + fdefπ ]2
− (1 − p)(fbase − fcon)2

[fbase(1 − π ) + fconπ ]2
,

(B7)

∂2
fcon

� = −π

[
p
{
πf ′2

def − [finf(1 − π ) + πfdef]f ′′
def

}
[finf(1 − π ) + fdefπ ]2

+ (1 − p)π

[fbase(1 − π ) + fconπ ]2

]
. (B8)
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The second derivative with respect to π is always negative
which shows that the long-term growth rate is a concave
function of π . For a fixed value of fcon, the optimization
thus corresponds to a maximization of a concave function
and always yields a unique optimum. The second derivative of
the long-term growth rate with respect to fcon is also always
negative, if f ′′

def � 0. This condition on the trade-off function
is fulfilled if individuals might hedge their bets in their degree
of specialization in environment 1. Otherwise, the second

derivative might be positive for some p and there can thus
exist more than one local optimal in the full optimization
problem.

A sufficient condition for having a local maximum is the
negative definiteness of the Hessian. As one of its diagonal
elements is always negative, this is equivalent to showing that
the determinant of the Hessian is positive. The determinant
of the Hessian at an interior stationary point can be calculated
to be

det ∇2�(π�,f �
con) = −f ′′

def(f
�
con)

(fbase − f �
con)2(f �

def − finf)π

(fbasef
�
def − finff �

con)[fbase(1 − π ) + f �
conπ ][finf(1 − π ) + πf �

def]
. (B9)

It follows that for f �
con to be optimal for an intermediate π�,

the trade-off curve needs to be locally concave f ′′
def(f

�
con) < 0.

3. Regions of local optimality for different phases

The optimality conditions Eqs. (B3) and (B4) allow for
three different cases for π� and f �

con each. This makes for a
total of 3 × 3 = 9 different combinations. For the case π� = 0,
the growth rate does not depend on f �

con, so there exists up
to seven distinct phases. Under which conditions are these
strategies locally optimal? In the following, we analytically
derive the interval of p for which these strategies are optimal.

a. Tolerance (π� = 0, arbitrary f �
con)

The condition of local optimality is ∂π�(0,f �
con) � 0 [see

Eq. (B3)], which needs to hold for all feasible f �
con. This

translates to the condition p � finf (fbase−f �
con)

fbasef
�
def−finff �

con
. The condition

needs to hold for the f �
con giving the strictest bound. Tolerance

thus is optimal for

p � min
fcon

finf(fbase − fcon)

fbasefdef − finffcon
=: p(0), (B10)

i.e., for the rarest pathogens. If the adaptive strategy comes
without constitutive cost (f min

con = 0), then the tolerance phase
disappears (p(0) = 0). Where the phase exists it is followed by
one of the bet hedging strategies.

b. Innate (π� = 1, f �
con = f min

con )

From (B3) the condition of local optimality is
∂π�(1,f min

con ) � 0. This translates to the condition

p �
(
fbase − f min

con

)
f max

def

fbasef
max
def − finff min

con

=: p(iĩ). (B11)

The second optimality condition (B4) is ∂fcon�(1,f min
con ) � 0,

leading to

p � f max
def

f max
def − f min

con f ′
def

(
f min

con

) =: p(ip). (B12)

Both conditions need to hold at the same time for local
optimality so an innate strategy is optimal for

p � max(p(ip),p(iĩ)), (B13)

i.e., for the most frequent pathogens. Depending on which of
the two conditions is more stringent, it is followed either by a
innate bet hedging strategy or a protoadaptive phase.

c. Adaptive (π� = 1, f �
con = f max

con )

Equation (B3) leads to

p �
(
fbase − f max

con

)
f min

def

fbasef
min
def − finff max

con

=: p(aã) (B14)

and Eq. (B4) to

p � f min
def

f min
def − f max

con f ′
def

(
f max

con

) =: p(ap). (B15)

Taken together, an adaptive strategy is optimal for

p(aã) � p � p(ap). (B16)

d. Protoadaptive (π� = 1, intermediate f �
con)

Equation (B3) leads to p � (fbase−f �
con)f �

def
fbasef

�
def−finff �

con
and Eq. (B4) to

p = f �
def

f �
def−f �

conf
′
def (f

�
con) . The two conditions together lead to

f ′
def(f

�
con) � −fdef(f �

con) − finf

fbase − f �
con

; (B17)

i.e., the derivative of the trade-off function needs to be more
shallow then the derivative of costs of a mixture with the
current type. As we have an intermediate level of regulation,
we need to check the second derivative to assure the extremum
is a maximum. As shown in the main text, this leads to the
condition d2 ln fdef

d(ln fcon)2 < 0. If the trade-off function is assumed to
be fulfill both conditions everywhere and to be smooth, then
by the intermediate value theorem there is a f �

con, which is
optimal for a p in the region

p(ap) � p � p(ip). (B18)

e. Innate switching (intermediate π�, f �
con = f min

con )

Equation (B3) leads to

p(0ĩ) � p � p(iĩ) (B19)

with

p(0ĩ) = finf
(
fbase − f min

con

)
fbasef

max
def − finff min

con

(B20)

and Eq. (B4) leads to

f ′
def

(
f min

con

)
� − f max

def − finf

fbase − f min
con

; (B21)
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i.e., the derivative of the trade-off shape needs to be steeper
then the line joining the unprotected state.

f. Adaptive switching (intermediate π�, f �
con = f max

con )

Equation (B3) leads to

p(0ã) � p � p(aã) (B22)

with

p(0ã) = finf
(
fbase − f max

con

)
fbasef

min
def − finff max

con

(B23)

and Eq. (B4) leads to

f ′
def(f

min
con ) � − f min

def − finf

fbase − f max
con

. (B24)

g. Protoadaptive switching (intermediate π�, f �
con)

Equation (B3) leads to

p(0p̃) � p � p(pp̃) (B25)

with

p(0p̃) = finf(fbase − f �
con)

fbasef
�
def − finff �

con

(B26)

and Eq. (B4) leads to

f ′
def(f

�
con) = −fdef(f �

con) − finf

fbase − f �
con

. (B27)

The derivative needs to be equal to the slope of the line
connecting the fitness profile to the nonprotected type. The
sufficiency condition det H (π�,f �

con) > 0 leads to

f ′′
def(f

�
con) < 0. (B28)

APPENDIX C: DERIVATION OF LONG-TERM GROWTH
RATE IN THE ADIABATIC LIMIT

The study of the adiabatic limit in which the durations of
environmental periods are large relative to the time scales of
population composition change goes back to Ref. [3]. Mathe-
matically, the long-term growth rate can be approximated by
an eigenvalue perturbation approach. In the following, we give
a derivation following the notations of Ref. [20].

The transfer matrix connecting the population composition
at successive time points is 〈σ ′|A(x)|σ 〉 = f (σ ′,x)π (σ ′|σ )
(in bra-ket notation), which one can decompose as A(x) =
A

(x)
0 + A

(x)
1 with

〈σ ′|A(x)
0 |σ 〉 =

{
f (σ,x) if σ ′ = σ

0 otherwise (C1)

and

〈σ ′|A(x)
1 |σ 〉 =

{−f (σ,x)[1 − π (σ |σ )] if σ ′ = σ

f (σ ′,x)π (σ ′|σ ) otherwise . (C2)

Using this decomposition, we treat A
(x)
1 as a perturbation to

A
(x)
0 to approximately solve the eigenvalue problem of A(x).

As A0 is diagonal, its eigenvalues are λ0,σ = f (σ,x) with
corresponding eigenvectors |σ 〉, which have all but the σ th

element set to zero. Applying the formulas for the eigenvalues
and eigenvectors of the perturbed problem, we obtain

λσ = f (σ,x)π (σ |σ ) (C3)

and the corresponding right eigenvectors

∣∣ψ (x)
σ

〉 = |σ 〉 +
∑
σ ′ �=σ

〈σ ′|A(x)
1 |σ 〉

f (σ,x) − f (σ ′,x)
|σ ′〉 (C4)

= |σ 〉 +
∑
σ ′ �=σ

f (σ ′,x)π (σ ′|σ )

f (σ,x) − f (σ ′,x)
|σ ′〉. (C5)

In order to calculate overlaps, we also need to calculate left
eigenvectors. The left eigenvectors of A

(x)
0 are equal to its right

eigenvectors as its a diagonal matrix. The left eigenvectors of
the perturbed problem are

〈ψ (x)
σ | = 〈σ | +

∑
σ ′ �=σ

〈σ ′|(A(x)
1

)T |σ 〉
f (σ,x) − f (σ ′,x)

〈σ ′| (C6)

= 〈σ | +
∑
σ ′ �=σ

〈σ |A(x)
1 |σ ′〉

f (σ,x) − f (σ ′,x)
〈σ ′| (C7)

= 〈σ | +
∑
σ ′ �=σ

f (σ,x)π (σ |σ ′)
f (σ,x) − f (σ ′,x)

〈σ ′|. (C8)

Let us assume that for every environment x there is a type
σ = x, which provides optimal growth. The overlap between
the largest eigenvectors in environments x and x ′ is given by

Q(x,x ′) := big〈ψ (x)
x ψ

(x ′)
x ′

〉 = π (x|x ′)�(x,x ′) (C9)

with

�(x,x ′) = f (x,x ′)
f (x ′,x ′)−f (x,x ′)

+ f (x,x)

f (x,x)−f (x ′,x)
. (C10)

In the adiabatic limit, the long-term growth rate is given by

� =
∑

x

p(x) ln λx −
∑

x,x ′;x �=x ′
p(x ′|x)p(x) ln

1

Q(x,x ′)
(C11)

=
∑

x

p(x) ln f (x,x)

+
∑
x,x ′

p(x ′|x)p(x) ln[π (x|x ′)�(x,x ′)], (C12)

where we have defined �(x,x) = 1.
We can write out the sums in the case of an environment

switching between two states as

� = p(1) ln f (1,1) + p(2) ln f (2,2)

+p(1|2)p(2) ln[π (1|2)�(1,2)]

+p(2|1)p(1) ln[π (2|1)�(2,1)]. (C13)

To compare the best switching strategies using phenotypes
of fitness f or f̃ we calculate the long-term growth rate
difference

�� = (1 − p2) ln
f (1,1)

f̃ (1,1)
+ p2

f (2,2)

f̃ (2,2)

+ (1 − e−1/tc )p2(1 − p2) ln
�(1,2)�(2,1)

�̃(1,2)�̃(2,1)
, (C14)
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where we have used short-hand notations for the environmental
switching frequencies as introduced in the text. Setting
�� = 0, we can solve for the transition line between the two
sets of phenotypes,

e−1/tc = 1 −
(1 − p2) ln f̃ (1,1)

f (1,1) + p2 ln f̃ (2,2)
f (2,2)

(1 − p2)p2 ln �(1,2)�(2,1)
�̃(1,2)�̃(2,1)

. (C15)

Such an analysis can be applied to the case where a generalist
phenotype is on the Pareto frontier to find when switching only
uses specialists (Fig. 7). To do so, we compare the growth
rate of switching between the specialist phenotypes σ = 1
and σ = 2 to the growth rates of switching between one of
the specialists and the generalist σ = 3. Equation (C15) then
gives an approximate result for the time scale of environmental
correlations above which switching only involves specialists.
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